Exercise Sheet 8

To be handed in until November 15

1. Unit quaternions and rotations

Let $Q \cong \mathbb{R}^{4}$ be the quaternions and define the purely imaginary quaternions by

$$
\mathbb{R}^{3}:=\{a i+b j+c k \in Q \mid a, b, c \in \mathbb{R}\} \cong\{0\} \times \mathbb{R}^{3} \subset Q
$$

(a) Verify that the rule

$$
A d_{v}: w \mapsto v w v^{-1}
$$

defines an action of the unit quaternions $v \in S^{3}$ on \mathbb{R}^{3} by linear isometries (with respect to the usual inner product).
Hint: Use that for $u \in Q$ that u is purely imaginary iff $\bar{u}=-u$.
(b) For any quaternion $u \in Q$ define e^{u} by power series. Verify that for $n \in S^{2} \subset \mathbb{R}^{3}$ and $\theta \in \mathbb{R}$ we have

$$
e^{\theta n}=\cos \theta+n \sin \theta
$$

Show that $e^{\theta n} \in S^{3}$. Moreover, show that any v in $S^{3} \subset Q$ can be written as $v=e^{\theta n}$ for some $\theta \in \mathbb{R}$ and $n \in S^{2} \subset \mathbb{R}^{3}$ (i.e. the exponential $\mathbb{R}^{3} \rightarrow S^{3}$ is surjective).
(c) Describe the action of an element v of S^{3} on \mathbb{R}^{3} geometrically.

Hint: $A d_{v}$ is a rotation by some angle ϕ about some axis. Find the axis and the angle.
(d) Verify that the association $v \mapsto A d_{v}$ gives a surjective homomorphism and a two-sheeted covering map from S^{3} to $S O(3)$. Consequently, observe that $S O(3) \cong \mathbb{R} P^{3}$.

Solution:

(a) Let $w \in \mathbb{R}^{3}$ and $v \in S^{3}$. To show that $A d_{v}$ is well-defined, we need to show that $v w v^{-1}=v w \bar{v}$ is again in $\mathbb{R}^{3} \cong\{0\} \times \mathbb{R}^{3}$. As for the complex numbers: $u \in \mathbb{R}^{4}$ is in \mathbb{R}^{3} iff $\bar{u}=-u$. Note that

$$
\overline{v w \bar{v}}=\overline{\bar{v}} \bar{w} \bar{v}=v \bar{w} \bar{v}=v(-w) \bar{v}=-v w \bar{v} .
$$

Hence $w \in \mathbb{R}^{3}$ implies $A d_{v}(w)=v w v^{-1} \in \mathbb{R}^{3}$. Moreover, $A d_{v}$ is an isometry for every $v \in S^{3}$ since

$$
\left|A d_{v}(w)\right|=\left|v w v^{-1}\right|=|v\|w\| v|^{-1} .
$$

Conjugation defines a group action as $A d_{1}=i d_{\mathbb{R}^{3}}$ and $A d_{u} \circ A d_{v}=A d_{u v}$ because

$$
A d_{u} \circ A d_{v}(w)=A d_{u}\left(v w v^{-1}\right)=u v w v^{-1} u^{-1}=u v w(u v)^{-1}=A d_{u v}(w)
$$

(b) Let $u \in \mathbb{R}^{3} \subset Q$ be purely imaginery. To compute the exponential e^{u} note that using again as in (a) that $\bar{u}=-u$ we have

$$
u^{2}=-u(-u)=-u \bar{u}=-|u|^{2}
$$

Hence $u^{2 n}=(-1)^{n}|u|^{2 n}$ and $u^{2 n+1}=(-1)^{n}|u|^{2 n} u$. So

$$
\begin{aligned}
e^{u} & =\sum_{n=0}^{\infty} \frac{u^{n}}{n!}=\sum_{n=0}^{\infty} \frac{u^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{u^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}|u|^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty} \frac{(-1)^{n}|u|^{2 n} u}{(2 n+1)!} \\
& =\cos (|u|)+\sin (|u|) \frac{u}{|u|} .
\end{aligned}
$$

In particular,

$$
\left|e^{u}\right|^{2}=\cos ^{2}(|u|)+\sin ^{2}(|u|) \frac{|u|^{2}}{|u|^{2}}=1
$$

So the exponential map exp : $\mathbb{R}^{3} \rightarrow S^{3}$ is well-defined. Moreover, for $u=\theta n$ with $n \in S^{2} \subset \mathbb{R}^{3}, \theta \in \mathbb{R}$ we get

$$
v=e^{\theta n}=\cos (\theta)+\sin (\theta) n
$$

The exponential $\mathbb{R}^{3} \rightarrow S^{3}$ is surjective: Given a $v \in S^{3}$ let us find $n \in$ $S^{2} \subset \mathbb{R}^{3}, \theta \in \mathbb{R}$ such that $v=e^{\theta n}$. Writing $v=a+w \in S^{3}$ with $a \in \mathbb{R}$ real and $w \in \mathbb{R}^{3}$ purely imaginary we must have $a=\cos (\theta)$ and $w=\sin (\theta) n$. Given (a, w) we can find a unique $\theta \in[0,2 \pi)$ such that $a=\cos \theta$ and then set $n=\frac{w}{\sin } \theta$ for $\theta \neq 0, \pi$ (and $n \in S^{2}$ aribtrary if $\theta=0, \pi$).
(c) Let us prove that for $v=e^{\theta n} \in S^{3}$ that $A d_{v}$ is a rotation around the axis $n \in S^{2} \subset \mathbb{R}^{3}$ with angle 2θ.
For $w, \tilde{w} \in \mathbb{R}^{3}$ and $x, y \in \mathbb{R}$ we have

$$
A d_{v}(x w+y \tilde{w})=v(x w+y \tilde{w}) \bar{v}=x v w \bar{v}+y v \tilde{w} \bar{v}
$$

which proves that $A d_{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear map.
For $v=e^{\theta n}$ and $w \in \mathbb{R}^{3}$ we have

$$
\begin{aligned}
A d_{e^{n \theta}}(w) & =e^{n \theta} w e^{-n \theta}=(\cos \theta+n \sin \theta) w(\cos \theta-n \sin \theta) \\
& =w \cos ^{2} \theta-w n \cos \theta \sin \theta+n w \cos \theta \sin \theta-n w n \sin ^{2} \theta
\end{aligned}
$$

To understand what the linear map $A d_{v}$ does, it is enough to check what the image of n is and what the image of an element $w \in n^{\perp}$ is because $\mathbb{R} n \oplus n^{\perp}=\mathbb{R}^{3}$.

Claim. For $w=b i+c j+d k, \tilde{w}=f i+g j+h k \in \mathbb{R}^{3}$ purely imaginery we have

$$
w \tilde{w}=-\langle w, \tilde{w}\rangle_{\mathbb{R}^{3}}+w \times \tilde{w} \in Q
$$

Proof.

$$
\begin{aligned}
w \tilde{w} & =(b i+c j+d k)(f i+g j+h k) \\
& =-b f-c g-d h+(c h-g d) i+(d f-b h) j+(b g-c f) k \\
& =-\langle w, \tilde{w}\rangle_{\mathbb{R}^{3}}+w \times \tilde{w}
\end{aligned}
$$

Using the formula for $A d_{v}$ applied to $w=n$ we get

$$
A d_{e^{n \theta}}(n)=n \cos ^{2} \theta-n^{2} \cos \theta \sin \theta+n^{2} \cos \theta \sin \theta-n^{3} \sin ^{2} \theta=n
$$

as by the claim $n^{3}=-|n|^{2} n=-n$. For $w \in n^{\perp}$ of unit length let $\tilde{w}=n \times w$ which is automatically also of unit length and n, w, \tilde{w} are an ONB of \mathbb{R}^{3}. Applying the formula for $A d_{v}$ to this w yields

$$
\begin{aligned}
A d_{e^{n \theta}}(w) & =w \cos ^{2} \theta-w n \cos \theta \sin \theta+n w \cos \theta \sin \theta-n w n \sin ^{2} \theta \\
& =w \cos ^{2} \theta-(w \times n) \cos \theta \sin \theta+(n \times w) \cos \theta \sin \theta-(n \times w) n \sin ^{2} \theta \\
& =w \cos ^{2} \theta+2 \tilde{w} \cos \theta \sin \theta-\tilde{w} n \sin ^{2} \theta \\
& =w \cos ^{2} \theta+2 \tilde{w} \cos \theta \sin \theta-\tilde{w} \times n \sin ^{2} \theta \\
& =w \cos ^{2} \theta+2 \tilde{w} \cos \theta \sin \theta-w \sin ^{2} \theta \\
& =w \cos (2 \theta)+\tilde{w} \sin (2 \theta) .
\end{aligned}
$$

Hence $A d_{v}$ restricted to the subspace n^{\perp} is a rotation in the plane n^{\perp} by an angle 2θ. So we proved that $A d_{v}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a rotation by an angle 2θ with axis n.
(d) As $e^{\theta n} \in S^{3}$ for any $\theta \in \mathbb{R}$ and $n \in S^{2}$ we can get any rotation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, hence $S^{3} \rightarrow S O(3)$ sending $v \mapsto A d_{v}$ is surjective. It is also a group homomorphism by part (a). To prove that the map is a two-sheeted covering we can show that its kernel is two elements. Indeed, if $A d_{v}(w)=$ $v w v^{-1}=w$ then $v= \pm 1$ as only purely real quaternions commute with any other quaternion. Hence the map $S^{3} /\{ \pm 1\} \cong S O(3)$ is an isomorphism of smooth groups. Because also $S^{3} /\{ \pm 1\} \cong \mathbb{R} \mathbb{P}^{2}$ we also have $S O(3) \cong \mathbb{R P}^{2}$.

2. Orientation and quotients

(a) Let M be a connected, oriented manifold, and suppose G is a group that acts freely and properly discontinuously on M by diffeomorphisms. Prove that M / G is orientable iff all $g \in G$ are orientation preserving.
(b) Show that $\mathbb{R P}^{n}$ is orientable iff n is odd.

Solution:

(a) Let $\pi: M \rightarrow M / G$ be the projection. Let As π is a local diffeomorphism, $d \pi: T_{p} M \rightarrow T_{\pi(p)} M / G$ is a diffeomorphism, so it takes a basis of $T_{p} M$ to one of $T_{\pi(p)} M / G$.
If all g are orientation-preserving let us define an orientation at $q \in M / G$ by the image of the orientation for $T_{p} M$ under π for some $p \in M$ such that $\pi(p)=q$. As $\pi^{-1}(q)=G \cdot p$ and all $g \in G$ are orientation-preserving this defines a well-defined orientation.

Suppose not all g are orientation-preserving and that M is connected. Let us prove by contradiction that M / G is nonorientable. If there is an orientation on M / G then as M is connected either $\pi: M \rightarrow M / G$ is orientation-preserving or orientation-reversing. In particular, $d \pi_{p}$: $T_{p} M \rightarrow d T_{\pi(p)} M / G$ and $d \pi_{g p}: T_{g p} M \rightarrow d T_{\pi(g p)} M / G=d T_{\pi(p)} M / G$ are all either orientation-preserving or orientation-reserving for all $g \in G$. But if there is a g which is orientation-reversing then by the chain rule

$$
d \pi_{g p}=d \pi_{p} \circ d g_{g p}^{-1}
$$

But then $d \pi_{g p}$ and $d \pi_{p}$ would not be either both orientation-reversing or both orientation-reversing.
(b) Recall that $\mathbb{R}^{n}=S^{n} /\{i d, A\}$ where A is the antipodal map $\mathbb{R}^{n+1} \rightarrow$ \mathbb{R}^{n+1} that sends $\left(x^{0}, \ldots, x^{n}\right) \mapsto\left(-x^{0}, \ldots,-x^{n}\right)$. The antipodal map is orientation-preserving iff n is odd. Indeed, A can be written as the composition of $n+1$ reflections. Each reflection reverses the orientation on S^{n}. As composing an odd number of orientation-reversing maps is orientationreversing and composing an even number of orientation-reversing maps is orientation-preserving we get the result by applying part (a).

3. Verseuchungsprinzip

Let M be a manifold and $U \subset M$ be open. Prove: If U is nonorientable then M is nonorientable.

Solution:

As $T_{p} U=T_{p} M$ for any $p \in U$ any consistent choice of orientations on M produces a consistent choice of orientations on U. More concretely, let $M \rightarrow$ $O M$ be a continuous section that chooses an orientation for $T_{p} M$ for every point
$p \in M$. Then the composition $U \xrightarrow{\text { incl }} M \rightarrow O M$ has image in the orientation double cover $O U \subset O M$. This defines a continuous section $U \rightarrow O U$.

4. Vector fields on the Klein bottle

Recall that the Klein bottle is $K=\mathbb{R}^{2} / G$ where G is the group generated by the maps

$$
\begin{aligned}
& (x, y) \mapsto(x+1,-y) \\
& (x, y) \mapsto(x, y+1) .
\end{aligned}
$$

How many pointwise linearly independent vector fields can you find on \mathbb{R}^{2} / G ?

Solution:

First note that there can be maximal two linearly independent vector fields as the dimension of the Klein bottle is 2 . So $T_{p} K$ is of dimension 2 for any p. The vector field $X(p)=(0,1)$ on \mathbb{R}^{2} also defines a vector field on K.

However, the vector field $Y(p)=(1,0)$ on \mathbb{R}^{2} does not descend to $K=\mathbb{R}^{2} / G$. In fact, there are no two linearly independent two vector fields on K. Because in case there are n linearly independent vector fields on a manifold M, then $T M \cong M \times \mathbb{R}^{n}$ and such M would be orientable. But the Klein bottle K is not orientable, so there are no two linearly independent vector field on K.

5. Orientation with curves

Let M be a smooth manifold.
(a) Let $p, q \in M$ and let $\gamma:[0,1] \rightarrow M$ be a curve connecting p to q. Observe that any chosen orientation O of $T_{\gamma(0)} M$ propagates uniquely along γ to a unique path $O_{\gamma}(t)$ of orientations of $T_{\gamma(t)} M$ that is "continuous" in t (define this) and $O_{\gamma}(0)$.
(b) Let γ be a closed curve in M, i.e. $\gamma(0)=\gamma(1)$. We say that γ is orientation-preserving if $O_{\gamma}(0)$ equals $O_{\gamma}(1)$ (for any choice of $O_{\gamma}(0)$); otherwise we say that γ is orientation-reversing. Show that M is orientable if and only if every closed curve is orientation-preserving.
(c) Conclude that the Möbius strip and the Klein bottle are not orientable.
$\left(\mathbf{d}^{*}\right)$ (For the ones that know cohomology): Define an element $w_{1} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$ that is measuring the obstruction of M being orientable, i.e. $w_{1}=0$ iff M is orientable. This w_{1} is called the first Stiefel-Whitney class.

Solution:

(a) Given a chart U such that $T U \stackrel{\Psi}{\cong} U \times \mathbb{R}^{n}$ specifying one orientation for $T_{p} M$ at a point p specifies an orientation for all other points $q \in U$ depending on if the orientation at p is mapped to the standard orientation or the opposite orientation of \mathbb{R}^{n} via Ψ.
Let $I=[0,1]$ and $\gamma: I \rightarrow M$ a smooth curve with $\gamma(0)=p$ and $\gamma(1)=q$. Cover $\gamma(I)$ by charts U_{j} that have the property $T U_{j} \cong U_{j} \times \mathbb{R}^{n}$. As I is compact also $\gamma(I)$ is compact, so $\gamma(I)$ can be covered by finitely many U_{j} as specified above. We can order the U_{1}, \ldots, U_{k} such that $p \in U_{1}$ and $q \in U_{k}$ and $U_{j} \cap U_{j+1} \neq \emptyset$. Then any orientation for a point in $\gamma(I) \cap U_{j}$ induces an orientation for all points in $\gamma(I) \cap U_{j+1}$ as the two sets overlap. Given an orientation O at $p=\gamma(0)$ thus defines an orientation for all $\tilde{p} \in \gamma(I)$.
So any smooth curve $\gamma:[0,1] \rightarrow M$ and an orientation for $T_{\gamma(0)} M$ defines a unique smooth curve $O_{\gamma}:[0,1] \rightarrow O M$.
(b) A closed loop $I \rightarrow M$ is orientation-preserving iff any lift $O_{\gamma}: I \rightarrow O M$ is also a closed loop.
Note that a double cover $\pi: N \rightarrow M$ is trivial (i.e. $N \cong M \times\{ \pm 1\}$) iff all closed loops have only closed lifts. But we have seen in the lecture that the orientation double cover $O M$ is trivial iff M is orientable.
(c) For the central loop $\gamma: I \rightarrow M$ in the Möbius strip M there is no closed lift $\gamma: I \rightarrow O M$.
(d) For any loop γ in M define

$$
w_{1}(\gamma)= \begin{cases}1, & \gamma \text { reverses orientation } \\ 0, & \gamma \text { preserves orientation }\end{cases}
$$

This defines a map $\pi_{1}(M) \rightarrow \mathbb{Z}_{2}$. As \mathbb{Z}_{2} is abelian and $H_{1}(M)$ is the abelianization of $\pi_{1}(M)$ we get a map $H_{1}(M) \rightarrow \mathbb{Z}^{2}$ which we can identify with a cohomology class $w_{1} \in H^{1}\left(M, \mathbb{Z}_{2}\right)$.

