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1. Unit quaternions and rotations

Let Q ∼= R4 be the quaternions and define the purely imaginary quaternions by

R3 := {ai + bj + ck ∈ Q | a, b, c ∈ R} ∼= {0} × R3 ⊂ Q.

(a) Verify that the rule
Adv : w 7→ vwv−1

defines an action of the unit quaternions v ∈ S3 on R3 by linear isometries
(with respect to the usual inner product).
Hint: Use that for u ∈ Q that u is purely imaginary iff u = −u.

(b) For any quaternion u ∈ Q define eu by power series. Verify that for
n ∈ S2 ⊂ R3 and θ ∈ R we have

eθn = cos θ + n sin θ.

Show that eθn ∈ S3. Moreover, show that any v in S3 ⊂ Q can be written
as v = eθn for some θ ∈ R and n ∈ S2 ⊂ R3 (i.e. the exponential R3 → S3

is surjective).

(c) Describe the action of an element v of S3 on R3 geometrically.
Hint: Adv is a rotation by some angle ϕ about some axis. Find the axis and the angle.

(d) Verify that the association v 7→ Adv gives a surjective homomorphism and
a two-sheeted covering map from S3 to SO(3). Consequently, observe that
SO(3) ∼= RP 3.

Solution:

(a) Let w ∈ R3 and v ∈ S3. To show that Adv is well-defined, we need to
show that vwv−1 = vwv is again in R3 ∼= {0} × R3. As for the complex
numbers: u ∈ R4 is in R3 iff u = −u. Note that

vwv = v w v = v w v = v (−w) v = −vwv.

Hence w ∈ R3 implies Adv(w) = vwv−1 ∈ R3. Moreover, Adv is an
isometry for every v ∈ S3 since

|Adv(w)| = |vwv−1| = |v||w||v|−1.
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Conjugation defines a group action as Ad1 = idR3 and Adu ◦ Adv = Aduv

because

Adu ◦ Adv(w) = Adu(vwv−1) = uvwv−1u−1 = uvw(uv)−1 = Aduv(w).

(b) Let u ∈ R3 ⊂ Q be purely imaginery. To compute the exponential eu note
that using again as in (a) that u = −u we have

u2 = −u(−u) = −uu = −|u|2.

Hence u2n = (−1)n|u|2n and u2n+1 = (−1)n|u|2nu. So

eu =
∞∑

n=0

un

n! =
∞∑

n=0

u2n

(2n)! +
∞∑

n=0

u2n+1

(2n + 1)!

=
∞∑

n=0

(−1)n|u|2n

(2n)! +
∞∑

n=0

(−1)n|u|2nu

(2n + 1)!

= cos(|u|) + sin(|u|) u

|u|
.

In particular,

|eu|2 = cos2(|u|) + sin2(|u|) |u|2

|u|2
= 1.

So the exponential map exp : R3 → S3 is well-defined. Moreover, for
u = θn with n ∈ S2 ⊂ R3, θ ∈ R we get

v = eθn = cos(θ) + sin(θ)n.

The exponential R3 → S3 is surjective: Given a v ∈ S3 let us find n ∈
S2 ⊂ R3, θ ∈ R such that v = eθn. Writing v = a+w ∈ S3 with a ∈ R real
and w ∈ R3 purely imaginary we must have a = cos(θ) and w = sin(θ)n.
Given (a, w) we can find a unique θ ∈ [0, 2π) such that a = cos θ and then
set n = w

sin θ for θ ̸= 0, π (and n ∈ S2 aribtrary if θ = 0, π).

(c) Let us prove that for v = eθn ∈ S3 that Adv is a rotation around the axis
n ∈ S2 ⊂ R3 with angle 2θ.
For w, w̃ ∈ R3 and x, y ∈ R we have

Adv(xw + yw̃) = v(xw + yw̃)v = xvwv + yvw̃v

which proves that Adv : R3 → R3 is a linear map.
For v = eθn and w ∈ R3 we have

Adenθ (w) = enθwe−nθ = (cos θ + n sin θ)w(cos θ − n sin θ)
= w cos2 θ − wn cos θ sin θ + nw cos θ sin θ − nwn sin2 θ.

To understand what the linear map Adv does, it is enough to check what
the image of n is and what the image of an element w ∈ n⊥ is because
Rn ⊕ n⊥ = R3.
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Claim. For w = bi + cj + dk, w̃ = fi + gj + hk ∈ R3 purely imaginery we
have

ww̃ = −⟨w, w̃⟩R3 + w × w̃ ∈ Q.

Proof.

ww̃ = (bi + cj + dk)(fi + gj + hk)
= −bf − cg − dh + (ch − gd)i + (df − bh)j + (bg − cf)k
= −⟨w, w̃⟩R3 + w × w̃

Using the formula for Adv applied to w = n we get

Adenθ (n) = n cos2 θ − n2 cos θ sin θ + n2 cos θ sin θ − n3 sin2 θ = n

as by the claim n3 = −|n|2n = −n. For w ∈ n⊥ of unit length let
w̃ = n × w which is automatically also of unit length and n, w, w̃ are an
ONB of R3. Applying the formula for Adv to this w yields

Adenθ (w) = w cos2 θ − wn cos θ sin θ + nw cos θ sin θ − nwn sin2 θ

= w cos2 θ − (w × n) cos θ sin θ + (n × w) cos θ sin θ − (n × w)n sin2 θ

= w cos2 θ + 2w̃ cos θ sin θ − w̃n sin2 θ

= w cos2 θ + 2w̃ cos θ sin θ − w̃ × n sin2 θ

= w cos2 θ + 2w̃ cos θ sin θ − w sin2 θ

= w cos(2θ) + w̃ sin(2θ).

Hence Adv restricted to the subspace n⊥ is a rotation in the plane n⊥ by
an angle 2θ. So we proved that Adv : R3 → R3 is a rotation by an angle
2θ with axis n.

(d) As eθn ∈ S3 for any θ ∈ R and n ∈ S2 we can get any rotation R3 → R3,
hence S3 → SO(3) sending v 7→ Adv is surjective. It is also a group
homomorphism by part (a). To prove that the map is a two-sheeted
covering we can show that its kernel is two elements. Indeed, if Adv(w) =
vwv−1 = w then v = ±1 as only purely real quaternions commute with any
other quaternion. Hence the map S3/{±1} ∼= SO(3) is an isomorphism of
smooth groups. Because also S3/{±1} ∼= RP2 we also have SO(3) ∼= RP2.

2. Orientation and quotients

(a) Let M be a connected, oriented manifold, and suppose G is a group that
acts freely and properly discontinuously on M by diffeomorphisms. Prove
that M/G is orientable iff all g ∈ G are orientation preserving.

3



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

(b) Show that RPn is orientable iff n is odd.

Solution:

(a) Let π : M → M/G be the projection. Let As π is a local diffeomorphism,
dπ : TpM → Tπ(p)M/G is a diffeomorphism, so it takes a basis of TpM to
one of Tπ(p)M/G.
If all g are orientation-preserving let us define an orientation at q ∈ M/G
by the image of the orientation for TpM under π for some p ∈ M such
that π(p) = q. As π−1(q) = G · p and all g ∈ G are orientation-preserving
this defines a well-defined orientation.
Suppose not all g are orientation-preserving and that M is connected.
Let us prove by contradiction that M/G is nonorientable. If there is
an orientation on M/G then as M is connected either π : M → M/G
is orientation-preserving or orientation-reversing. In particular, dπp :
TpM → dTπ(p)M/G and dπgp : TgpM → dTπ(gp)M/G = dTπ(p)M/G
are all either orientation-preserving or orientation-reserving for all g ∈ G.
But if there is a g which is orientation-reversing then by the chain rule

dπgp = dπp ◦ dg−1
gp .

But then dπgp and dπp would not be either both orientation-reversing or
both orientation-reversing.

(b) Recall that RPn = Sn/{id, A} where A is the antipodal map Rn+1 →
Rn+1 that sends (x0, . . . , xn) 7→ (−x0, . . . , −xn). The antipodal map is
orientation-preserving iff n is odd. Indeed, A can be written as the com-
position of n+1 reflections. Each reflection reverses the orientation on Sn.
As composing an odd number of orientation-reversing maps is orientation-
reversing and composing an even number of orientation-reversing maps is
orientation-preserving we get the result by applying part (a).

3. Verseuchungsprinzip

Let M be a manifold and U ⊂ M be open. Prove: If U is nonorientable then
M is nonorientable.

Solution:
As TpU = TpM for any p ∈ U any consistent choice of orientations on M

produces a consistent choice of orientations on U . More concretely, let M →
OM be a continuous section that chooses an orientation for TpM for every point
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p ∈ M . Then the composition U
incl−→ M → OM has image in the orientation

double cover OU ⊂ OM . This defines a continuous section U → OU .

4. Vector fields on the Klein bottle

Recall that the Klein bottle is K = R2/G where G is the group generated by
the maps

(x, y) 7→ (x + 1, −y)
(x, y) 7→ (x, y + 1).

How many pointwise linearly independent vector fields can you find on R2/G?

Solution:
First note that there can be maximal two linearly independent vector fields

as the dimension of the Klein bottle is 2. So TpK is of dimension 2 for any p.
The vector field X(p) = (0, 1) on R2 also defines a vector field on K.

However, the vector field Y (p) = (1, 0) on R2 does not descend to K = R2/G.
In fact, there are no two linearly independent two vector fields on K. Because
in case there are n linearly independent vector fields on a manifold M , then
TM ∼= M ×Rn and such M would be orientable. But the Klein bottle K is not
orientable, so there are no two linearly independent vector field on K.

5. Orientation with curves

Let M be a smooth manifold.

(a) Let p, q ∈ M and let γ : [0, 1] → M be a curve connecting p to q. Observe
that any chosen orientation O of Tγ(0)M propagates uniquely along γ to
a unique path Oγ(t) of orientations of Tγ(t)M that is "continuous" in t
(define this) and Oγ(0).

(b) Let γ be a closed curve in M , i.e. γ(0) = γ(1). We say that γ is
orientation-preserving if Oγ(0) equals Oγ(1) (for any choice of Oγ(0));
otherwise we say that γ is orientation-reversing. Show that M is ori-
entable if and only if every closed curve is orientation-preserving.

(c) Conclude that the Möbius strip and the Klein bottle are not orientable.

(d*) (For the ones that know cohomology): Define an element w1 ∈ H1(M,Z2)
that is measuring the obstruction of M being orientable, i.e. w1 = 0 iff
M is orientable. This w1 is called the first Stiefel-Whitney class.

Solution:
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(a) Given a chart U such that TU
Ψ∼= U×Rn specifying one orientation for TpM

at a point p specifies an orientation for all other points q ∈ U depending
on if the orientation at p is mapped to the standard orientation or the
opposite orientation of Rn via Ψ.
Let I = [0, 1] and γ : I → M a smooth curve with γ(0) = p and γ(1) = q.
Cover γ(I) by charts Uj that have the property TUj

∼= Uj × Rn. As I
is compact also γ(I) is compact, so γ(I) can be covered by finitely many
Uj as specified above. We can order the U1, . . . , Uk such that p ∈ U1 and
q ∈ Uk and Uj ∩ Uj+1 ̸= ∅. Then any orientation for a point in γ(I) ∩ Uj

induces an orientation for all points in γ(I)∩Uj+1 as the two sets overlap.
Given an orientation O at p = γ(0) thus defines an orientation for all
p̃ ∈ γ(I).
So any smooth curve γ : [0, 1] → M and an orientation for Tγ(0)M defines
a unique smooth curve Oγ : [0, 1] → OM .

(b) A closed loop I → M is orientation-preserving iff any lift Oγ : I → OM
is also a closed loop.
Note that a double cover π : N → M is trivial (i.e. N ∼= M × {±1}) iff all
closed loops have only closed lifts. But we have seen in the lecture that
the orientation double cover OM is trivial iff M is orientable.

(c) For the central loop γ : I → M in the Möbius strip M there is no closed
lift γ : I → OM .

(d) For any loop γ in M define

w1(γ) =
{

1, γ reverses orientation,
0, γ preserves orientation.

This defines a map π1(M) → Z2. As Z2 is abelian and H1(M) is the
abelianization of π1(M) we get a map H1(M) → Z2 which we can identify
with a cohomology class w1 ∈ H1(M,Z2).
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