Exercise Sheet 9

To be handed in until November 22

1. Manifolds are locally compact in the strong sense (Lemma 0.5)

- (a) Let M be a manifold. Show that for any open set $V \subset M$ and any point $p \in V$ there is an open set U such that
 - (i) $p \in U$,
 - (ii) \overline{U} is compact,
 - (iii) $\overline{U} \subset V$.

Note that this entails that M is locally compact but says more.

(b) Find a (non-Hausdorff) space X and $K \subset X$ such that K is compact but \overline{K} is not compact.

Solution:

(a) Let $V \subset M$ be open and $p \in V$. Let $\psi : U' \to \mathbb{R}^n$ be a chart at p such that $U' \subset V$. As $\psi(U') \subset \mathbb{R}^n$ is open and $\psi(p) \in \psi(U')$ there is a open ball $B_r(\psi(p))$ around $\psi(p)$ which is contained in $\psi(U')$. So also

$$W := B_{r/2}(\psi(p)) \subset \overline{W} = \overline{B_{r/2}(\psi(p))} \subset B_r(\psi(p)) \subset \psi(U')$$

and \overline{W} is compact. Then

$$p \in U := \psi^{-1}(W) \subset \overline{U} = \overline{\psi^{-1}(W)} = \psi^{-1}(\overline{W}) \subset U' \subset V$$

Since ψ is a homeomorphism U is open and \overline{U} is compact as \overline{W} is compact.

(b) Let $X = \mathbb{Z}$ with topology given by $U \subset X$ open iff $0 \in U$ or $U = \emptyset$. Check that this defines a topology. Moreover, finite sets are in any topology. But the closure of $\{0\}$ in this topology is all of \mathbb{Z} . Note that

$$\mathbb{Z} = \bigcup_{n \in \mathbb{N}} \{-n, \dots, n\}$$

is an open cover of \mathbb{Z} that admits no finite subcover. So $\overline{\{0\}} = \mathbb{Z}$ is not compact but $\{0\}$ is in this topology.

2. Some non-submanifolds

Prove that the following curves are not submanifolds of \mathbb{R}^2 :

Solution:

(a)

Claim. If X and Y are homeomorphic then for any $p \in X$ there is a $q \in Y$ such that $X \setminus \{p\}$ and $Y \setminus \{q\}$ are homeomorphic. In particular, $X \setminus \{p\}$ and $X \setminus \{q\}$ have the same number of connected components.

Proof. Any homeomorphism $\Phi : X \to Y$ induces homeomorphisms $\Phi_p : X \setminus \{p\} \to Y \setminus \{\Phi(p)\}$ simply by restriction.

Suppose the given curve N is a submanifold of \mathbb{R}^2 . Let $\psi : U \to \mathbb{R}^2$ be a submanifold chart at the problematic point p on the curve N where the crossing happens. By making U smaller we can assume that U is a disk in \mathbb{R}^2 and that $U \cap N$ looks like four lines meeting in a point. As $U \cap N$ is homeomorphic to $\psi(U \cap N)$. But for a submanifold chart the image $\psi(U \cap N)$ needs to be an interval in $\mathbb{R} \times \{0\} \subset \mathbb{R}^3$. But an interval and four lines meeting in a point cannot be homeomorphic as deleting one point from an open interval creates always 2 connected components but $\psi(U \cap N \setminus \{p\})$ must have 4 connected components.

(b)

Claim. Any *m*-submanifold $N \subset \mathbb{R}^n$ admits locally a regular parametrization, i.e. for any $p \in N$ there is an open set $U \subset \mathbb{R}^n$ with $p \in U$, an open set $V \subset \mathbb{R}^m$ a map $\phi : V \to U$ such that $\phi(V) = U \cap N$ and the derivatives $\frac{\partial \phi}{\partial x^1}(q), \ldots, \frac{\partial \phi}{\partial x^m}(q) \in \mathbb{R}^n$ are all linearly independent for all $q \in V$. Proof. Let $\psi: U \to \mathbb{R}^n$ be a sumbanifold chart for N at p, i.e. $\psi(U \cap N) \subset \mathbb{R}^m \times \{0\}^{n-m} \subset \mathbb{R}^n$. Set $V := \pi(\psi(U \cap N)) \subset \mathbb{R}^m$ where $\pi: \mathbb{R}^n \to \mathbb{R}^m$ is the projection to the first m coordinates. Note that V is open in \mathbb{R}^m . Also, denote by $i: \mathbb{R}^m \to \mathbb{R}^n$ the projection into the first m coordinates. Then $\phi := \psi^{-1} \circ i: V \to \mathbb{R}^n$ is smooth and $\frac{\partial \phi}{\partial x^j}(q) = \frac{\partial}{\partial x^j}$ are the standard vectors for the chart ϕ which we know are linearly independent, e.g. by sheet 6 exercise 4.

We can parametrize regular curves by arc-length. But then if the boundary of the square would admit a parametrization by arc-length then derivative the derivative in for example *x*-direction would not be continuous.

3. Nonregular covering spaces

A covering space $\pi : M \to N$ is called *regular* if it comes from a group action, i.e. $N \cong M/G$ for some group G that acts freely and properly discontinuously on G. Find a nonregular covering space.

Hint: The base space N needs to have noncommutative fundamental group, e.g. consider the figure 8, or if you want a manifold consider either $\mathbb{C} \setminus \{\pm 1\}$ or the Klein bottle.

Solution:

Covering space theory (e.g. https://pi.math.cornell.edu/~hatcher/AT/ AT.pdf Theorem 1.38, Proposition 1.39) tells us that for a connected manifold, there is a bijection

$$\{\text{covering spaces}\} \longleftrightarrow \{\text{subgroups of } \pi_1(X)\}$$

and a bijection

{regular covering spaces} \longleftrightarrow {normal subgroups of $\pi_1(X)$ }.

The Klein bottle K has fundamental group $\pi_1(K) = \langle a, b \rangle / abab^{-1} = 1$. The subgroup $H = \langle a^3, b \rangle \subset \pi_1(K)$ is not normal as conjugating $b \in H$ with $a \in \pi_1(K)$ yields

$$aba^{-1} = a(aba)a^{-1} = a^2b$$

which is not in H. So there must be a nonregular cover $M \to K$ corresponding to the nonnormal subgroup H of $\pi_1(K)$. The following is the (3-sheeted) nonregular covering of the Klein bottle K associated with the subgroup H in $\pi_1(K)$.

Note that M is also a Klein bottle. So we found a 3-sheeted nonregular self-covering map of the Klein bottle.

4. Another way to get the Hopf fibration

- (a) Let US^2 denote the *unit tangent bundle* consisting of vectors in TS^2 with length 1 (in the usual metric). Show that US^2 is diffeomorphic to SO(3).
- (b) Show that the composition

$$S^3 \xrightarrow{Ad} SO(3) \cong US^2 \xrightarrow{\pi} S^2$$

is equivalent to the Hopf fibration from exercise sheet 7.

Solution:

(a) There is a bijection

 $US^2 \longleftrightarrow \{ ONBs \text{ of } \mathbb{R}^3 \text{ that induce the standard orientation} \}.$

The map is the following. Let $(p, v) \in US^2$, i.e. $p \in S^2$ and $v \in T_pS^2$ with |v| = 1. As p and v are orthogonal and have both norm 1. The three vectors $p, v, p \times v$ are an ONB of \mathbb{R}^3 . The last vector for an ONB (which gives the standard orientation) is uniquely determined by the first two, so the map is indeed, a bijection. This map is actually smooth.

There is also a bijection

 $SO(3) \longleftrightarrow \{ ONBs \text{ of } \mathbb{R}^3 \text{ that induce the standard orientation} \}.$

as for a matrix to be in SO(3) means exactly that its column vectors are an ONB of \mathbb{R}^3 that induces the standard orientation.

So there is also a diffeomorphism $SO(3) \stackrel{\Phi}{\cong} US^2$.

(b) We need to show that the preimages of a point p in S^2 are Hopf circles. The only condition for a matrix $A \in \Phi^{-1}(\pi^{-1}(p)) \in SO(3)$ is that its first column is p. The other two columns of A are a (correctly oriented) ONB of p^{\perp} . Suppose $u, u' \in Ad^{-1}(\Phi^{-1}(\pi^{-1}(p))) \in S^3$. To show that they are in the same Hopf circle we need to show that $u' = ue^{it}$ for some $t \in \mathbb{R}$. By definition of Ad_u we have that

$$Ad_u(i) = ui\overline{u} = p = u'i\overline{u}' = Ad_{u'}(i)$$

as p the first column vector, so it is the image of the first basis vector which is *i*. Multiplying the above equation from the left by \overline{u} and from the right by u' yields

$$i\overline{u}u' = \overline{u}u'i.$$

But the only quaternions that commute with i are in $\mathbb{R} \times i\mathbb{R}$. As $\overline{u}u'$ is also of length one we have $\overline{u}u' = e^{it}$ for some $t \in \mathbb{R}$, hence $u' = ue^{it}$. This proves that u, u' are in the same Hopf fiber.

5. Equivalent definitions for sizes of the topology of manifolds

Prove that for a manifold M the following are equivalent:

- (i) M is second countable.
- (ii) M admits a countable atlas.
- (iii) M is σ -compact.

Solution:

 $(i) \Rightarrow (ii)$: Let $(V_k)_{k \in \mathbb{N}}$ be a countable basis for the topology of M. Let $(U_j)_j \in I$ be an atlas. Let $K = \{k \in \mathbb{N} \mid V_k \subset U_j \text{ for some } j \in I\} \subset \mathbb{N}$. For every $k \in K$ choose one U_{jk} such that $V_k \subset U_{jk}$.

Then $(U_{j_k})_{k \in K}$ is a countable atlas. The index set K is countable as $K \subset \mathbb{N}$. Also, this atlas covers M: Let $p \in M$ be a point. Then $p \in U_j$ for some $j \in I$. As U_j is open, there is a $k \in \mathbb{N}$ such that the basic open set V_k satisfies $p \in V_k \subset U_j$. But then by definition of K, we have $k \in K$. So $V_k \subset U_{k_j}$. This proves that $(U_{j_k})_{k \in K}$ covers M.

Differential Geometry I	Tom Ilmanen
D-MATH	Fall 2023

 $(ii) \Rightarrow (i)$: If $(U_j)_{j \in \mathbb{N}}$ is a countable atlas of M then each U_j admits a countable basis $(V_k^j)_{k \in \mathbb{N}}$ as it is an open subset of \mathbb{R}^n . But then $(V_k^j)_{k \in \mathbb{N}, j \in \mathbb{N}}$ is a countable basis of M.

 $(iii) \Rightarrow (ii)$: Suppose M is σ -compact and $(U_j)_{j \in I}$ an atlas. Then there is a countable subcover by definition of σ -compactness (If M is the union of $(K_k)_{k \in \mathbb{N}}$ compact, then each K_k can be covered by finitely many $U'_j s$, hence Mby countably many $U'_j s$).

 $(ii) \Rightarrow (iii)$: Suppose $(U_j)_{j \in \mathbb{N}}$ is a countable atlas of M. Each U_j is σ -compact: An open set U in \mathbb{R}^n is σ -compact as

$$U = \bigcup_{r \in \mathbb{Q}_{>0}, q \in U \cap \mathbb{Q}^n, \overline{B_r(q)} \subset U} \overline{B_r(q)}.$$

As all the U_j are homeomorphic to an open set in \mathbb{R}^n , all the U_j are σ -compact. But the countable union of σ -compact sets is σ -compact, so M is σ -compact.