Exercise Sheet 9

To be handed in until November 22

1. Manifolds are locally compact in the strong sense (Lemma 0.5)

(a) Let M be a manifold. Show that for any open set $V \subset M$ and any point $p \in V$ there is an open set U such that
(i) $p \in U$,
(ii) \bar{U} is compact,
(iii) $\bar{U} \subset V$.

Note that this entails that M is locally compact but says more.
(b) Find a (non-Hausdorff) space X and $K \subset X$ such that K is compact but \bar{K} is not compact.

Solution:

(a) Let $V \subset M$ be open and $p \in V$. Let $\psi: U^{\prime} \rightarrow \mathbb{R}^{n}$ be a chart at p such that $U^{\prime} \subset V$. As $\psi\left(U^{\prime}\right) \subset \mathbb{R}^{n}$ is open and $\psi(p) \in \psi\left(U^{\prime}\right)$ there is a open ball $B_{r}(\psi(p))$ around $\psi(p)$ which is contained in $\psi\left(U^{\prime}\right)$. So also

$$
W:=B_{r / 2}(\psi(p)) \subset \bar{W}=\overline{B_{r / 2}(\psi(p))} \subset B_{r}(\psi(p)) \subset \psi\left(U^{\prime}\right)
$$

and \bar{W} is compact. Then

$$
p \in U:=\psi^{-1}(W) \subset \bar{U}=\overline{\psi^{-1}(W)}=\psi^{-1}(\bar{W}) \subset U^{\prime} \subset V
$$

Since ψ is a homeomorphism U is open and \bar{U} is compact as \bar{W} is compact.
(b) Let $X=\mathbb{Z}$ with topology given by $U \subset X$ open iff $0 \in U$ or $U=\emptyset$. Check that this defines a topology. Moreover, finite sets are in any topology. But the closure of $\{0\}$ in this topology is all of \mathbb{Z}. Note that

$$
\mathbb{Z}=\bigcup_{n \in \mathbb{N}}\{-n, \ldots, n\}
$$

is an open cover of \mathbb{Z} that admits no finite subcover. So $\overline{\{0\}}=\mathbb{Z}$ is not compact but $\{0\}$ is in this topology.

2. Some non-submanifolds

Prove that the following curves are not submanifolds of \mathbb{R}^{2} :
(a)

(b)

Solution:

(a)

Claim. If X and Y are homeomorphic then for any $p \in X$ there is a $q \in Y$ such that $X \backslash\{p\}$ and $Y \backslash\{q\}$ are homeomorphic. In particular, $X \backslash\{p\}$ and $X \backslash\{q\}$ have the same number of connected components.

Proof. Any homeomorphism $\Phi: X \rightarrow Y$ induces homeomorphisms Φ_{p} : $X \backslash\{p\} \rightarrow Y \backslash\{\Phi(p)\}$ simply by restriction.

Suppose the given curve N is a submanifold of \mathbb{R}^{2}. Let $\psi: U \rightarrow \mathbb{R}^{2}$ be a submanifold chart at the problematic point p on the curve N where the crossing happens. By making U smaller we can assume that U is a disk in \mathbb{R}^{2} and that $U \cap N$ looks like four lines meeting in a point. As $U \cap N$ is homeomorphic to $\psi(U \cap N)$. But for a submanifold chart the image $\psi(U \cap N)$ needs to be an interval in $\mathbb{R} \times\{0\} \subset \mathbb{R}^{3}$. But an interval and four lines meeting in a point cannot be homeomorphic as deleting one point from an open interval creates always 2 connected components but $\psi(U \cap N \backslash\{p\})$ must have 4 connected components.
(b)

Claim. Any m-submanifold $N \subset \mathbb{R}^{n}$ admits locally a regular parametrization, i.e. for any $p \in N$ there is an open set $U \subset \mathbb{R}^{n}$ with $p \in U$, an open set $V \subset \mathbb{R}^{m}$ a map $\phi: V \rightarrow U$ such that $\phi(V)=U \cap N$ and the derivatives $\frac{\partial \phi}{\partial x^{1}}(q), \ldots, \frac{\partial \phi}{\partial x^{m}}(q) \in \mathbb{R}^{n}$ are all linearly independent for all $q \in V$.

Proof. Let $\psi: U \rightarrow \mathbb{R}^{n}$ be a sumbanifold chart for N at p, i.e. $\psi(U \cap N) \subset$ $\mathbb{R}^{m} \times\{0\}^{n-m} \subset \mathbb{R}^{n}$. Set $V:=\pi(\psi(U \cap N)) \subset \mathbb{R}^{m}$ where $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the projection to the first m coordinates. Note that V is open in \mathbb{R}^{m}. Also, denote by $i: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ the projection into the first m coordinates. Then $\phi:=\psi^{-1} \circ i: V \rightarrow \mathbb{R}^{n}$ is smooth and $\frac{\partial \phi}{\partial x^{j}}(q)=\frac{\partial}{\partial x^{j}}$ are the standard vectors for the chart ϕ which we know are linearly independent, e.g. by sheet 6 exercise 4 .

We can parametrize regular curves by arc-length. But then if the boundary of the square would admit a parametrization by arc-length then derivative the derivative in for example x-direction would not be continuous.

3. Nonregular covering spaces

A covering space $\pi: M \rightarrow N$ is called regular if it comes from a group action, i.e. $N \cong M / G$ for some group G that acts freely and properly discontinuously on G. Find a nonregular covering space.

Hint: The base space N needs to have noncommutative fundamental group, e.g. consider the figure 8 , or if you want a manifold consider either $\mathbb{C} \backslash\{ \pm 1\}$ or the Klein bottle.

Solution:

Covering space theory (e.g. https://pi.math.cornell.edu/~hatcher/AT/ AT.pdf Theorem 1.38, Proposition 1.39) tells us that for a connected manifold, there is a bijection

$$
\{\text { covering spaces }\} \longleftrightarrow\left\{\text { subgroups of } \pi_{1}(X)\right\}
$$

and a bijection

$$
\{\text { regular covering spaces }\} \longleftrightarrow\left\{\text { normal subgroups of } \pi_{1}(X)\right\}
$$

The Klein bottle K has fundamental group $\pi_{1}(K)=\langle a, b\rangle /{ }_{a b a b^{-1}=1}$. The subgroup $H=\left\langle a^{3}, b\right\rangle \subset \pi_{1}(K)$ is not normal as conjugating $b \in H$ with $a \in$ $\pi_{1}(K)$ yields

$$
a b a^{-1}=a(a b a) a^{-1}=a^{2} b
$$

which is not in H. So there must be a nonregular cover $M \rightarrow K$ corresponding to the nonnormal subgroup H of $\pi_{1}(K)$. The following is the (3-sheeted) nonregular covering of the Klein bottle K associated with the subgroup H in $\pi_{1}(K)$.

Note that M is also a Klein bottle. So we found a 3-sheeted nonregular self-covering map of the Klein bottle.

4. Another way to get the Hopf fibration

(a) Let $U S^{2}$ denote the unit tangent bundle consisting of vectors in $T S^{2}$ with length 1 (in the usual metric). Show that $U S^{2}$ is diffeomorphic to $S O(3)$.
(b) Show that the composition

$$
S^{3} \xrightarrow{A d} S O(3) \cong U S^{2} \xrightarrow{\pi} S^{2}
$$

is equivalent to the Hopf fibration from exercise sheet 7 .

Solution:

(a) There is a bijection

$$
U S^{2} \longleftrightarrow\left\{\mathrm{ONBs} \text { of } \mathbb{R}^{3} \text { that induce the standard orientation }\right\}
$$

The map is the following. Let $(p, v) \in U S^{2}$, i.e. $p \in S^{2}$ and $v \in T_{p} S^{2}$ with $|v|=1$. As p and v are orthogonal and have both norm 1. The three vectors $p, v, p \times v$ are an ONB of \mathbb{R}^{3}. The last vector for an ONB (which gives the standard orientation) is uniquely determined by the first two, so the map is indeed, a bijection. This map is actually smooth.

There is also a bijection
$S O(3) \longleftrightarrow\left\{\right.$ ONBs of \mathbb{R}^{3} that induce the standard orientation $\}$.
as for a matrix to be in $S O(3)$ means exactly that its column vectors are an ONB of \mathbb{R}^{3} that induces the standard orientation.
So there is also a diffeomorphism $S O(3) \stackrel{\Phi}{\cong} U S^{2}$.
(b) We need to show that the preimages of a point p in S^{2} are Hopf circles. The only condition for a matrix $A \in \Phi^{-1}\left(\pi^{-1}(p)\right) \in S O(3)$ is that its first column is p. The other two columns of A are a (correctly oriented) ONB of p^{\perp}. Suppose $u, u^{\prime} \in A d^{-1}\left(\Phi^{-1}\left(\pi^{-1}(p)\right)\right) \in S^{3}$. To show that they are in the same Hopf circle we need to show that $u^{\prime}=u e^{i t}$ for some $t \in \mathbb{R}$. By definition of $A d_{u}$ we have that

$$
A d_{u}(i)=u i \bar{u}=p=u^{\prime} i \bar{u}^{\prime}=A d_{u^{\prime}}(i)
$$

as p the first column vector, so it is the image of the first basis vector which is i. Multiplying the above equation from the left by \bar{u} and from the right by u^{\prime} yields

$$
i \bar{u} u^{\prime}=\bar{u} u^{\prime} i .
$$

But the only quaternions that commute with i are in $\mathbb{R} \times i \mathbb{R}$. As $\bar{u} u^{\prime}$ is also of length one we have $\bar{u} u^{\prime}=e^{i t}$ for some $t \in \mathbb{R}$, hence $u^{\prime}=u e^{i t}$. This proves that u, u^{\prime} are in the same Hopf fiber.

5. Equivalent definitions for sizes of the topology of manifolds

Prove that for a manifold M the following are equivalent:
(i) M is second countable.
(ii) M admits a countable atlas.
(iii) M is σ-compact.

Solution:

$(i) \Rightarrow(i i)$: Let $\left(V_{k}\right)_{k \in \mathbb{N}}$ be a countable basis for the topology of M. Let $\left(U_{j}\right)_{j} \in I$ be an atlas. Let $K=\left\{k \in \mathbb{N} \mid V_{k} \subset U_{j}\right.$ for some $\left.j \in I\right\} \subset \mathbb{N}$. For every $k \in K$ choose one $U_{j_{k}}$ such that $V_{k} \subset U_{j_{k}}$.

Then $\left(U_{j_{k}}\right)_{k \in K}$ is a countable atlas. The indes set K is countable as $K \subset \mathbb{N}$. Also, this atlas covers M : Let $p \in M$ be a point. Then $p \in U_{j}$ for some $j \in I$. As U_{j} is open, there is a $k \in \mathbb{N}$ such that the basic open set V_{k} satisfies $p \in V_{k} \subset U_{j}$. But then by definition of K, we have $k \in K$. So $V_{k} \subset U_{k_{j}}$. This proves that $\left(U_{j_{k}}\right)_{k \in K}$ covers M.
(ii) $\Rightarrow(i)$: If $\left(U_{j}\right)_{j \in \mathbb{N}}$ is a countable atlas of M then each U_{j} admits a countable basis $\left(V_{k}^{j}\right)_{k \in \mathbb{N}}$ as it is an open subset of \mathbb{R}^{n}. But then $\left(V_{k}^{j}\right)_{k \in \mathbb{N}, j \in \mathbb{N}}$ is a countable basis of M.
$(i i i) \Rightarrow(i i)$: Suppose M is σ-compact and $\left(U_{j}\right)_{j \in I}$ an atlas. Then there is a countable subcover by definition of σ-compactness (If M is the union of $\left(K_{k}\right)_{k \in \mathbb{N}}$ compact, then each K_{k} can be covered by finitely many $U_{j}^{\prime} s$, hence M by countably many $\left.U_{j}^{\prime} s\right)$.
$(i i) \Rightarrow(i i i)$: Suppose $\left(U_{j}\right)_{j \in \mathbb{N}}$ is a countable atlas of M. Each U_{j} is σ compact: An open set U in \mathbb{R}^{n} is σ-compact as

$$
U=\bigcup_{r \in \mathbb{Q}>0, q \in U \cap \mathbb{Q}^{n}, \overline{B_{r}(q)} \subset U} \overline{B_{r}(q)}
$$

As all the U_{j} are homeomorphic to an open set in \mathbb{R}^{n}, all the U_{j} are σ-compact. But the countable union of σ-compact sets is σ-compact, so M is σ-compact.

