Differential Geometry 1 Tom Ilmanen
D-MATH Fall 2023

Exercise Sheet 9
To be handed in until November 22

1. Manifolds are locally compact in the strong sense (Lemma 0.5)

(a) Let M be a manifold. Show that for any open set V' C M and any point
p € V there is an open set U such that

(i) pel,
(ii) U is compact,
(iii) U C V.
Note that this entails that M is locally compact but says more.

(b) Find a (non-Hausdorff) space X and K C X such that K is compact but
K is not compact.

Solution:

(a) Let V. C M be open and p € V. Let ¢ : U' — R"™ be a chart at p such
that U’ ¢ V. As ¢(U’') C R™ is open and ¢(p) € ¥(U’) there is a open
ball B, (¢(p)) around ¢ (p) which is contained in ¥(U"). So also

W i= By pp((p) CW = Bya(6(p) € Br(t(p)) C $(U")
and W is compact. Then
peU: =y W) CU=¢ W)=y '(W)cU cV
Since 1) is a homeomorphism U is open and U is compact as W is compact.

(b) Let X = Z with topology given by U C X open iff 0 € U or U = (). Check
that this defines a topology. Moreover, finite sets are in any topology. But
the closure of {0} in this topology is all of Z. Note that

7= U{fn,...,n}

neN

is an open cover of Z that admits no finite subcover. So {0} = Z is not
compact but {0} is in this topology.
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2. Some non-submanifolds

Prove that the following curves are not submanifolds of R?:

Solution:

(a)

(b)

Claim. If X and Y are homeomorphic then for any p € X there is a
q € Y such that X \ {p} and Y \ {¢} are homeomorphic. In particular,
X \ {p} and X \ {¢} have the same number of connected components.

Proof. Any homeomorphism ® : X — Y induces homeomorphisms ®,, :
X\ {p} =Y\ {®(p)} simply by restriction. O

Suppose the given curve N is a submanifold of R2. Let ¢ : U — R? be
a submanifold chart at the problematic point p on the curve N where
the crossing happens. By making U smaller we can assume that U is a
disk in R? and that U N N looks like four lines meeting in a point. As
U N N is homeomorphic to ¢»(U N N). But for a submanifold chart the
image ¥(U N N) needs to be an interval in R x {0} C R3. But an interval
and four lines meeting in a point cannot be homeomorphic as deleting one
point from an open interval creates always 2 connected components but
(U NN\ {p}) must have 4 connected components.

Claim. Any m-submanifold N C R" admits locally a regular parametriza-
tion, i.e. for any p € N there is an open set U C R™ with p € U, an open
set V.C R™ amap ¢ : V — U such that ¢(V) = UNN and the derivatives
99 (q),..., 22 (q) € R™ are all linearly independent for all ¢ € V.

awl 9 81:771
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Proof. Let ¢ : U — R™ be a sumbanifold chart for N at p, i.e. ¥(UNN) C
R™ x {0}»~™ C R". Set V := 7w(¢»(UN N)) C R™ where 7 : R” — R™
is the projection to the first m coordinates. Note that V is open in R™.
Also, denote by 7 : R™ — R™ the projection into the first m coordinates.
Then ¢ := ¢~ 'oi:V — R" is smooth and %(q) = % are the standard
vectors for the chart ¢ which we know are linearly independent, e.g. by
sheet 6 exercise 4. O

We can parametrize regular curves by arc-length. But then if the boundary
of the square would admit a parametrization by arc-length then derivative
the derivative in for example z-direction would not be continuous.

3. Nonregular covering spaces

A covering space m : M — N is called regular if it comes from a group action,
ie. N = M/G for some group G that acts freely and properly discontinuously
on G. Find a nonregular covering space.

Hint: The base space N needs to have noncommutative fundamental group, e.g. consider the
figure 8, or if you want a manifold consider either C \ {£1} or the Klein bottle.

Solution:

Covering space theory (e.g. https://pi.math.cornell.edu/~hatcher/AT/
AT . pdf| Theorem 1.38, Proposition 1.39) tells us that for a connected manifold,
there is a bijection

{covering spaces} <— {subgroups of 71(X)}
and a bijection
{regular covering spaces} +— {normal subgroups of m (X)}.

The Klein bottle K has fundamental group m1(K) = (a,b)/spep-1—1- The
subgroup H = (a3,b) C 71 (K) is not normal as conjugating b € H with a €
m1(K) yields

aba™t = a(aba)a™t = a*b

which is not in H. So there must be a nonregular cover M — K corresponding to
the nonnormal subgroup H of 71 (K). The following is the (3-sheeted) nonregular
covering of the Klein bottle K associated with the subgroup H in 71 (K).



https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf

Differential Geometry 1 Tom Ilmanen
D-MATH Fall 2023

M K

Note that M is also a Klein bottle. So we found a 3-sheeted nonregular
self-covering map of the Klein bottle.

4. Another way to get the Hopf fibration

(a) Let US? denote the unit tangent bundle consisting of vectors in T'S? with
length 1 (in the usual metric). Show that US? is diffeomorphic to SO(3).

(b) Show that the composition
$% A% 50(3) 2 US? 5y 52

is equivalent to the Hopf fibration from exercise sheet 7.

Solution:
(a) There is a bijection
US? +— {ONBs of R? that induce the standard orientation}.

The map is the following. Let (p,v) € US? i.e. p € S? and v € 1,52
with |v| = 1. As p and v are orthogonal and have both norm 1. The three
vectors p,v,p X v are an ONB of R3. The last vector for an ONB (which
gives the standard orientation) is uniquely determined by the first two, so
the map is indeed, a bijection. This map is actually smooth.
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There is also a bijection
SO(3) +— {ONBs of R? that induce the standard orientation}.

as for a matrix to be in SO(3) means exactly that its column vectors are
an ONB of R? that induces the standard orientation.

P
So there is also a diffeomorphism SO(3) = U S2.

(b) We need to show that the preimages of a point p in S? are Hopf circles.
The only condition for a matrix A € ®~1(771(p)) € SO(3) is that its first
column is p. The other two columns of A are a (correctly oriented) ONB
of pt. Suppose u,u’ € Ad~1(®~1(71(p))) € S3. To show that they are
in the same Hopf circle we need to show that u/ = ue' for some t € R.
By definition of Ad,, we have that

Ady, (i) = uiu = p = v’ = Ady (i)

as p the first column vector, so it is the image of the first basis vector
which is . Multiplying the above equation from the left by w and from
the right by v’ yields

iun = uu'i.
But the only quaternions that commute with ¢ are in R x iR. As uu’ is
also of length one we have Tu’ = e for some ¢ € R, hence u’ = ue®. This
proves that u,u’ are in the same Hopf fiber.

5. Equivalent definitions for sizes of the topology of manifolds

Prove that for a manifold M the following are equivalent:
(i) M is second countable.
(if) M admits a countable atlas.

(iii) M is o-compact.

Solution:

(i) = (i1): Let (Vi)ren be a countable basis for the topology of M. Let
(U;); € I be an atlas. Let K = {k € N|V,, C U, for some j € I} C N. For
every k € K choose one Uj;, such that V;, C Uj,.

Then (Uj, )kek is a countable atlas. The indes set K is countable as K C N.
Also, this atlas covers M: Let p € M be a point. Then p € U; for some
j € 1. As Uj is open, there is a k € N such that the basic open set V}, satisfies
p € Vi, C U;. But then by definition of K, we have k € K. So Vj, C Ug;. This
proves that (Uj, )xex covers M.
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(i) = (i): If (Uj)jen is a countable atlas of M then each U; admits a
countable basis (ij)keN as it is an open subset of R™. But then (ij)keN,jeN is
a countable basis of M.

(1) = (i1): Suppose M is o-compact and (Uj);c; an atlas. Then there
is a countable subcover by definition of o-compactness (If M is the union of
(Kk)ken compact, then each Ky can be covered by finitely many U’s, hence M
by countably many U}s).

(#4) = (4i1): Suppose (U;)jen is a countable atlas of M. Each U; is o-
compact: An open set U in R" is o-compact as

U= U B.(q).
reQs0,qeUNQ", B, (q)CU

As all the U; are homeomorphic to an open set in R", all the U; are o-compact.
But the countable union of o-compact sets is o-compact, so M is o-compact.




