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Supplementary exercises

1. Another topology exercise

(a) Prove that if X,Y are both compact then so is X × Y .

(b) A closed interval [a, b] is compact.

(c) A subset of Rn is compact if and only it is closed and bounded.

2. Curvatures of parametrized surfaces

Compute H and K for a parametrized surface.

3. Curvatures of graphs

Compute H and K for a graph.

4. Another equivalence of curvatures

Prove directly
A(X,Y ) = −⟨DXN,Y ⟩

where A is defined by the Hessian of a function f , without going through the
expression ⟨DXY,N⟩.

Hint: Use
N =

X1 ×X2

|X1 ×X2|
,

where X1, X2 are a basis of TpM at each point p ∈ M .

5. Curvature and eyeglasses

(a) Interpret your eyeglass prescription as the 2nd fundamental form of a
surface.

(b) Research why the true optical situation is more complicated than that.

6. The pseudosphere and the hyperbolic space

(a) Prove that the pseudosphere is locally isometric to hyperbolic space.
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(b) Determine via internet the largest known portion of the hyperbolic space
that can isometrically embed in R3.

7. Computing curvature commutes with applying isometries

Let L : Rn → Rn be an isometry.

(a) Let γ be a curve in Rn. Prove

kL◦γ(L(γ(t))) = L(kγ(γ(t))).

(b) Let M be a surface in R3. Prove that

A
L(N)
L(M)(L(p))(L(X), L(Y )) = ANM (p)(X,Y )

for all p ∈ M and X,Y ∈ TpM . The superscripts N and L(N) tell us
which normals to use.

8. Locally Euclidean spaces are automatically T1

Prove that a locally Euclidean space is T1 (Recall that T2 = Hausdorff).

9. Existence of admissible pairs

Let M,N be smooth manifolds and f : M → N a smooth map. Prove: If f is
continuous then for all p ∈ M there is an admissible pair of charts (U,ψ), (V, χ)
with p ∈ U .

10. Is compatibility an equivalence relation?

(a) Is compatibility of charts an equivalence relation? Give an example.

(b) Is compatibility of atlases an equivalence relation?

11. Topological sheaves

A topological sheaf is a triple (f,X, Y ) such that

i) X, Y are topological space and f : X → Y is continuous,

ii) f is surjective,

iii) f is a local homeomorphism, i.e. for any x ∈ X there exists an open
neighborhood U of x such that f(U) is open in Y and f |U : U → f(U) is
a homeomorphism with respect to the induced topologies.
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Consider the following example. Let R0 := R\ {0}. Set Y1 := R, X1 := R0 ∪
{0+, 0−}. Let f1 : X1 → Y1 be defined by

f1(x) =
{
x, if x ∈ R0,

0 if x ∈ {0+, 0−} .

Let TX1 be the topology given by

TX1 = {U ⊂ X1 | f1 (U) is open in Y1}

Observe that

(a) f1 is a topological sheaf and the maps ϕ± := f1|R0∪{0±} define a smooth
atlas on X1, but the induced topology is not Hausdorff.

(b) More generally, any topological sheaf f : X → Rn automatically acquires
a smooth atlas consisting of its local homeomorphisms onto open subsets
of Rn.

(c*) The sheaf of germs of holomorphic functions over C is Hausdorff and is
a smooth manifold. The sheaf of germs of smooth real-valued functions
over R is an extreme example of non-Hausdorff manifold.

12. Curves that agree up to order n on manifolds

(a) Let γ be a curve on a manifold M with γ(0) = p. Write γ(t) = γ(0) +
Oψ(|t|k) if for a chart (U,ψ) with p ∈ U we have

γ̃(t) = γ̃(0) +O(|t|k)

where γ̃ = ψ ◦ γ.
Prove: We get the same k for any chart, i.e. for all charts ψ1, ψ2 we have

γ(t) = γ(0) +Oψ1(|t|k) iff γ(t) = γ(0) +Oψ2(|t|k)

(b) Let α, β be smooth curves in Rn. We say that α, β agree up to order n at
t = 0 if the first n+ 1 terms of the Taylor expansion agree at t = 0, i.e.(

d

dt

)k

α(0) =
(
d

dt

)k

β(0)

for all k = 0, . . . n. Prove that this condition can be meaningfully trans-
lated to smooth manifolds.

13. Complex structures and the space of orientable hyperplanes
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Let G̃(n, k) be the space of oriented k-planes through 0 in Rn. Show that
G̃(4, 2) ∼= S2 × S2 as follows:

We call J : R2N → R2N a complex structure compatible with the Euclidean
metric if J2 = −id and J is an isometry. (R2N , J) becomes a complex vector
space isomorphic to CN . Note that J induces an orientation on R2N via the real
basis e1, Je1, . . . , eN , JeN , where e1, . . . , eN is any complex basis of (R2N , J).
Let J0(R2N ) be the complex structures that induce the standard orientation
and J1(R2N ) be those that induce the opposite orientation.

(a) Show J0(R4) and J1(R4) are both diffeomorphic to S2.

(b) Show G̃(4, 2) is diffeomorphic to J0(R4) × J1(R4).

14. The rotation vector field

Express the vector field on S2 that rotates along the circles of latitude in polar
coordinates on S2 \ {N,S}.

15. Equivalence of tangent vectors and derivations

Consider the following alternative version definition of a tangent vector: a tan-
gent vector to M at p is a pair (p, Y ) where Y is a derivation at p, meaning
that Y is a linear map

Y : C∞ (M) → R, u 7→ Y · u,

that satisfies the Leibniz rule at p:

Y · (uv) = (Y · u) v(p) + u(p) (Y · v), u, v ∈ C∞(M).

1. Prove that a tangent vector at p (as defined in class) is a derivation at p.

2. Prove that a derivation at p is a tangent vectorat p (as defined in class).
Hint: Let Y be a derivation at p. We will show that Y may be expressed as a linear

combination of
(
∂/∂x1

)
p,ψ

, . . . , (∂/∂xn)p,ψ .

i) Let ψ = (ψ1, . . . , ψn) : U → Rn be a chart with p ∈ U . Let χ be a cutoff function for
p in U that is constant in a neighborhood of p. For each i = 1, . . . , n, define a special
cut-off coordinate function on M by ϕi(x) := χ(x)ψi(x) for x ∈ U , and extend ϕi by
zero on the rest of M . Check that ϕi ∈ C∞(M).

ii) Define X in TpM by

X :=
n∑
i=1

Xi
(

∂

∂xi

)
p,ψ

where Xi := Y · ϕi. Prove: Y · ϕi = X · ϕi for i = 1, . . . , n.
iii) Prove that Y ·u = X ·u for any u in C∞(M), so Y belongs to TpM . Hint: use a special

version of the Taylor expansion with remainder to show that u may be written as
u(q) = u(p) +

∑
i
aiϕ

i(q) +
∑

i
gi(q)ϕi(q), where ai are constants and each gi vanishes

at p. Then use the fact that Y is a derivation at p. (See Lee: Introduction to Smooth
Manifolds.)
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16. Local diffeomorphisms

(a) Let f : R1 → R1 be a local diffeomorphism. Prove that its image is an
open interval and that f : R1 → f(R1) is a diffeomorphism.

(b) Find a function f : R2 → R2 that is a local diffeomorphism, but is not a
diffeomorphism onto its image.

(c) Show that a local diffeomorphism from a compact manifold to another
manifold of the same dimension is a covering map.

17. On the degree of covering maps

Let f : M → N be a covering map and N connected.

(a) Show that the number k of elements in f−1(q) is constant on N . (We call
f a k-sheeted covering).

(b) How many "different" 3-sheeted coverings can you find over S1?

18. Some immersions and submersions

(a) Prove that the map R → R2 defined by t 7→ (t2, t3 − t) is an immersion.

(b) Prove that the map Rn+1 \ {0} → Sn defined by x 7→ x
|x| is a submersion.

19. The Veronese embedding is an embedding

(a) Express the image of the Veronese embedding f : RP2 → R4 as the zero
set of polynomials.

(b) Conclude that f(RP2) is a submanifold.

20. Orientation-preserving/reversing maps

(a) Prove that a local diffeomorphism f : Rn → Rn is orientation-preserving
iff det(df(p)) > 0 for all p ∈ M .

(b) Prove that the composition of two orientation-preserving maps is orientation-
preserving.

(c) Prove that the composition of two orientation-reversing maps is orientation-
preserving.
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(d) Prove that the composition of one orientation-reversing map and an orientation-
preserving map is orientation-reversing.

(e) Let f : M → N be a local diffeomorphism. Prove: if M is connected then
f is either orientation-preserving or orientation-reversing.

(f) Give an example of a map that is neither orientation-preserving nor orientation-
reversing.

21. Orientation and products

Prove:

(a) The product of two orientable manifolds is orientable.

(b) The product of any manifold with a nonorientable manifold is nonori-
entable.

22. Orientation and disjoint unions

Let M =
⋃m
j=1 Mj be the disjoint union of connected components Mj . How

many orientations does M have?

23. Orientable iff orientation cover is trivial

Prove: A manifold M is orientable iff the orientation cover OM is diffeomorphic
to the product manifold M × {±1} where OpM goes to {p} × {±1}.

24. Orientation and subatlases

(a) Show that an orientation of a smooth manifold (M, τ,A) can be given by
specifying a subatlas of A whose overlap maps are orientation-preserving,
and vice versa.

(b) Show that there is a 1-1 correspondence between

(i) orientations on M ,
(ii) maximal subatlases A subject to the condition that the overlapping

maps are orientation-preserving.

25. The orientation double cover

(a) Prove that OM has the structure of a smooth manifold in a natural way.
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(b) Prove that OM is orientable.

26. Lemma 0

Let X be a topological space. Prove that if C ⊂ X is closed and K ⊂ X is
compact then C ∩K is compact.

27. Lemma 1

A manifold is locally compact.

28. Lemma 2

Let Y be a locally compact Hausdorff space and D ⊂ Y . Then D is closed iff
for all K ⊂ Y compact also K ∩ Y is compact.

29. Lemma 3

Let X be a topological space, Y a locally compact Hausdorff space and f : X →
Y proper. Then f(X) ⊂ Y is closed.

30. Theorem 1

Prove that an embedding is proper iff its image is closed.

31. Proper is necessary in Theorem 1

Give an example of an embedding that is not proper. Observe that the image
is not closed.

32. Theorem 2

Prove that a proper injective immersion is closed.

33. The embedding criterion: Theorem H

If an immersion is a homeomorphism onto its image then it is an embedding.

34. Exercise Z

Prove: If M is compact and f : M → N an injective immersion, then f is an
embedding.

35. Hausdorff is necessary in Exercise Z

Find a counterexample to Exercise Z when N is not Hausdorff.
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36. * Embeddings of RP3

Find an embedding of RP3 into R6. Does there exist an embedding into R5 or
even into R4?

37. Second countable manifold are paracompact

Prove that a second countable manifold is paracompact.

38. Connected paracompact manifolds are second countable

Prove that a paracompact connected manifold is second countable.

39. Connected paracompact manifolds are second countable

Prove that a second countable space is separable.

40. Connectedness for manifolds

Prove that a manifold is connected iff it is path-connected.

41. Second countability is preserved for submanifolds

Let M be a second countable manifold. Prove that every submanifold of M is
also second countable.

42. Subsets and σ-compactness

(a) Prove that every open or closed subset of Rn is σ-compact.

(b) Find an subset of R that is not σ-compact.

43. Transverse intersections are submanifolds

Let P p, Qq be submanifolds of a manifold Mm. We call P and Q transverse
(written P ⋔ Q) if for all p ∈ P ∩Q we have

TpP + TpQ = TpM.

Prove: If P ⋔ Q then P ∩Q is a submanifold of M of dimension

2m− p− q

or P ∩Q is empty.

44. Intersecting transversely is a generic condition
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Let P,Q be submanifolds of a manifold M . Prove that there is a small pertur-
bation P̃ of P such that P̃ ∩Q is a submanifold of M .
Hint: Prove it first for P,Q compact submanifolds of Rn.

45. Another version of a bump function for open sets

Let U ⊂ Rn be open. Construct a function Rn : U → [0,∞) which is smooth
and f−1(0,∞) = U .

46. Main lemma to get existence of partition of unity

Suppose

1. M is a paracompact manifold,

2. O a cover and

3. B a subbase.

Then there is a cover P such that

(i) P << O,

(ii) P locally finite,

(iii) P ⊂ B.

47. Functions with a lot of critical points and values

(a) Give an example of a smooth function R → R where the critical values
are both dense in [0, 1].

(b) Is there a such an example of a function with compact domain?

48. Local vector operations

Let X,Y be smooth vector field on a manifold M and u a smooth function.
Prove that the following operations are local:

(i) (X,u) 7→ X · u,

(ii) (X,Y ) 7→ [X,Y ].

By this we mean that for all open sets U ⊂ M and vector fields X1, X2, Y1, Y2
and functions u1, u2 on M :

(i) If X1|U = X2|U and u1|U = u2|U then (X1 · u1)|U = (X2 · u2)|U ,

(ii) If X1|U = X2|U and Y1|U = Y2|U then ([X1, Y1])|U = ([X2, Y2])|U .
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49. Vector fields on the long line

Let L be the long line. Prove: there is no vector field X on L such that X(p) ̸= 0
for all p in L.

50. Compact sets can always be flowed for positive time

Let X be a smooth vector field on a manifold M and K ⊂ M a compact set.
Prove that there is an open set U ⊃ K and a δ > 0 such that the flow

ϕX : U × (−δ, δ) → M

is well-defined.

51. Extending the flow on open sets

Let M be a manifold and X a smooth vector field on M .

(a) Fix x ∈ M . Suppose the flow ϕsX(x) exists for 0 ≤ s ≤ t. Prove that there
exists an open set U containing x and a δ > 0 such that

ϕX : U × [0, t+ δ] → M

exists.

(b) Conclude that the set U (the maximal set in M ×R where where the flow
exists) is open.

(c) Suppose ϕX : U × [0, t] → M exists where U ⊂⊂ M is open. Is it true
that there is an open set V and a δ > 0 such that U ⊂⊂ V ⊂⊂ M and

ϕX : V × [0, t+ δ] → M

exists?

52. Properties of the Lie derivative

Consider the following statements:

(i) LXY is linear in X and Y .

(ii) LXY = −LYX and LXX = 0.

(iii) LX(gY ) = gLXY + (X · g)Y and LfXY = fLX − (Y · f)X.

All are consequences of LXY = [X,Y ] and the properties of [X,Y ].

(a) Which of these statements can be proven directly from the definition of
LXY without using LXY = [X,Y ]?

10



Differential Geometry I
D-MATH

Tom Ilmanen
Fall 2023

(b) Which of these statements can be proven from each other?

53. Pulling back by the flow for all times

Let ϕtX be the flow of a vector field X, and Y another vector field.

(a) Prove
d

ds
(ϕsX)∗(Y ) = (ϕsX)∗(LXY )

(b) Recalling LXY = [X,Y ], use this to give another prove that

ϕtX(X) = X.

54. Explicit computations of Lie derivatives
(a) Compute from the definition

Lx ∂
∂x

(
∂

∂y

)
, L ∂

∂y

(
x
∂

∂x

)
,

Ly ∂
∂x

(
∂

∂y

)
, L ∂

∂y

(
y
∂

∂x

)
.

(b) Attempt to make drawings of the above effects. Which flows are shears?
Anisotropic expansions? Isometries?

55. Standard vector fields of charts commute

Verify that [
∂

∂xi
,
∂

∂xj

]
= 0.

56. Partially coordinate vector fields.
(a) Find an example of a 2-manifold M and vector fields X,Y such that X,Y

are coordinate vector fields on part but not all of M .

(b) Find such examples with linear vector fields.

57. Commuting flows of left-invariant vector fields

Let G = GL(n,R) and A ∈ Rn×n. Let YA ∈ C∞(TG) be the left-invariant
vector field

YA(C) = CA, for C ∈ G.
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(a) Compute its flow ϕtYA
.

(b) Prove that ϕtYA
◦ ϕtYB

= ϕtYB
◦ ϕtYA

iff [YA, YB ] = 0 directly using matrix
methods.
Hint: Use that [YA, YB ] = Y[A,B].
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