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1 Introduction: curves and surfaces

Riemannian Geometry is a subset of Differential Geometry
A Riemannian manifold is a smooth manifold endowed with a notion of
(infinitesimal) arclength — Riemannian metric: g = g;;(x)dz'da?

Figure 1: A Riemannian manifold is endowed with a notion of infinitesimal acr-
length, thus a shortest path (a geodesic) can be defined between two points on the

manifold.

Curvature
extrinsic curvature M* C R” ‘ intrinsic curvature
how M curves inside R™ ‘ how M curves "inside itself”

Figure 2: The radius of curvature is the radius of the circle which most closly
approximates the curve at a given point.

Doing calculus on the manifold
D;f, D;D;X*# D;D;X* X a vector field



Derivatives can’t be commuted arbitrarily

' kXZ

ijl

D;D; X" = D;D; X"+ R

where R is the Riemannian curvature tensor.

1.1 Curves in Space

Basic notation:
n 1 n
R™ z=(x",...,2")

() = (Yo
[l = (2, 2)2,

A regular curve is a smooth (= infinitely differentiable = C*°) function
v la,b] — R",

such that % # 0Vt

R™

Figure 3: A regular curve and its velocity vector (derivative).

Im(y)

Example of a non regular curve:

t (12,1%) € R?

Figure 4: A curve whose derivative vanishes at 0 and is thus not regular.



Arclength

Unit Tangent Vector

Figure 5: A curve parametrized by arclength always has a tangent vector of unit
length.

() 1 _ e
s T Jdy /|

Definition the curvature vector k of v at s is

dr  d*v
(s) ds  ds? <
Proposition 1.1 « L 7

Proof
(r,7) =1
d dr

0=—(r,7)= 2<£,7‘> = 2(k,T)

Exercise: Show for (¢) (not necessarily parametrized by arclength)

1 Yt Vi
K=-—"—"3 (’Vtt - <’Vtt> —> —)
|l Vel /[l



Curves in R?

k reduces to a number k. Define k by k = kN (curvature as a scalar)

Figure 6: For kurves in the plane curvature reduces to a number k.

We can show:

1
k= = R :=radius of curvature, i.e. radius of osculating circle
do :
= 0 := angle between 7 and x-axis
u(l?"l?

s — If we write v as y = u(z)

(14 u2)3/?
/\X)_/y

Figure 7: The curve 7 defined as a graph y = u(z).

Theorem 1.2 k(s) determines v up to a rigid motion of R? (to make the
starting point v(0) and starting direction vs(0) coincide, see figure 8).

Curves in R?
If k # 0Vt we call v an ordinary curve and define
N =55 mnormal (L 7)

k:=|k|  curvature scalar (note k > 0)
B :=7x N binormal



f\_’ congruent

Figure 8: Congruent lines which differ only by rigid motion.

Figure 9: In 3 dimensions x can move more freely, so a skalar is no longer enough
to describe it.

(1, N, B) orthonormal basis along ~, called a moving frame

Definition
Torsion vector: IN
\:=(— B)B eR?
<d87 > e
torsion scalar: N
(.=(—,B)eR
( s )

A is the measure of that portion of the change of N that occurs within the
2-dimensional normal plane spanned by N, B (That is captured by x and not
that part due to the turning of the normal plane itself.

k(t) is a ”2nd derivative of 4” and ¢ is a ”3rd derivative”
Exercise

i. Compute k,¢ at t = 0 for t — (¢, at?, bt?)

ii. If the torsion ¢ = 0, show ~ lies in a plane.



Normal plane

Figure 10: Torsion

iii. If k£ and ¢ are constant along ~, prove v is a helix.

iv. * Prove theorem 1.3.

Theorem 1.3 Any given smooth functions k(s) > 0, and ((s) of arclength
determine v in R3 uniquely, up to a rigid motion (isometry) of R?

spiral
staircase

Figure 11: A curve of constant torsion and curvature is a helix (spiral staircase).

Some Global Theorems

local (infinitesimal) — global
curvature measures local geometry integral quantities
topology

7 is called simple (or embedded) if v has no self intersections

7 is called closed if 7 : [a,b] — R™, ~(a) = v(b)



Figure 12: A curve with self intersections, which is therefore not simple.

Theorem 1.4 v closed curve in R%. Then:
. f7 kds =2mn dn €7Z
1. If v is simple, then n = £1

Proof 1.

b b do
/k ds = / k ds= / —ds = 6(b) — 0(a) € 27Z
. a . ds

6 is well defined on R, with

0(s)=0(s+b—a)+2mn  In

Theorem 1.5 v closed curve in R®. Then

/|/<;]ds > 2m
ol

ii. (Milnor) If 7y is knotted then

/]/i]ds > 4r
ol

This yields a relation between global integrals and global topology.

1.

1.2 The Geometry of Surfaces in R?

T,M is the tangent space of vectors tangent to M at p and N = N(p) is a
unit normal to M at p

10



D

knotted

Figure 13: A knotted curve wich cannot be deformed to the standard circle without
developing self intersections.

unknotted

Figure 14: an unknotted curve which can be deformed to standard circle without
developing self-intersections

1.2.1 (Extrinsic) Curvature

k is the curvature vector of ~
k=kN JkeR
Compute k: Choose orthonormal coordinates in R? such that
p=1(0,0,0)
T,M = xy-plane (i.e. M is tangent to the zy-plane at p)
N =(0,0,1) (i.e. N points in the positive z-direction)
Note Then M is the graph (locally) of some function z = f(z,y) such that

of of
0,0)=0, =~ =+ =0
f(?) Y 070 ay

0,0

ox

P is spanned by N,v where v is some unit vector in the xy-plane, v =
(vt v2,0).

Claim The curvature of v is

22y 02f
k= (v o) ( ) ayr) ) (Zl ) =" D*f(p)u

dzdy (p) By (p)

with D?f(p) being the Hessian of f at p

11



Proof Give P orthogonal coordinates (u, z). In these coordinates, +y is then
given by

guu
O g,

Use chain rule on g = f o (u — (uvt, uv?)).

O

The bilinear form (D?f), is called the second fundamental form or extrinsic
curvature tensor of M at p. Written:

A(p)(or I1(p)) : T,M x T,M — R

Warning The Hessian formula for A(p) is valid only when

of|  of

) -0
orly, Oy

0,0

Exercise

Suppose M is given as a graph z = f(z,y). Find a formula for A(p) with
respect to the coordinates on T),M given by z,y.

Find an analogous formula for the case of a parametrized surface
$p:R*PD>U—-VCMCR?
U,V open, ¢ smooth with injective differential.
We can rotate the xy-plane so that A(p) becomes diagonal:
Alp) = ( %1 ,32 )
k1 and ks really capture the geometry of the surface

Definition ki, ky: principal curvatures of M at p

H =k +ky: mean curvature of M at p
K = kiky =det A: Gauss curvature of M at p

12



Examples

Sphere of radius R has

1
=k =45
1
K= &

_ 2
H= 2

Cylinder of radius R has eigenvectors e, ey, where e; points along the cylin-
ders’ axis and es is tangent to the circle that goes around the cylinder, and

eigenvalues k1 = 0, ky = %

Catenoid C:

It is the rotation of curve ~ : y = cosh x around the z-axis. Let e; be tangent
to v and ey tangent to a circle of rotation.

The eigenspaces of A are preserved by the reflections R across planes ) D z-
axis. Thus the eigenvectors of A must be e;, ey (since these are the only
directions preserved by Rg). So evidently ky > 0 > ky if N is outward.
Compute k; = A(eq,e1) = curvature of v, the graph of g(x) = coshx

oz cosh z 1
k]. oy 5 B = 3 fry 5
(1+g2)%?  cosh®x  cosh’z
Exercise Compute that ks = _c0511122:' Then
1 1
H= — =0

cosh’z  cosh®z

We call a surface of equal and opposite curvatures minimal surface

Exercise (Helicoid)

Let L; be a vertical line and let L, be a line normal to L; Move Ly upward
at constant speed while rotating slowly about the point of intersection with
Ll.

Prove H = 0, compute K

13



1.2.2 Intrinsic Geometry

Let M C R3.
v la,b] — M

v(a) =p, (b) =q
Length:

Intrinsic distance in M

da(p,q) == inf { L(7)[v(a) = p,7(b) = ¢}
(M, dyr) metric space (please verify)

Geodesic:
a curve that locally minimizes length (and therefore: realizes distance)

Example Sphere: an arc of a great circle minimizes length if it has length
less than 7R, but is a geodesic even if it is longer.

Riemannian metric of M
Restrict (-, -)gs to T,M:
(XoY)rp = (X, Y )gs Y, XeT,M

Write g(p) = (-, )myp @ T,M x T,M — R, a positive definite symmetric
bilinear form that determines L(-) and dy(-, )

Definition A property of M is intrinsic if it depends only on g.
Isometries

A bijection ¢ : M — N is called an isometry if it preserves the metric, i.e.

du(p,q) = dv(p,G)  where ¢(p) = P, ¢(q) = G,
or
gu(P)(X,Y) = gn(p)(X,Y) , where ¢ takes X to X and Y to Y.

(infinitesimal version)

14



Definition A property (quantity, tensor, structure, etc) is called intrinsic if
it is preserved by isometries.

Example The rolling map from the flat plane to the cylinder is a local
isometry (i.e. each point has a neighborhood U such that ¢|U : U — ¢(U)
is an isometry.

We see from the example that

k1, ko are mot intrinsic
H(:= ki + k) is not intrinsic

Example Cone: Also locally isometric to the plane.

Definition A developable surface is a surface in R3 that is local isometric
to a plane.

Example ping-pong ball (hemisphere): it can be deformed in space in such
a way that it remains isometric to the original hemisphere (the material does
not stretch!).

Exercise Show that the catenoid and helicoid are locally isometric!

A local theorem

Theorem 1.6 (Theorema Egregium) K (the Gauss curvature) is intrinsic!
There is an intrinsic characterization of K:
T
Alr)y =mr? — —Kr* + ...
(r)=mr Ty +
where A(r) is the area of disk of intrinsic radius r about p.

Example In 5% A(r) = 27(1 — cosr). The area is slightly smaller than
expected when K is positive.

Global Theorems

Recall topological classification of closed (compact without boundary), ori-
entable (abstract) surfaces:

15



Euler chracteristic x
Theorem 1.7 Let M be a closed surface. The Fuler characteristic

M) = ces —# edges—+# vertices
X(M) := # faces —# edges—++ vertices

2-simplices 1-simplices 0-simplices

s independent of the choice of triangulation.
Definition n-simplex:= {z € R" |zy,...,2, > 0,21 + - -+ 2, < 1}

Theorem 1.8 (Gauss-Bonnet Theorem)
Let (M, g) be a compact surface without boundary with Riemannian metric
g. Then

/ KdA = 2x (M) € 2nZ
M N——
S—— topological invariant, qualitative

curvature integral quantitive, geometric

Theorem 1.9 (Uniformization Theorem)
M compact surface without boundary. Then M possesses a metric g of con-
stant Gauss curvature:

1 iff x>0 S?
K = 0 of x=0 T?
—1 iff x <0 surfaces with 2 or more holes

Higher dimensions (preview)

(M™, g) Riemannian manifold

gp: inner product on each T, M

How to define curvature without reference to extrinsic geometry?

Fact:

Given p € M, X € T,M there always exists a geodesic (locally length mini-
mizing curve) with initial velocity fl—Z(O) = X.

Fix pe M.

Fix a 2-space P C T,M. Let Q be the surface swept out by the geodesics yx
with initial velocity X, where X ranges over unit vectors in P.

Define: K(P) = K,(P) := Gauss curvature of Q) at p (called sectional cur-
vature in planardirection P)

K, : {2-planes in T,M } — R.

Clearly K, is intrinsic.

16



Theorem 1.10 Cartan’s Theorem: If K is constant then M is locally iso-
metric to either

S K = ¢>0
R™ : K =0
H"™ - K = —¢<0,

where H™ 1s hyperbolic space.

Theorem 1.11 (Hadamard’s Theorem) If K < —c < 0 (and complete)
then the universal cover of M is topologically equivalent to R™.

Note If M is compact it follows that (M) is infinite.

Note e Negative curvature makes geodesics spread out.

e Positive Curvature makes them come together (as in S™, where they
meet on the other side.)

Theorem 1.12 (Bonnet-Myers Theorem) If K > (3 > 0, then M is compact
with
T

v

This inequality is exact on S2. Let p, ¢ be antipodal points. We have

da(p, q) < Vp,q € M

T
d(qg,p) = wR =

VG

Note It follows that the universal cover M is also compact, so | (M)| < oo.

2 Differentiable Manifolds

e A topological manifold is a Hausdorff topological space such that each
point has a neighborhood that is locally homeomorphic to R™

e A differentiable manifold is chatacterized by the additional condition
that the overlap maps are smooth.

17



Definition let M be a set. A chart for M is a pair (U,v),U C M,y : U —
R™ injective, 1 (U) open in R™.

Y(p) = (2'(p),...,2"(p)) (coordinate functions on U)
We call v~ : (U) CR" — U C M a parametrization of U

vy, x,) =p

We cover M with charts:
M = UaEAUa

and examine their behaviour on an overlap

W = U, N Us.

Definition We call (U,, %) and (Ug, ¥3) (smoothly) compatible if 1, (W), z(W)
are open in R"™ and the overlap (or transition) map

Vs 0 (V3 paw) © Ya(W) — 1s(W)
and its inverse are infinitely differentiable.

Definition A differentiable manifold of dimension n is given by a set M
equipped with a collection of charts (Uy, 14 )aca such that

i. UCME.AUOz - M
ii. each pair of charts is smoothly compatible

iii. the induced topology of M is Hausdorft

Motivation for ii.
Let f: M — R.

Then in coordinates:

f ot smooth & fo wﬁ’l smooth

fouy' = (fouy")o(Wgou,")
—— ———— N 7

~
on R” on R™ R —R"™

Example

o R”

18



any open set M :=U CR"
just one chart
dg: M2DU —-UCR"

graph of a smooth function
f:VCR"— R (V open)
just one chart: projection from the graph to V' via (z, f(z)) — z.

any set M C R" that can be written locally as a graph

e.g.
S" .= 9B, C R"!

needs 2(n + 1) charts (of graph projection type)

Mobius strip:
M = (0.3) x (0,1)/ ~

equivalence relation: (x,y) ~ (x +2,y—1),0<z <1, 0<y< 1.

The natural projection is
7:(0,3) x (0,1) — M
(x,y) — [(z,y)] := equivalence class of (z,y)
2 charts:
Uit=w(0,2) x (0,1) — M
vt = l(1,8) % (0,1) — M

G(n, k) := {all k-dimensional subspaces of R"} This is called the (real)
Grassmannian of k-planes in R™.
Exercise What'’s its dimension?

RP" = {all lines through the origin in R"H}
= G(n+1,1)

Exercise Find charts for RP"
configuration space of all 3-4-5 triangles in R?
configuration space of all (equilateral) 1-1-1 triangles

Even the space of {a-a-a triangles in R? : ¢ > 0} is a manifold. Exer-
cise: What manifold is this?

19



2.1 Topology of M

How to define a notion of open sets in M7 We transfer them from R"™ via
charts. This results in a local test, as follows.

Definition W C M is open (in M) if Va € A, 9o (W NU,) is open in R™.
Let 7 := {open sets S in M}

Proposition 2.1 (Exercise) 7 has the following properties:

0.

VWeT=VnNnWeT

1.

WgGTVﬁGBiUﬁeBWQGT

241.
g, MeT

A collection of subsets of a set M that satisfies (1)-(3) is called a topology on
M, and (M, T) is called a topological space.

Example The collection of open sets in a metric space (X, d) always satisfies
(1)-(3). It is called the topology induced by the metric d.

In our case, M has no metric. 7 is called the topology induced by the charts.
Using a topology one can express

e continuity

e convergence, topological boundaries
e paths

e connectedness

e simple connectedness, number of holes

Definition A map f: (X,7) — (Y, S) between topological spaces is called a
homeomorphism (or a topological equivalence, or bicontinuous) if f is bijective
and preserves open sets:

UeT < f(U)eS.

20



Exercise Show that U, is open in M, and each chart
Yo : M 2 Uy — Ya(Us) CR"
is a homeomorphism.

The topology on U, is defined by 7y, = {W NU.|W € T)} Verify: Ty,
is a topology on U,. It is called the subspace topology induced by 7 on U,,.

Definition (X,7) is Hausdorff if any two points z,y € X,z # y can be
separated by open sets, i.e. U,V in 7 sothat z e U,y e V,UNV = @.

Observation: A metric space is Hausdorff.

Example
7T :={2,{a,b}, {b}}

(b converges to a but a doesn’t converge to b)

Why Hausdorff?

Consider the example.
(,1) ~ (2,2),2 #0
M:=Rx {1} UR x {2}/ ~

The 2 points at the origin cannot be separated by open sets! This space
fulfills conditions (1)-(2) of definition of a smooth manifold (check!) but fails
to be Hausdorff. This is highly undesirable: For example, M could never be
given a metric.

2.1.1 Maximal Atlas

Suppose we have an atlas

A = (Uaa wa)aeA

There may be many other charts (U, ¢) that are compatible with each chart
in A. Let

A = {all charts (U, ¢) compatible with each chart in A}

FEasy to verify: These charts are also compatible with each other. Thus A is
an atlas. A is the (unique) maximal atlas containing A.

We call A the differentiable structure (or smooth structure) induced by A.
We also observe that 77 = T4

21



Definition A differentiable manifold (smooth manifold, C* manifold) is a
pair (M, A) where A is a maximal atlas (satisfies (1)-(3)).

Remark (Freedman/Donaldson 1980’s)
Starting in n = 4, there are topological manifolds that cannot be given a
smooth structure.

Smooth functions from M — N

M™ N™ smooth manifolds,
¢o: M — N

a function.

Definition
i. ¢ is smooth if ¢ is smooth near each p € M.

ii. ¢ is smooth near p if there erist charts v, x

pelU
o(p) €V

such that ¢(U) CV

and
xo¢ovY(U) : p(U) - R™
is infinitely differentiable on U.

Remark Using the chain rule, it follows that ¢ is smooth in all charts.
Definition A function f: (X, 7) — (Y,S) is continuous provided
VeS=fYV)eT

Proposition 2.2 A smooth map between differentiable manifolds is contin-
uous with respect to the topologies induced by the smooth structures.

22



3 Tangents, differentials of maps

Tangent vectors

Here're two alternative ways of defining tangent vectors:

1. Identify together vectors in charts to equivalence classes via the equiv-
alence relation (X, a, p) ~ (X, 3, p) where

S o= O Wgo )
X :ZTXJ, Z:17...,n.

j=1

ii. A tangent vector is a directional derivative operator coming from dif-
ferentiation along some smooth curve.

3.1 Tangent vector as directional derivative operator

C*°(M) := {infinitely differentiable functions M — R}

Motivation

Let X € R™ be a vector based at p € R". X yields a linear operator
C>®(R™) — R as follows: pick curve v, v(0) = p, ¥(0) = X, e.g. t — p+tX,
then define

X:C*R") — R

foe Sl 10w,

0

Compute

naf

= ox’

- of j
= . @(P) X
7j=1

On a manifold, we have the curves v but not yet X.

Definition Let p € M. A tangent vector to M at p is a linear function

X:C0%(M) =R, f>X-f

23



that arises as the directional derivative along some smooth curve starting at
p, i.e.
Iy : (—e,e) — M smooth, v(0) =p

such that p
X-f= 21 o) vf e o(M).
t=0

(One says that X is the velocity vector of v at t = 0)
Definition
T,M :={(p,X)| X is a tangent vector to M at p}

tangent space of M at p. Informally, we often use X to stand for the pair
(X, p).

Expression in coordinates

i. Coordinate vectors 3
Let pe M, ¢ : U C M — R" a chart near p, p:=¢(p). f:= foyl.
Counsider the coordinate curve

Gi i t— p+te; in R”,

Bi=1""o B inM.

Define 3 3
<8xi>p = <8xi)p’¢ € LM
by
0 d
<3:L‘i>p.f :%t:of(ﬁi(t»
Compute
0 d
(axi)p'f = Eof06z
dl - -
— Eofo ’
d| =
= Eof(p+t€i)
o
N 6x1()

24



ii.

111.

Get ( 0 )p T, (%)p € T, M, linearly independent in the vector space

dxt

Hom(C*>(M),R).

Claim Any tangent vector X in T,M is a linear combination of the
o) ;
<ami )p S

Proof For some curve v with v(0) =p:

SO

Consider the following possible alternative definition of a tangent vec-
tor: A tangent vector to M at p is a linear functional

X:C®M)—R
that satisfies the Leibniz rule:

X-(fg)=(X-flglp)+f(p)X-g

Exercise Prove this for n = 1, and find out if it’s true for general n.

25



3.2 Differential of a map
Let ¢ : M™ — N™ be smooth, p € M.

Definition Define d¢(p) = d¢, : T,M — Ty, N as follows: Let X € T,M,
choose a path « such that X = velocity vector of o at ¢t =0, i.e.

d

X.f= —
/ dt

fla(t) Vf e C=(M),

0

Let f = ¢ o a. Define (Y =)dop(p)(X) := velocity vector of 5 at t =0 i.e.

_4a
Cdt

Since 3(0) = ¢(a(0)) = ¢(p), we get Y € Ty, N.

Observe:

Y.g:

9(6(t)) Yg € C=(N).

d
i
4| weoraw)

= X (909

9(¢(a(t)))

0

which shows that Y depends only on X and not on the choice of a. This
also shows that d¢(p) is linear. (We could have taken Y - g := X (g o ¢) to
be the definition of dg,(X))

In coordinates

Let X €e T,M, Y :=d¢(p)(X) e T,M, q:= o).
Write 5 p
X:Xi( > , Y:Yj<—.)
or' ), o ),

Einstein summation convention: paired indices, one upper, one lower, are
summed over appropriately.
We want to express

Yi=7.X".

26



Set ¢ :=xogoypl, Gi=gox*
Compute:

s

Vg = X-(g

1.e. Bud 5
. yj 5
Y = X"'—= —
T )(ayﬂ>
1.e. 5
oy’ .
where i
i 9Y s v
I =50L
m N—— n

Shows: d¢(p) is given in coords by the matrix

Oy’ _ Bl
Ozt \ O

Proposition 3.1 (Chain rule)

!previously showed: (% f= %(]5), f=1fo ?/J_l)
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Iif

M N P

df, gy (p)
T,M — Ty N —=Tysp) P

then:
d(go f)p = dgf(p) o dfy.

Proof Transfer the chain rule
R™ — R* — R?

to M, N, P via charts.

Products
Let M™, N™ : be smooth manifolds with atlases

A - (Uom ¢a)aeA
B (Vs X8) ge

where

R™
R™.

l

Yo 1 Uy
X5 : Vs

|

Give M x N the charts

Vo X Xp: Uy x Vg — R™xR"
(p,a) — (Yalp), x5(q))
and the atlas

Ax B = {(Ua x Vg,%a X xg)la € A, 8 € B}
Canonical projections:

Ty MxN — M

(p,q) —p
av: MxN — N
(p,q) —q
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Proposition 3.2 (Exercise)
Show (M x N, A x B) yields a manifold, and 7y, mn are smooth.

Example R? x R? is the same as RP*?
St x 8t =T? (2-Torus)
T :=S'x --- x S' (n-torus)

Example = := {space of right handed 3-4-5 triangles in R?}
Project T € = to p(T) € R? (the sharpest vertex) and to O(T) € S! (the
angle that the length 4 side, directed away from p(7"), makes with the positive
z-axis). Then the bijection (p,©) : = — R? x S! shows = = R? x S
Tangent bundle
M smooth. Define
1.
T,M :={(p,X)| X € Hom (C*(M),R) is a tangentvector to M at p}
so 0, # 0, when p # ¢. (p, X) = X (abuse of notation)
il.
T™M = | T,M ={(p.X):pe M, X € T,M}

peEM

T,M is called the fiber at p.

iii.
7. TM — M
(p,X) —p

(canonical projection)

Proposition 3.3 T'M has the structure of a 2n-dimensional manifold.

Let (U, %) be a chart for M

29



Define a chart for TM as follows:
Set
U:=TU =7""(U) =Upey T,M CTM

Define
V:U — (U)xR" by
(p, X) — (xl(p)),...,x”(p)),Xl,...,X”)

. 1 n 1 n
= T2, \X,...,X

J/

~ ~

coords of p  coords of X within Tp X

The associated parametrization has a some what simpler form:

\P_l : <x17--'7xn7X17""Xn> — dj_l(xll,.”?xn)’ZXi <8a$l)p

-

p

Exercise The charts (U, V) are compatible and give 7'M the structure of a
2n-manifold. 7 : TM — M smooth. T'M is locally a product (U) x R”

Example S!
Coordinates:
R — St
0 — [0]:=0+2rk, keZ
TS > (Bla()y,)  [lesiaer

= l preserves smooth structure

S'x R > (6], a)
TS ~ S' x R cylinder, a product, of the base S* with R.

5?2 x R?
5% x R3
5% x RY

T5S?
T5s3
Ts*

e R

R
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Definition A smooth vector field on M is a smooth function X : M — T'M
such that X (p) € T,M Vp € M.

In coordinates p % (z1,...,2")
Xzt ..2™) = (af,. 2" XMt 2, Xt a™))
e (XN, L2, L XM ™)

Evidently, X is a smooth vector field < components X (2!, ... 2™),... X" (z!,. ..

of X are smooth.
Semi intrinsically, we write

i=1 C‘go p

Question: How many pointwise linearly independant vector fields can we
find on S™? Specifically, we require Vp € S™, e1(p),...ex(p) are linearly
independent in 7,,5™.

Theorem 3.4 There is no nowhere-vanishing vector field on S2.

Theorem 3.5 (F.Adams) Gives a peculiar formula for the mazimum num-
ber of pointwise linear independent vectorfields on S™. (See Greenberg &
Harper.)

TS'~2S'xR St
SQ
TS3 >~ 83« R? 93
S4
S5
SG
TS"~ 8" xR" §7

N O o w o -
=
ot

4 Submanifolds, diffeomorphisms, immersions
and submersions

Reference: Guillemin and Pollack Chap 1, pp 1-27
Let M be a smooth manifold, N C M a subset.
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Definition N is a (smooth) k-dimensional submanifold of M if Vo € N,
JU > x open and a chart ¢ : U — R”™ such that

Y(NNU) = (RY x {0}) Ny (V).

Atlas for N:
Av ={(V.x)] V:=NnU x:=¢NNU:NNU — R* (U,) as above}.

Examples

open subset of a manifold
S™ in R™*!
Sn=1lin Sn

(prove later) classical groups O(n),U(n), Sp(n), ... are submanifolds of
Mrxn o~ R’

open upper hemisphere of S”, in R*+!

Proposition 4.1

(N, Ay) is a smooth k-manifold.

The inclusion map of N in M i =incu:
N — M
p = D

s smooth.

It’s differntial

dip : T,N — T,M

is an injection Vp, modelled on the linear inclusion R¥ C R™.

The subspace topology on N coincides with the chart topology. For
any N C (M, Ty) (not necessarily a submanifold), we define Ty :=
{UNNI|U € Ty }. called the subspace topology induced on N from
(Ma TM)

Proposition 4.2 Ty is a topology on N
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Big Questions:

i. When is the image of a smooth map a submanifold?

ii. When is the zero-set of a smooth map a submanifold?

4.1 Immersions, submersions, diffeomorphisms

Let
f: M — N™
dfp : TpM — Tf(p)N.

be smooth, and consider

Definition
i. f is an smmersion if df, is injective Vp € M
ii. f is a submersion if df, is surjective Vp € M

iii. f is a diffeomorphism if f is bijective and f~! is also smooth. (NB:
then f~' o f =idy, (df 1) () © df, = idg, e, s0 dfy, is an isomorphism)

Correspondingly, we have
i. Local immersion theorem (Blatter II p.106)

ii. Local submersion theorem (= Implicit function theorem) (Blatter IT
p.99)

iii. Inverse function theorem (Blatter II p.88)

The first two are dual and both are proved from iii.

Diffeomorphisms
RN
(M, A) ___(N,B)
f71
f diffeomorphism < f~! diffeomorphism.
diff
Write: M = N

It means: M and N “look the same” from a differentiable viewpoint.
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Advanced Fact (Taubes/Donaldson 80’s)

Starting in n = 4, a topological manifold can have 0,1 or > 2 distinct (i.e.
non-diffeomorphic) differentiable structures.

Example (Milnor 50’s) The topological manifold S has 28 distinct differ-
entiable structures.
Standard one: S7:= {z € R®||z| =1}

Theorem 4.3 (Inverse function theorem) Let f: M — N be smooth.
If df, : T,M — Ty, N is an isomorphism, then f is a diffeomorphism near p,
that is, AU 2 p, V' > f(p) open such that f|U : U — V is a diffeomorphism.

Proof Transfer the usual Inverse Function Theorem from R™ to M, N via
charts.

Definition Let f: M — N

i. fis a local diffeomorphism if every p € M has a neighborhood U > p
such that f(U) is open in N and f|U : U — f(U) is a diffeomorphism.

ii. fisa (smooth) covering map if every ¢ € N has a neighborhood V' > ¢
such that f~1(V) = UseaUs, where the Us are open disjoint sets in M,
and f|Us : Us — V is a diffeomorphism for each .

Clear:

Covering map z local diffeomorphism

Exercise Prove that the number of preimage points f~!(g) is constant on
each connected component of N, if f is a covering map.

Example

qn l) RP"
p +— m(p) := line through p and 0

7 is a covering map (where we give RP™ a suitable smooth structure). Each
L € RP"™ has two preimage points p, —p in S™.
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Let I" be a group of diffeomorphisms from M to M, i.e.

idy€el', gell = g¢gltel
ghell = gohel

Definition I' acts freely and properly discontinuously on M it Vp € M Upen 2
p such that
g#hel=gU)NhU)=2.

Example

Z2 = {idsna g }
where g(z) := —x, g* = idy;. Then Z, acts freely and properly discontinuous
on S™.

Definition Let I' be a group and M a manifold. I' acts smoothly on M if
there is a homomorphism of I' to the group of diffeomorphisms (= Diff(M))
of M.

Example Z" acts freely and properly discontinuously on R” by translation.

Notation
p:T'" — Diff(M) group action
g — plg)
g9(z)

)
—~
s
~—
—~
8
~—
I1l

Definition We call I' - x := {g(x)|g € I'} the orbit of x under action of I
M decomposes into a disjoint union of orbits. Specifically one can easily see:
i. forall x,y € M,either 'z =T -yor'-aNl-y=0
. M =Uzeyl' -2
Each orbit is an equivalence class for the relation

r~ysy=g(x)dgel.

We obtain:
T M — M/T
z — I'-w
M/T' := {set of orbits}
= {[ x|z e M}
= M/~
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Theorem 4.4 (Ezercise)
If T acts freely and properly discontinuously on M, then m : M — M/T’
induces a smooth structure on M /T such that 7 is a covering map.

Warning Not every covering map comes from an appropriate group action!
Exercise Find an example.

Definition A subset A of a topological space X is discrete if for each x €
A 3U open such that ANU = {z}.

Exercise G Lie group (a manifold such that the group operations are smooth),
[ discrete subgroup (not necessarily normal!) and G/T" coset space of I" in G

e SL(2,R)/SL(2,7Z) =7 (3-manifold)
o S3/{+1} 2 RP3, S3/Z, (some 3-manifold)
Zo = {* |k =0,...,0-1}

Exercise

Find all the manifolds (up to diffeomorphism) of the form R? /T, T" acts freely
and properly discontinuously on R? by isometries (translations, rotations,
refections and slide reflections).

* Same problem for R3.

4.2 Immersions
An immersion is a function such that

f: MF — N smooth

<
df(p): T,M — TN s an injection. (=5 k<n)

Example The inclusion map i : M — N,z +— x of any submanifold M of
N is an immersion.

Example (curves) A regular curve (7(t) # 0)
R >t v(t) € R?

1S an immersion.
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Example (Canonical linear immersion)

i:RF — R
1

(z',...,2") — (a,...,2%0,...,0)

Theorem 4.5 (Local Immersion Theorem) Let f: M — N be smooth,
p € M be fized. Suppose

dfp . TPM — Tf(p)N

is injective. Then there exist local coordinates (z*, ..., x%) about p, (y', ..., y")
about f(p) such that in these coordinates, f has the form

near p.
This says “f is smoothly equivalent to ¢”. This means that any immersion
can be straightend, out at least locally.

Proof later.

Corollary 4.6 If df, is injective at p then df, will be injective for all ¢ near

p.
So {p € M|df, injective} is open. “That is ,injectivity of the differential of
f 1s an open condition on points of M ”.

Corollary 4.7 The tmage under an immersion of a sufficiently small open
set of M is a submanifold of N.

Question:
When is the image of a smooth map a submanifold of the target manifold?
Theorem 4.8 If f : M — N is an injective immersion and a homeomor-

phism onto it’s image®, then f(M) is a smooth submanifold of N and f is a
diffeomorhism from M to f(M).

Proof

2This means: f : M — f(M) is a homeomorphism (where f(M) has the subspace
topology coming form N).
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i. Fix g € f(M),p:= f(q) (unique, f : M — f(M) bijective). By the
Local Immersion Theorem, JUqpen 2 p, Weopen 2 ¢ such that

flU:U—-W
is the cannonical linear immersion
i:RF - RF x R*F

in coordinate systems (z',...,2z%) on U and (y!,...,y™) on W. Thus

f(U) is a submanifold of N and f|U is a diffeomorphism from U to
f(U). Since f is a homeomorphism from M to f(M) and U is open in
M, f(U) is open in f(M), i.e.

fU) =V f(M)

for some V open in N.
This tells us: f(U) is cleanly separated via V' from the rest of f(M).

In fact, we have that f(M) NV is a submanifold of N.(Recall that in
the coordinates y',...,y" on N near ¢, f(M) maps to an open set in
R¥)

Since such a V' can be found about any point ¢ of f(M), it follows that
f(M) is a submanifold of N.

ii. f: M — f(M) is a local diffeomorphism by the above, and f: M —
f(M) is a homeomorphism. So f~': f(M) — M exists. Using the
Inverse Function Theorem, f~! is smooth.

Homeomorphism-ness is hard to test directly.

Definition If f: M — N satisfies the conclusions of the previous Theorem
(ie f(M) is a submanifold of N and f : M — f(M) is a diffeomorphism), we
call f an embedding of M in N.

Theorem 4.9 Suppose f : M — N is an injective immersion and M 1is
compact. Then f is an embedding.
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Proof Must show: f: M — f(M) homeomorphism. Note that f is bijective
and continuous. Thus it suffices to show that f~! is continuous, i.e. show: if
U open in M then f(U) is open in f(M).

Uopenin M = M\U closed in M

= M \ U compact (since M is compact
F(M\U) = F(M)\ f(U) compact
f(M)\ f(U) closed in f(M)
f(U) open in f(M).

Uy

Proof (Local Immersion Theorem,)
The theorem is entirely local, so without loss of generality we may assume

f:RFDU -V CR® U,V open, p=0

Without loss of generality (via postcomposition with a linear tronsformation
of R") we may assume

dfp:i:Rk — R"
(z',...,2%) — (2',...,2%0,...,0)

(canonical linear immersion)

To apply the Inverse Function Theorem we augment R* to R™ by adding
n — k new variables. We extend f to a new function F' by

Ux R  — RFxR*
(x/’x//) — f(l'/) + (O,x”)

Compute for: (X', X") =X € Tp(U x R**) =RF x Rk

dF,(X',X") = df, (X")+(0,X")
~
= (X',0)+ (0, X")
(X/7 XI/)
ie.
de — ld]Rn
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As matrices:

0

B dfy | — v\ (1 0
we(F L)) r)

CC//

By the Inverse Function Theorem, 3W open > p, F(W) open > F(p,0) =
f(p) such that
FIW : W — F(W)
is a diffeomorphism. So G := (F|W)~! is a valid chart for F(W). So we can
use (z!,...,2") as coordinates on F(W). Let U; := W N (U x {0}).
Get: (a1,...,2%) coordinates on U,
(X',...,X™) coordinates on F (V)
Then in these coordinates f has the form

O

Theorem 4.10 (Graphical Image Theorem) (Restatement of Local Im-
mersion Theorem)

The image of a smooth map whose differential is injective at one point can
be written locally, in the original target varibles (y*, ..., y"), as the graph of
(n — k) of the variables as a function of remaining k.

Recall that if f : M — N is injective immersion and M compact then f is
an embedding. Let’s try to generalize this to M noncompact.

Definition f: X — Y is proper if K CY, K compact = f~'(K) compact

Theorem 4.11 If f : M — N injective immersion and then f is
an embedding.

Proof Exercise.

O

Example R — T2 with an irrational slope: injective immersion, not proper.
The image is dense in 72 so it isn’t an embedding.

Definition We call a topological space (X, 7) second countable if there ex-
ists a countable collection of open sets that generate the topology 7 via
arbitrary unions, i.e. 7 has a countable base.
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Example
R {(’E’, g) lp,q,r, s €Z, q,8 F# O} countable base

R™ products of such intervals: countable base

Theorem 4.12 (Whitney Theorem) FEvery (paracompact or second count-
able) smooth n-manifold can be embedded smoothly in R*".

Example
St CR? embedding
RP? CR* Veronese embedding
RP?2 —R3  Boy’s immersion

There exist no embedding of RP? in R?

4.3 Submersions
Zero Sets

Question f: M — N smooth. When is f~1(¢) a submanifold of M?

Example
f:R* =R

f(z,y) == 2% — 92 f71(0) is a cone with a cusp (not smooth at (0,0)
Vf = (32", 2y)
Consider

f:M — N smooth
dfp . TpM — Tf(p)N

We require: df, surjective Vp € M.

Example (Canonical linear projection) Let n > k and define

7:R* — R

(z', ...,z = (zh.. 7).

Then 7 is a submersion.
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Example
M x N

y K
M N
Then 7y, mny are submersions.

Example (Exercise) TM ~ M is a submersion.

Theorem 4.13 (Local Submersion Theorem) f : M™ — N* smooth,
p €M, df, : T,M — Tty N surjective. Then there are coordinates (... ™)
near p, (y*,...,y*) near f(p), such that f has the form

(', ..., 2™ = (.., yb)

Notation:
R™ — sz % Rn—kz 5 (ZL‘l, ,{L’k,[Ek+1, ,l‘n) _ ([El,l‘”)
7: R—-RF 2
' R* =R z—2"

Proof Since the theorem is local, we may work in open sets in Euclidean
space:

f:UCR* — VCRF
(xl,...,m”) (yl,...,yk)

U,V open.
Precomposing f with an appropriate linear transformation R” — R", we
may assume

df, =7 :R" — R*
(I‘,, :E//) — x/
To apply the Inverse Function Theorem, complete f to a map F' as follows:

F:U — VxRvFk
(2, 2") — (f(a',2"),7"(z))
N——"

=z

Now let X = (X', X") € T,(RF x R*=) = RF x Rk
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Compute

dF,(X', X") = | df, (X', X"), dr (X', X")
! "
— (X/, X//).

So dF,, = idgn is an isomorphism.

0

(o Ny (10N
i <y")‘<o 1)‘[

$H

Thus by the Inverse Function Theorem, 3U; C U open, W C V x R"* open

such that
v, S w

is a diffeomorphism. So F|U; is a valid chart map and we may replace the
coordinates z!,...,2" on U; by the coordinates y!,...y" coming form W.
Then U; has the coordinates (y!,...,3"). V(W NRF x {0}) has coordinates
(y',...,9"%). In these coordinates, f is represented by

O

Corollary 4.14 df,, surjective at p = df, surjective for all ¢ near p (i.e.
surjectivity of df is an open condition in the domain manifold.)

We return to our question:

When is the preimage f~'(¢q) a submanifold of M?

Corollary 4.15 Let f : M™ — N* be a submerison. Then f~'(q) is an
(n — k)-dimensional submanifold of M for any q € N.

Note that the Local Submersion Theorem is really the Implicit Function
Theorem in disguise.
We can be more precise in an answer to the above question.

Definition f: M — N smooth

o p € M regular point if df, surjective
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e p € M critical point if df, not surjective
e ¢ € N regular value if every p € f~1(q) is a regualar point
e ¢ € N critical value if some p € f~1(q) is a critical point.

Note that the set of reqular points is open and the set of critical points is
closed.

Example (Very standard!)

f:R*> - R
flay) = 2* =y
Then
af = 2xdx — 2ydy, or more precisly
Aoy = 20dT(y) — 2Ydy(ey)

Thus (z,y) critical < df(z,) =0 < (z,y) = (0,0)
All f71(q) are smooth exept f~1(0).

Corollary 4.16 f: M™ — N* smooth, ¢ € N reqular value, then f~'(q) is
a smooth submanifold of M.

5 Lie Groups: S%and SO(3)

Definition A Lie group is a group that has the structure of a smooth man-
ifold such that the group operations

G

-1

GxG — G G —
(a,b) +— ab a — a
are smooth.

Example

O(n) = {Ae M™"|ATA =1}
= {A:R" = R"|(Az, Ay) = (z,y) Yo,y € R"}

SO(n) := O(n)N{det A =1} (orientation preserving)
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Exercise Prove O(n) is a Lie group by showing that 1 is a regular value of

the function
Ae M ™ — ATA e M

symm

Example The group of isometries of any Riemannian manifold is a Lie group
(not easy at this stage).

Example
Isom(R") = {z — Az + b|A € O(n),b € R"}

Exercise What is Isom(72 ...)?

square

5.1 Quaternions

H = {a+bi+cj+dkla,b,c deR}

~

R* as a vector space over R

(H,+,-) is an algebra over R.
Multiplication: 1 is multiplicative unit, and we require

ij = —ji =k, jk=—kj=i, ki=—ik =]
so that

(a+bi+cj+dk)e+ fi+gj+hk) =ae—bf —cg—dh
+(af +be+ch —dg)i
+(ag + ce — bh + df)j
+(de + ah + bg — cf )k

Let u =a + bi + ¢j + dk define u :=a — bi — ¢j — dk
Check: u = u, v = vu.

Set |u|? := uti = a® + V* + 2 + d? > 0 (usual norm on R*).
Observe:

U

e % is the inverse of u # 0 so | (H \ {0}, ) is a Lie group.

|ul?
o |uv]? = wvuw = wovu = |v}|ul? i.e. Juv| = |ullv|, || is multiplicative”.
o 33 := {u|lu] =1} is closed under multiplication and inversion, so

(83,) is a Lie group | called the group of unit quaternions. Note that
S3 >~ SU(2) = Sp(1)
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Definition A 1-parameter subgroup of a Lie group G is a homomorphism
(Rv +) - (G7 )
Example

(R’+) - CQ(H,)

0 — e :=cosf+isinb.

Then e'+¥) = ¢ . ¢ 50 0 — €' is a 1-parameter subgroup of S®. Now set
e = cosh+ jsinb

e = cos@+ ksind

These are also 1-parameter subgroups.
Take u := ai+bj+ck, a*+b*+c* = 1. Verify u? = —1 so {a+bula,b € R} 2 C

as an algebra. Then

e = cosf + usinf

is also a l-parameter sub group of S3.

Picture of S3

i — (1,0,0)
j = (0,1,0)
1 — (0,0,0)

S\ {-1} S R?
In stereographic projection, the 1-parameter subgroups become lines through
the origin.

All 1-parameter subgroups are equivalent, i.e. Jv € S® such that v(e*)v=1 =
e (Proof later).

5.2 Smooth actions, left, right, adjoint actions of a Lie
group on itself
Definition G Lie group, M smooth manifold. A smooth action of G on M
is a smooth map
o:GXxM — M
(a,2) — o(a,r) = ¢a(x)
such that
¢ = idy
Pa© Py = QPab



Consequences

e Each ¢, is diffeomorphism. To see this, compute

PaPa—1 = Pag—1 = Qe = idy
S0 @, is invertible with (¢,)™' = ¢,-1, 50 ¢, is a diffeomorphism.
e ¢ yields a homomorphism
¢:G — Diff(M)
a — Qg

in agreement with our previous defintion of an action of a group on a
manifold.

Definition
L,: G — G left translation

br— ab

R,: G — G right translation
b— ba

a+— L, and a — R,-1 are smooth actions of GG on itself:

LoLy = Lay, L. =idg
Ru-1Ryr = Ryt = Ry1a1, R.=idg

Note also that L,R, = RyL,.

Definition The adjoint action is defined by

Ad,: G—G
b— aba™' = L,R,~1b= R,~1L,b

which is also a smooth action.

Example
R'H={a+bi+cj+dk} DS

Take u € S3, then

L., R,,Ad, : H — H are isometries, since |uv| = |u|v] = |v].
Set
R?® .= {2i +yj + 2k| 2,9,z € R}
Note that
TS LR-1
where a € R.
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Now Ad,, preserves R -1, so Ad,, preserves R?, and
Ad, :R®> > R3

is an isometry preserves O. Thus Ad, € O(3) and
Ad: S? — 0(3)

is a homomorphism, i.e. Ad,Ad, = Ad,,. Now O(3) consits of two connected
components, namely the orientation-preserving orthogonal transformations
(SO(3)), and the orientation-reversing ones. Clearly Ad : S* — O(3) is con-
tinuous (you may check this by finding a formula for it), and S is connected.
Thus Ad(S?) C SO(3), i.e.

Ad: S — SO(3).
Exercise Find a formula for Ad, € SO(3) and interpret it geometrically.
Kernel of Ad:

u € ker(Ad) & wvu' = v Vv € R
su=a€eR-1 (check)
= u==1
ker(Ad) = {£1}
so S*/{£1} = SO(3) (as a group)

Exercise One easily verifies: Ad : S® — SO(3) is a 2:1 covering map that
takes v and —u to the same point in SO(3). So

diff diff
SO(3) = S%/{£1} = RP?
as smooth manifolds.

Recall the following lemmas, which might help.

Lemma 5.1 A local diffeomorphism M — N with a compact domain M is
a COvering map.

Lemma 5.2 A covering map with connected target has a constant preimage

size
#7 ' (q),qe N
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6 Lie brackets, flows of vector fields, Lie deriva-
tives

6.1 Vector fields

Notation:
X :M—-TM X(p) € T,MVp

Let v be a chart ¢ : U C M — R"

ZXZ ) ( f)

Warning Standard abuse of notation:

z n 9
_ZX axz

where we identify p with (z!,... 2"), i.e. we drop .

C®(TM) = {C>®vector fields on M}
I(rM) = {all vector fields on M}

Also write: C*°(M,TM),C>(U,TM), where U C M is open.

C*(M) = {C* functions M — R}

C%(M) := {continuous functions M — R}

CY(M) := {continuously differentiable functionsM — R}
C*(M) := {functions M — R such that all derivatives of orders

0,...,k exist and are continuous (in coordinates)}

We say X is C* & Xi(2!, ..., 2") are C*

6.1.1 Lie Brackets
We wish to define [X,Y], X,Y € C®(TM).?

3See Spivak I, 207-217
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We have the map

C®(TM) x C®(M) — I'(M):= {functions M — R}
(X, f) — X-f
X-NE) = X J €R

€ET,M €C>=(M)
Proposition 6.1 X - f € C*(M)
Proof Use a chart
VU — U)CR"
p — (2. 2"
Compute

(X-Np) = X(p)-f
= X'(p) (a?m) - f

, O(foyp~t
= X' (v (... 2")) %(ml,...,x”)

]
Consider the 2nd order differential operator X - (Y - f), also written as XY f.

Proposition 6.2 Let X,Y € C®°(TM). Then there exists a unique vector
field Z € C°(TM) such that

Z-f=(XY-=-YX)f, feC®M)
Basic idea: the 2nd order derivatives cancel.
Proof Get an expression for (XY —Y X) f in coordinates. Suppress .
Write 9 9
Y

i—. - YJ—..
oxt’ OxJ

X=X

Compute

XYf = ZXi@ii (Zw‘%)

ey oY\ af

D XY g X (axa)axi
Pf 0X Of
oo T 0w 0w

YXf = > VX
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So we get

AYT X'\ of
(XY - XY) f Eijj<X 55 Y ax].) e

Define the smooth vector field Z in the chart U by

D0 oYt oX!
Z::ZZ o 2 '_Z(Xjaxj ~Y? &Cj)

J

Then
Z-f=(XY-YX)f

This shows Z is well-defined independent of parametrization, smooth and
unique.

Definition

[]: C®(TM) x C°(TM) — C=(TM)
X,Y] = XY - YX

(as differential operator on C*°(M)) is called a Lie bracket.
Proposition 6.3 Let X,Y,Z € C°(TM),a,b e R, f,g € C°(M). Then
i. [X,Y]=—[Y,X] (anticommutative)
ii. [aX +bY, Z] = a[X, Z) + b]Y, Z] (bilinear)
i [[X, Y], Z]+ (Y, Z], X]+ [[Z, X], Y] =0 (Jacobi identity)
w. [fX,gY]=fglX, Y]+ f(X-g)Y —g(Y - /)X

Proof Jacobi Identity

[X,Y],Z2] = [XY-YX,Z] = (XY -YX)Z—Z(XY - YX)
vV, 2].X] = [YZ-2Y,X] = (YZ—-ZY)X - X(YZ — ZY)
Z.X],Y] = [ZX —XZY] = (ZX - XZ)Y —Y(ZX — XZ)
sum = 0
O
Definition A vector space V' equipped with a bracket [-,:] : V xV — V

satisfying i, 47, 124 is called a Lie algebra.
So C>°(TM) forms a Lie algebra.
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Example Another famous Lie algebra:
V' vector space over a field K

Endg(V) := Homg(V,V)
[A,B] = AB— BA

(Endg(V), [, -]) is a Lie algebra.
Example M™*"(R), M™*"(C).

Relationships between the two kinds of [-,] occurs via the Lie Algebra of
(matrixz) Lie groups.

6.2 Integral curves and flows of vector fields*
Definition An integral curve of X is a path ~y : [a,b] — M such that

Y(t) = X(v(1), t € la, b].
In coordinates, this is an n x n first order ODE system. We write and obtain:

v(t) = (z'(¢t),...,2"(t)) e U CR"

dx? "

E:XI (131<t),...,flf (t))

dz" 1

E:X”(x ®),....2"(1)), a<t<b.

6.2.1 Existence, Uniquenes and smooth dependence on initial data

Consider the ODE system

dt

) DU — X (y(t)) —a<t<bab>0
v(0) = p require: 7y is C'!

Theorem 6.4 (Short-term existence, uniqueness, regularity for ) Let
X € C®°(TM). Then

i. 36 > 0 such that (x) has a C' solution defined for —§ < t < 4.
(Existence)

4See Spivak I Chap. 5.
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i. Any C' solution of (x) is C*° (Regularity)
. Any two C' solutions of (x) on (—a,b),(—c,d),a,b,c,d > 0 agree on

their commmon interval of definition (—a,b) N (—c¢,d). (Uniqueness)

Proof

Analysis: Either Inverse Function Theorem on Banach spaces, or a
successive approximation method?®.

ii. Ezercise

Remark X € C* = Theorem holds but with v in C**!

Dependence on Initial Conditions

Write 7, (t) = ¢(x,t) = ¢'(x) (integral curve with initial point v,(0) = x).
The equation (*) becomes

t

(%)’ %x’t) = X(¢(z,t), velU—-a<t<b
¢(£E,0) = T, x € U.

Theorem 6.5 (Dependence on initial conditions of ¢) Let X € C°(TM),p €
M.
i. 3U 3 p,d > 0 and a function (C* int) ¢ : U x (=8,0) — M that solves
(%)".
i. Any solution of ()" that is C* int is C™ in x and t.

iii. Any two solutions ¢ : U X (—a,b) — M,y :V x (—c,d) — M agree on
the intersection of their domains.

Remark X € C* = ¢ is C* in (z,t) (recall from above that ¢ is C*™ in t).

New point of view:
¢ U_— ¢u(U)

M cM

The family (¢;)_q<i<p is called a local flow of X.

Notation:

A CC B means A is compact and A C B, read “A compactly contained in
B”. If A is compact, we say A is precompact.

5See Lang reference in Spivak I chap 5. Alternately see Rivieere’s differential geometry
problem last year.
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Theorem 6.6 (Larger U, smaller §) For any U CC M 36 > 0 such that
the local flow is defined on U x (—0,9).

Proof By compactness of U, we may cover U by finitely many open sets
Vi, ..., V, such that there are flows (solving (x)’)

¢; Vi x (=6;,0;) — M.
Set ¢ := min d; > 0. Define
¢:Ux(=0,0) = M

by:
¢ :=¢; on V; x (=4,0)

(Consistent by uniqueness assertion (iii) in previous Theorem)

O

Theorem 6.7 (Pseudogroup Property) If ¢' o ¢* is defined on U for
|s| < S,|t| < T, then ¢* is defined on U for |u| < S+ T and

¢t+S:¢to¢s OnU

If ¢ : M — M exists for all time ¢ € R, then ¢, is called a complete flow.
Note that ¢; injective < uniqueness of initial value problem for backwards
flow.

Proof Fix |s| < S, |t| <T. Combine the two paths via

o Ve () 0<u<s
Mw"_{%kaﬂ)S§u<8+t

Note that
Ye(s) =y =7,(0) = aisC’
Bu(s) 2 X(y) DA > ais !
Also « solves (x). So define (extend) v via v, (u) := a(u),0 < u < t+ s.

Remark (Used in above step) If y(u),a < u < b solves ODE (x), then so
does the time shifted curve y(u — k),a + k <u < b+ k.
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So ¢ : U — M exists, 0 < u < t+ s and ¢' o ¢* = ¢, Speciffically:
¢'og(r) = ¢'(¢°(x))
= ¢'(1(s))
= Ys)(t)
= a(s+1)
= Yals+1)
— ¢S+t<$)
O

Corollary 6.8 Assume U open and ¢, exists on U. Then: ¢,(U) is open
and ¢|U : U — ¢¢(U) is a diffeomorphism.

Proof
i. Assume first that ¢; is complete. Then by previous Theorem:
P10y = Gt = Qo = idns.
So ¢, is invertible with inverse
() =01 M—M

and ¢_; is smooth, so = ¢, : M — M is a diffeomorphism and ¢,(U)
open for any open U C M and ¢;|U : U — ¢;(U) is a diffeomorphism.

ii. Next we do the global case (when ¢, is not complete).

Let U CcC M and try for small ¢. Choose V open such that U CC
V cc M. Choose ¢ so small that

6. Ux[0,0 —V
¢: Vx[=6,0 — M

are defined. Then
psops:U— M

is defined, so by above Theorem ¢_so¢s = id on U. It follows that ¢5|U
is a local diffeomorphism, ¢5(U) is open, and ¢;|U is a diffeomorphism.

Lemma 6.9 A smooth map
¢:U— M (U open)
with a smooth left inverse 1p : A D ¢p(U) — M, A open
o¢=1idy
is a diffeomorphism and ¢(U) is open.
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iii. Next, let U CC M and let ¢t > 0 be an arbitrary time such that ¢,
exsists on U. Choose V' open such that

o(U x [0,t]) cCV cC M.

For ¢ small enough, ¢s will be defined on V and ¢s5 : V. — ¢5(V) will

be a diffeomorphism. Making § slightly smaller, we can arrange
t=Fko,p=¢s0--- 00,
k

on U. Thus ¢|U is a diffeomorphism onto the open set ¢.(U).

iv. Now let U C M be an arbitrary open set and let ¢; be defined on
U. For ever V.CC U, ¢¢(V) is open and ¢V : V — (V) is a
diffeomorphism. It follows that ¢,(U) is open and ¢;|U : U — ¢(U) is
a diffeomorphism.

Get in succession:
o5V — ¢s(V) diffeomorphism, ¢5(V') open
U CV, so ¢s(U) is open

¢s|U : U — ¢5(U) diffeomorphism

¢s(U) CV, sops(ps(U)) is open
¢5|0s(U) = ¢5(U) — ¢(ps(U)) diffeomorphism

Thus ¢os = @5 0 ¢ : U — ¢5 0 ¢5(U) diffeomorphism
Induction = ¢; : U — ¢;(U) diffeomorphic
¢¢(U) is open.

Remark on uniqueness

(t) = X(x(t)),z(t) e U CR"

Sufficient conditions for uniqueness: X is Lipschitz.
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Example Fix 0 < a < 1. Consider

Solving, we find a solution
z(t) = (1 — a)t) =, >0

In fact, we have two solutions

0 t<0
=) = {((1_a)t)1ia, >0

y(t) == 0 teR.
Since == > 1, z(t) is C' in ¢.
Question How far can we extend the flow?

Definition A vector field is called complete if it possesses a flow ¢, : M — M
defined for all —oo < t < 0.

Remark Then ¢ — ¢, defines a 1-parameter subgroup of Diff(M), or equiv-
alently, a smooth action of R on M.

Example
X(l’,y) = ('xa _y) on RQ

A typical solution traces out a curve: xy = const, and has the form
v(t) := (Cie’,Coe™) ,t € R,

So this X is complete.

Example
0
. 2 2
= tye M =R, X(z) =2"—.
P = ot a(t) X(@) =
Solution: z(t) = 7, —0c0 <t < ¢ (or ¢ <t < o) So this X is incomplete.

Example Clearly
y = 17y(t) €N = (—OO, 0)

18 tncomplete .
Transform the equation to x = —i,jr = L% = W = 2%, It becomes
equivalent to the previous problem, with M = (0,00). In both cases, the

trajectory runs off the end of the manifold in finite time
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Example
0
X=_—UCR?
Ox
Typically incomplete.

Corollary 6.10 (to group property and short-time existence) If ¢ :
Ux[0,T) - M and ¢(U x [0,T)) CC M then ¢ can be extended to a
solution ¢ : U x [0, T + ) — M for some § > 0.

Proof Pick V such that

o(Ux[0,T)CVcCccM
¢ is defined on V for 0 <t < T and ¢ > 0 such that there is a local flow

¢:V x[0,6) — M.
Then ¢, is defined on V for 0 < s < d. Apply the group property to yield
Pt =¢ 0 =¢", 0<u<T+9,

i.e. we can extend ¢ to

¢:Ux[0,T+9)— M.

O

Significance A trajectory 7(t) can be continued as long as it stays in a
compact set of M. (i.e. if [0,7) is the mazimum time of existence of (t),
then ~(¢) must leave every compact set of M.)

Corollary 6.11 If M is compact, then every smooth vector field on M 1is
complete.

Theorem 6.12 If X € C*(R",R"™) has at most linear growth, i.e.
| X (z)| < Cy |z| + Cq,z € R,

then X is complete.

Example

r <1.

>
x:L¢:x+L¢:{bw“x !
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Proof Let i(t) = X(z(t)), z(t) € R", X : R* — R".

It follows:
d dr =z
— () = (= —
Fl0l = (G
d_x
- | dt
= | X(2(2))]

Compare |z(t)| to the solution of

dt

{ da — Cia+Cy, a(t) ER
a(0) = [=(0)]

Lemma 6.13

()] < a(t),t >0
Proof Let b(t) := |z(t)| — a(t). Compute

&b dlz(t)  da

dt dt dt

S Cl‘$| + CQ — (C’la + Cg)
= (b.
So b(t) solves:
{ bO) = 0
%tt) < Cib(t)

Claim

To see this, we argue as follows.
On the open set I C R where we compute that b(t) > 0, set B(t) := log b(t).
Write I = U (aq, ba), where (aq,by) N (ag, bg) = @. % < .

Now B(t) — —oo as t— ay' inside (aq, by)
so B(t) — Cit — —o0 as t— a,’

but B(t) — Cit is nonincreasing. This is impossible. Thus [ = @.

This proves the claim.
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Upshot:
(0] < at) = (Ja(0)] + G2 ) ' - 2

which is finite, as long as 0 < ¢ < 7. This shows: z ([0,7)) lies in a compact
subset of R™ for any 7" < oo. Thus: z(t) can be continued forever (i.e. V).

O

Theorem 6.14 Let X € C°(TM). Fizp e M. If X(p) # 0, then there are
coordinates (zt,... 2" near p with X(q) = (%)q for all q near p.

Meaning: There are no local invariants of nonzero vector fields (they are all
the same, locally).

Proof Choose coords y',...,y" on a small neighborhood U > p such that

0
X(p) = (a—yl)p, p=1(0,...,0).
We have
¢: Ux(—¢g,e) — M

<y17"'7yn7t) — (¢1""7¢n)'
Now N := U N {y' =0} is a submanifold of M passing through p. Define

¢ = ¢|N><(—5,5) : N x <_€78) - M
<y2""7yn7t) = (Tpl?"'?,ébn)

Concretely. ¥'(y?,...,y" t) := ¢'(0,9% ...,y",t). We wish to apply the
Inverse Function Theorem to v at the point

(p,0) € N x (—¢,¢), ¥(p,0) = p,

to prove that (y%,...,4", ) can be taken as coordinates on M near p. For
(q,t) € N x (—¢,¢) :

(dV) gy * Tigay (N X (—€,8)) = TuN x R — TyqnM

Compute for (¢,t) € N x (—¢,¢)::

0 0
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At (p,0), we have:

U(p,0)=p
dw(p,()) : TqN x R — TpM

0 0 9 0 0

8y27"'78yn78t 8y17"'78yn
We get

0 ) 0

— — X(p) = (—) (by above)

(875 0 '),

and

(%) »—)(al) 1=2,...,n
9y (p,0) dy P

since ¥|N x {0} is just the inclusion N — M. Thus (di)),0) is an isomor-
phism, so by Inverse Function Theorem,

YV x(=0,0) =WCM

is a diffeomorphism for some small p € V C N,p e W C M, > 0. So we
may take (y2,...,y" t) as coordinates on W. For r :=¢(q,t) € W, we get:

(%) (@) 0 ((%))

= X(0()
= X0

O

Definition (Codimension) Let M™ be a manifold, N* C M" a submanifold
of M. Then the codimension of N inside M is dim M — dim N =n — k.

6.3 Lie Derivatives
Pushforward and Pullback of Vector fields
f:M—N
Definition (Pushforward) Given X € C°°(T'M) we wish to produce f,(X) €
C>*(TN)
If f is bijective, define the pushforward of X via f by

Fo(X)(q) := df 1) (X(f7(q))) € T,(N) Vg € N.
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Definition (Pullback)
(X)) e C®(TM) — X € C°(TN)
If df, : T,M — Ty N is bijective Vp € M, define the pullback of X wvia f by
FO0) = () (X))
Easy case: f is a diffeomorphism = f,, f* are both defined.

Proposition 6.15 (Ezxercise)
i. [(X), f*(Y) are smooth if X,Y are smooth

1. Gliven
AR
M___N__ P
gof
X eC®(TM),Z € C(TP)
We have

g [+ X = (go f)«(X)
972 = (9o f)(2)

iwi. f a diffcomorphism = f*Y = (fH).Y, £.X = ()X ff.X =
X, f Y =Y.

Lie Derivative

We wish to define LxY, X, Y € C>(T'M). We wish to differentiate Y in the
direction of X.

Let X, Y € C°(TM). Let ¢; be the flow of X. Idea: look forward along the
flow of X to see how Y is changing. We must pull back Y by ¢; to make the
comparison.

5 (Y): family of vector fields on M, with starting value

¢o(Y) = idy (Y) =Y (t = 0).

Definition
LyY(p) = %O@(Y)(p) ~ I ¢Z‘(Y)(pz—Y(p)
~ lim (d¢§a)1(Y(¢;(p)))—Y(p) e T,

The subtraction is permitted because ¢;(Y)(p) and Y (p) both live in T, M.
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Proposition 6.16 If XY € C>°(T' M), then the defintion exists, LxY is a
smooth vector field, and

LyY =[X,Y]. (1)
Proposition 6.17
i. f*(LxY)=Lpxf*Y

a. fAX,Y] =X, Y] if df, is bijective ¥p, i.e f is a local diffeomor-
phism.

We leave i1 as an exercise.

Proof of i)
Assume f is any local diffeomorphism, work in a small neighborhood and f
becomes a diffeomorphism.

N Y LxY o} flow of X

i )ff* y - s

M X LyY b flow of Y (proof below)

To prove: IT;}// = LXY/.
Claim The pullback of a flow of X is a flow of the pullback of X

Proof (of claim)
For simplicity, just do the case where X is complete.

NN

i f
M- 0

~

Let ¢; be the flow of X. Then

&y = f"ogiofi= ()

is the flow of f*(X)
Note d(f ™), = ((df);-1() " where ¢ = f(p).
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Compute

S = 55 06,0 f)

= d(f Deusm) (% (¢t(f(p))))

= (A1 wiom)  (X(@(f(P)))
= (W) | XU @00

¢~>t (»)

LV = | G(Y)
0
= il U oo )

= S| fauTyrY
0

* a *
- ot . (¢t Y)
= [Y(LxY)

—_~—

= LXy
O

Proof of . Both sides are well-defined, coordinate free concepts, as shown
by the Lemma. Thus it suffices to prove claim (f) in a chart, U C R™. That
is, we prove it for the push forwards of X and Y on V C M to U C R" via
the chart ¢ : V' — U, then pull back the result to M.

Solet X, Y € C*(U,R"),U C R" open, fix p € U. Let ¢; be a local flow of
X near p. (definedon p e VCC U,—§ <t <9).
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Compute:

Z() = LeY()= | G0

d
dt|,

(dgu(p) ™" (Y(x(p)))

Where
dee(p) : T,U = R" — Ty,(nU = R".

O

Lemma 6.18 Let A(t) : V. — W be a smooth family of invertible linear

maps. Then

d . d 1
SAW) = AT AM) 0 A()

dt
Proof Write B(t) := A(t)~! so differentiate A(t)oB(t) = I get A'(t)o B(t)+
A(t) o B'(t) = 0. Now solve for B'(t):

B'(t)=—At) o A(t)o A(t)™!

Continue with the computation of LxY, we get:

2() = jt()(dast(p))l (Y (Gulp)) + | (@)™ (¥ (61(p)
— —don)™ | desldon(s) (V) + ] Vi)

o) (V) + | Y (60)

We used the fact that d‘ f(t,0) = dt‘ f(t,t) — %‘Of(o,t).
Now we use the coordlnates of R" exphc1tly Write

Z=(Z")eR"

dor(p) = (a?—x(jp)) :R™ — R”

SThey were already used subtly in the first line above, by subtracting Y (p) from

Y (¢+(p))
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_ 9¢i(p)

X = (X%, X' Y = (V).
(X, Xy = | Y =)
Compute
i 0| 94ip),,, ., OV O]
__ 0 00| vy Y
0X' . oyt ,
— J ] — 7
57 L () + 55X (p) = [X, Y]

So we get the important formula:

(LxY) = —20y7 4 O = [X, Y]

ie. LyY =[X,Y], as desired.

Corollary 6.19
LxY =—LyX.

Interpretation of [ X, Y] via the flows of X and YV

Construction: Fix p. Set

f(S,t) =1 _s0p 4010 ¢t<p)

Where ¢; is the flow of X and 1, the flow of Y.
Question: How does f(s,t) differ from p?

Theorem 6.20 In any coordinate system
f(s,t) = p+ st[X,Y](p) + O ((Is| + [t])*)
(for s,t small).

This says: the flows commute up to 1st oder, and the (2nd order) discrepancy
is measured by [ X, Y].

Proof Exercise.
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Theorem 6.21
(X, Y] =0 ¢s0¢, = ¢ 0

Proof < by above (differentiation)

= exercise (integration)

Definition If [X,Y] =0, we say X,Y commute.

Example
* [5055) =0
o 0 01 _ 10 0 0O 071 _ Ox O 0o 0 _ 0
® [50%5: + 30 =55 T3] T 55 55 = 5295 — 3255 = 55

Corollary 6.22 Fiz p. If X(p),Y (p) are linearly independent and [X,Y] =
0 near p, then there are coordinates near p with

0 0

X:— = —_—
oxl’ 0x?

Proof of Corollary Take s,t as coordinates, defining

U(s,t) := ¥s(¢e(p)) (= @e(¥s(p)))
U:R*DU>(0,0) - M smooth

We compute

0 0
d\P(&t) (&) = alp(S,t)

= Y (¥(s,1))

Similarly here we use, that the flows commute

v, (%) = X (U(s,1)).
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Note

d@(op)l % — Y(p) . .
% — X(p) linearly independant

so dW¥ (o) is an isomorphism, so V¥ is a diffeomorphism near (0,0), so s, are
valid smooth coordinates on a neighborhood of p, and the coordinate vector
field (%)q (for ¢ = W(s,t) near p) is given by d¥ (4 (£ ), which is Y(q) as

we have just seen. Similarly, (%)q = X(q).

Interpretations of Jacobi Identity
Recall the Jacobi identity

X Y. 2]+ [Y, [Z, X]| + [Z, [ X, Y]] = 0.
i. Rewrite the Jacobi identity as
Lx|Y,Z) =Y, LxZ] + [LxY, Z]

A Leibniz rule relating Lx to the [-,:] product. One says: Lx is a
derivation for [-,-].

ii. Rewrite the Jacobi identity as
Lixy1Z = LxLyZ — LyLxZ

le.
L[X,Y] =LxoLy—LyolLyx (II HLX,Ly]])

The later bracket operator, [[-, ]| is the anticommutator defined on any
algebra of endomorphisms. So

L: C®(TM) — End(C®(TM))
X = LX

so L is a bracket homomorphism from (C*(T'M), [-,+]) to (End(C>(TM)),[[,-]])
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7 Riemannian Metrics

Do Carmo Chap 1

Definition Let M be a smooth manifold. A (smooth) Riemannian metric
on M is a choice of inner product

(«,)p : T,M xT,M — R
on each tangent space, that is smooth in the sense defined below.
e bilinear, symmetric
e positive definite, i.e.

(X,X), >0, VX #0.

Notation: Also write g, or g(p) for (-,-),. Write g for the map p — g,. We
call (M, g) a Riemannian manifold.

Coordinate Expression

Let UCM, X =X'-2 YV =YL onU.
Write

2]
Oxt)

9(r) (X(p),Y (1)) = g(p) (X“P) (38) 1) (ai)>

Where

9ii(p) = 9(p) <(aaxi)p’ (a%‘),,)

We say g is O iff g;; is C*, 4,5 =1,...,n.

Change of variables

Let ¢ := 1y 017" be an overlap map. Say
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or from another view point ( 821.)10 = (x) (i) in T,M. Then
p

gty na) = {(Gr), (3),0
= (55 (o) 55 (a5) Do
= Gt aEE gy
where y' = ¢'(z!, ..., 2").
Briefly written: g;; = gﬁf %gkg (Change of variables)

Consequence: If g is smooth in one coordinate system, then ¢ is smooth in
all other coordinate systems.
Some things we get from a metric:

[ Xp = /(X Xy

lengths and angles in T, M

lengths of paths

distance

e volume

covariant differentiation

e ctc...

Prefered identification of (7,,M)* with T, M.

Example (Poincaré ball model of hyberbolic space)

' 46,5
g9ij(x) = m7

euc

xr € BY

where 9;; is the Euclidean metric

X6,y =Y X'V
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Let v be the path
v(t) := (0,t) € B

Compute
y(t) = (0,1)
415 = (3(1), 3(1) gt
_ 4055 (1)
(1= [y()[2.0)?
AR
(1= v (®)[2.)?
41
S -y
A0l = g
o= [ pla= [ - o

Then hyperbolicspace is
H" := (B?ugu)

Homogeneous’, isotropic®, constant curvature X = —1. It is the only space

with these properties (up to isometry).
Exercise Find an isometry of H? that takes (0,0) to (a,0).

Theorem 7.1 FEvery smooth manifold that is a union of countably many
coordinate charts can be given a Riemannian metric.

Remark For manifolds, “union of countably many coordinate charts” <
2nd countable.

Let Sym®(V*) be the symmetric bilinear forms 7' on V. Sym?(V*) :=
{T € Sym*(V*)| (X,X)>0VX € T,M}.

Proposition 7.2 Sym? (V*) is a convex cone in the vector space Sym?*(V*).

7all points look the same
8all directions look the same
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7.1 Pullbacks of Metrics

Suppose f : M™ — (NP, g) is smooth. Define the pullback of g by f, on M
via

[ (g9)p :T,MxT,M — R,peM,
[(@))(X,Y) = g(f(p)) (dfp(X),df,(Y)), XY € T,M.

Remark concerning f*(g)

o f(9)ij(x) = () 2 () gre( f(2)) (verity!)

e pullback is always defined (no bijectivity requirements, in contrast to
the case of vectors)

e f*(g) is bilinear, symmetric, nonnegative

e f*(g) is positive definite < df, is injective (so: f immersion = f*(g)
is a Riemannian metric)

e If f is a diffeomorphism then f*(g) is a perfect copy of g.
Definition An isometry is a diffeomorphism
f:(M,g) — (N, h)
such that f*(h) = g.
Definition
Isom ((M,g)) :=={f: M — M|f*(g) = g and f a diffeomorphism}

Example Isom((S",round)) = O(n)
Example (Poincaré upper half-plane model of hyperbolic space) Set H :=
{z =041y € C|Sz > 0}, Gij(2) := Z% We obtain a second defintion of
hyperbolic space

H? := (H7 gl])

Exercise i. Find an isometry from the upper half-plane model to the
Poincaré disk model:

(H,9) — (Bi.9)
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ii. Show that the orientation preserving isometries of (H, §) are

az+b
cz+d

Z —

ad —bc >0, a,b,c,d € R
iii. Show
Isom ((H,g9)) =2 GL(2,R)/R-1 = SL(2,R)/{£+1} =: PSL(2,R)
(real) projective special linear group

iv. Show H? is homogeneous and isotropic, i.e.
homogenous: Vp,q € H? 3 isometry p — q.
isotropic at p:  VX,Y € T,H? 3 isometry fixing p and taking X — Y

Definition An isometric immersion of (M, g) into (N, h) is an immersion
f: M — N such that f*(h) = g. We call f*(h) the metric induced by the

1MMErsion.
Example Let M C (N, h), with
1M — N
T — x

be the inclusion map. Then i*(h) is the same as the induced metric we
defined weeks ago, namely

(X, V) =(X,V)) Vpe MVX)Y € T,M

Theorem 7.3 (Nash Embedding Theorem (hard)) (M",g) Riemannian
manifold compact (union of countable many charts). Then 3 isometric em-
bedding

(M, 9) % (R?,6)
for some large p. (Here § is the the standard metric on RP.)

7.2 Metrics on Lie groups

Theorem 7.4 FEvery Lie group possesses a left-invariant metric, i.e a metric
g such that
Ly(9)=gVaeG

where (recall)

L,:G — G

b — ab.
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Proof Let g(e) be any inner product on 7.G. Where e € G is the identity
element.
Note:

L,:G — G
e — a

(dLy). : T.G — T,G
Copy g(e) from T.G to T,G via (dL,).: for X, Y € T, G, set
9(a)(X,Y) == g(e) ((dL,); ' (X), (dLa) ;' (V))

It is trivial to verify that g is invariant under left translation by any L, :
G — G, b € G. One checks that L, : G — G is an isometry i.e. (dLp), :
(TuG, g(a)) — (TpG, g(ba)) is an isometry Va € G.

Exercise Prove a left-invariant metric on a Lie group is smooth.
Theorem 7.5 Every Lie group has at least one left-invariant metric.
Exercise Show that the metric induced on SO(n) by the standard inclusion
2

SO(n) € M™"(R) = R"

is both left and right invariant (=: bi-invariant). Note that M"™*"(R) gets
the metric induced by the inner product

(A,B):=>_ AlB]

1,J
Theorem 7.6 Every compact Lie group has a bi-invariant metric’.
Example We already saw that
Lo, R,:8%— S3

are isometries.

9Do Carmo p-46 prob 7, Lee p.46 prob 3-10,11,12
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7.3 Volume and Intergrals

Given a metric g and some map u : M — R, let us define integration on M

/udu / x) dpg(z
3 ways to define it

e volume n-form: a section of C* (A" T*M), namely +/det g;jdz' A--- A
dz™

- has a sign
- M must be orientable

- requires exterior algebra'® (k-forms)
e Hausdorff measure H"

- valid in any metric space H"
- valid for any « € [0, 00)

- requires measure theory

e define in charts
/f det g;;(x)dz" ... dx"
easiest

Basic Formula in a Chart

Let (U, g;j) € R™. Define

/fd,ug. /f detgi;(x)dz" . .. da" (+1)

Definition

e C%(M) := {continuous functions M — R with compact support}

e support of u: supp:= {z|u(z) # 0}

10Djfferential Topology

75



Desired properties of integration

Ij:u— / udfg
M
i. I, : C%(M) — R linear (over R)
ii. 1, positive, i.e. u> 0= I,(u) > 0.
iii. I, agrees with the usual integral on flat R™.

iv. (Change of Variables / Area formula)
It ¢ : (M,g) > (N,h) is C' and bijective then

[ i) = [ a@@)Io@)yadig (@)

M

for any u € CY. Here |J¢(z)| is the volume expansion factor (Jacobian
determinant) from (T, M, g(z)) to (T, g(x))

Theorem 7.7 There exsits a unique system of maps

ur—>/ udy,g
M

with properties (i)-(iv). They are given locally by formula (T1).

Remark (for measure theory experts)

Riesz Rep. Thm
I, — Radon measure 4.

I, is a linear functional satisfying (i), (i) and | [ udp,| < C(K)supplu] for
spt u C K C M, with K compact.
ltg is called the Riemannian volume measure of g.
Definition of the Jacobian determinant Suppose we are given
L:(V,g) — (W, h) linear
(V,g) and (W, h) being inner product spaces. Define
|JL| = |JL|,p = /det(LTL)

Where the transpose LT : W — V is characterized by g(v, LTw) = h(Lv, w)
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Motivation

Suppose L : V' — V is linear. Then det L € R is defined (independent of
coordinates and metrics!) Where as if L : V' — W then det L is not defined.

We note that LTL : V — V is symmetric with respect to the inner product
g, ie. g(vr, LT Lva) = g(L" Ly, v2).

Lemma 7.8 (Singular value Decomposition) Forany L : (V,g) — (W, h)
there exists an orthonormal basis vy,...,v, of V and orthonormal basis
Wi, ..., w, of W with M\1,..., A\, > 0 such that Lv; = \w;.

Proof Diagonalize LT L:
LT L, := wivi,t=1,...,n

where v1, ..., v, is an orthonormal basis of V.
Observe:
h(Lv;, Lv;) = g(LTLvi,vj) = g(pivi,v;) =0

So Lvy, ..., Lv, is an orthogonal set in W.
Define
I Lv; #0
w; = | Lv;|
any completion to orthonormal basis Lv; =0
Then wy, ..., w, orthonormal basis with respect to h, and
Lv; = Nw;,

as required.

Further: LTw; = \v;, so p; = A\?. Thus

‘JL|g7h = \/det(LTL) =M1 Uy = )\1 tee >\n

is seen to be the volume expansion factor of L from ¢ to h.

Hprincipal stretches
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Definition Suppose ¢ : (M, g) — (N, h) is C'. Define

| JP(2) g = |TdD(2)|g(2) () -

In coordinates: on V, W respectively, we have

9= (gij>7 h = (hw), L= (Lf)7

and
L=(LF)
veV W sw
. LT
gl(g”)T J{h=(hij)
veV L<’?(1:f)vv > w

g~!:V* — V is characterized by

9lg~ (), ) =v eV

We find that ¢! = (¢%), i.e. the matrix of the inverse of g is the inverse of
the matrix of g. The dual map to L is defined by L*(w) :=wo L € L*. We
have

v — Lo, (Lv)F = LA

And also

w — L'w

(L'w); = LFuwy.
To see the symmetry of this, observe
v LA, = w(lv) = (L*(w)) (v).
Next, we can verify

LT = giloL*Ohj,
(LM = gL
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Formulae

[Jo(@)l = V/det(de(z)" o dé(x))
= faet(o5 @) 2 phtoe) 22 )

X’

¢w)
o [Jlss = |det(22)] "L 1),

[} ’Jid|6,g = \/det gija if ¢($) =
o [J(@ot)|gr =

where (M, g) (N,h) — (P, k)

Local Formula

/Uud,u ::/Uu(x) det g;j(z) dat - - - da” (1)

Jidls,g

Verify the Area Formula (in a chart)

Given ¢ : (U,g) — (V,h),C! and bijective with coordinates z',... 2",

y',...,y" respectively. Show [, udun = [;uwo ¢|J¢|gn dpy.
Compute:

LHS = /u\/dethkgdyl---dy
= /uoqﬁ«/dethuo det( )‘d Lo dg”

(by the usual change of variables formula), where as

4
Ahkg e} QS%) \/detgij de’l <o dx

k
RHS = / uo gb\/det (gij ¢
U al']

Note By taking ¢ to be an isometry, this also verifies that our definition (I)
is independent of the coordinates that we chose on the open set U C M, as
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follows:

Uc (MFE)

% K
R™ D (Vi,9) 3 (21, ..., 2,) ¢ W1s- .. yn) € (Va, ) CR™

isometry

Next step:

extend our defintion of the integral from each chart U to all of M. Say
M = UJ,U,, then we must move from

/ ud,ugv/ udfg
Ua M

We obtain (as mentioned above)

Theorem 7.9 There exists an integral [, udpu, that satisfies (i)-(iv)

8 Connections

First we'll look at connections on vector bundles in general, then we’ll spe-
cialize to the Riemannian or Levi-Civita connection on T'M (induced by a
Riemannian metric g)

8.1 Vector Bundles

(Lee Chap 2)
Let M be a smooth manifold. Attach a vector space E, (disjoint!) to each
point in M. Main example: TM = U,T,M.

Definition A wvector bundle of rank k over M (base space) is a smooth
manifold F (total space) together with a smooth map 7 : E — M such that

i. Bach fiber E, := 7~ !(p) is endowed with the structure of a k-dimensional
vector space.

ii. For every p € M,3U > p open and a diffeomorphism
U:a Y (U)—-UxR*

such that
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iia. The following diagram commutes

ED 7 (U)Y—U x R*
lw lﬂl
MDOU=———=U

This says:
VU|E,: E, — {p} x R

iib. W|E, : E, — {p} x R" is a linear isomorphism.

We call the map U a local trivialization (of E over U ). If U has coordinates

(z',---2™), then ¥ yields coordinates (z',...,2", V' ..., V*) on 7=1(U)
—_—— —
coords on R¥

Examples

TM

T*M = Upep(T,M)* cotangent bundle of M
M x R¥ 5 M trivial bundle (of rank k)

Simplest nontrivial vector bundle
M = S', Fiber= R (rank 1) Where

St =10,27]/(0 ~ 27)
E :=10,27] x R/ ~> (6,1),

where (0,t) ~ (2, —t)

m([0.t]) = [f]
. E — St

E is the Mobius band, viewed as a line bundle over S* We call it the twisted
R-Bundle over S*.

Example
UpenBilin(T,M x T,M — R)

is a vector bundle over M of rank k = n?. A metric is a smooth and positive
section'? of this bundle

12will be defined later
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R? bundles over S?
R2——F

5«2

Give S? the “charts”
H, := closed northern hemisphere

H_ := closed southern hemisphere
H, N H_ = {equator} = S*
To get S?: glue H, to H_ along OH,,0H_ by the map

¢:0H, — O0H_

67,0 N 67,0

To get E: observe

O(Hy xR?*) = (0H,)xR? = S!'xR?
O(H_ xR?*) = (0H_)xR? =~ S!'xR2

Glue H, x R? to H_ x R? along their boundaries via
®:0H, xR* —» 0H_ x R?

o(~()) - (wae(;)

Where we choose any family of linear maps
Aot R? — R?
Ao € GL(Q,R)
A:0H,; — GL(2,R)

defined by

Our special choice: Fix k € 7Z, define
A:0H, — SO(2) C GL(2,R)

by

N coskf  sin k6
Ale”) = ( —sinkf coskf |-

o [ T | e coskf  sinkf x
CD<€ ’(y)) o <e ’(—sink:@ cos k6 Y

The result is called the k-twisted R?* bundle over 52‘

We obtain
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Question

What is k for the tangent bundle 7'S? of the 2-Sphere?

8.1.1 Complex vector bundles

Same definition, exept each £, is a complex vector space of complex dimen-
sion d. Then dimg = n + 2d"'3.

Question

Can you think of a real vector bundle of even rank that cannot be made into
a complex vector bundle?

Definition Let M ER N with vector bundles £ and F' over M and N re-
spectivly. A (linear) bundle map over f is a smooth map

L:FE—F

such that

L
E—

E F
M—L-N
commutes, i.e.L(E,) C Fy, and

L, = L|E, : E, — Fyy
is linear map.

Definition A bundle isomorphism is a (linear) bundle map that is a diffeo-
morphism**

Example In an exerciese, we found a bundle isomorphism
T3 —= 53 x R3 17
Sl?’ I 5£
i,j,k € C=(TS?) and i(p), j(p), k(p) form a basis for T,5% Vp
(P, (z,y,2)) = (p,2i(p) + yi(p) + 2k(p))

as a real manifold

Mcheck: this is equivalent to: f is a diffeomorphism and L|E, is a linear isomorphism
Vp.

1"Trivial bundle, p € S3, (z,y, z) € R3

13

83



Definition A subbundle of E is a submanifold /* C E such that F, :=
FNE,(= (n|F)~(p)) is a vector subspace of E (of constant dimension). F
is then (check!) a vector bundle over M in it’s own right.

F CkE
| F \LT(
M=—=M

Example

i. M™ C R?submanifold TM' = U{p} xT,M C M xR?" is a subbundle
with n < gq.
ii.
NM = Uperr{p} x N,M C M x R
subundle (called normal bundle of M in RY, N,M = (T,M)*).

Definition A section of E is a function V' : M — FE such that V(p) €
E,,p € M. We call V' smooth if it is smooth as a map between smooth

manifolds.

Definition The 0-section is the section O(p) :=0 € T,M,p € M.
I'(E): all sections

C>(E): all smooth sections Both of the above are vector spaces over R

V,W € C®(E) = aV + bW € C®(E)

Definition A local frame for E is a list e1(p), ..., eq(p),p € U of sections in
C>(E|U) that form a basis for E, at each p € U.
A local fram alway yields a local trivialization (and viceversa)

Given a frame over U, we may express any section V locally as a linear
combination:

V(p) =V*(pealp),p €U

Where V' are the component functions
Evidently: V is smooth iff each component function V is smooth. Thus
v,w e C®(E) = aV + bW € C*(E).

1

8rank n
Ytrivial bundle over M with fiber R? (rank q).
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Example
Bilin(T'M, TM;R) := UpeyBilin(T,M x T,M — R)

can be given the structure of a smooth vector bundle over M, and a Rieman-
nian metric is a (smooth, symmetric, positive) section of this bundle.

Example Every smooth section of the twisted R-bundle over S! has a zero

8.2 Connections on Vector Bundles
Aim: Given X € T,M,V € C®(E), form

D)ZV < Ep

directional derivative of V in the direction X at p.

[Try:]

OV j_0
L] Xzaxi,X:X]@,V:Vaea.

Does not transform correctly (depends on choice of frame).

. %’tzow where 7y is a path in M, v(0) = p,~(0) = X.

Cannot compare vectors in E,(t) to E, in an intrinsic way.

Upshot To differntiate V in directions X, we must declare, or impose a
structure E called a connection

Definition
E — M vector bundle

An (affine) connection or covariant derivative operator, on E is a map

D:C®(TM) x C®(E) — C®(E)
X Vv = DXV

that satisfies
e Dx(aV +bW) =aDxV +bDxW,a,b € R (linear in V' over R)
o Dix.ioyV = fDxV +gDyV, f,g € C®°(M) (linear in X over C*°(M))
o Dx(fV)=fDxV +(X-f)V,f e C®M) (Leibniz rule)
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Expression in coordinates
X = X"%,V = V%, over U
DxV = Dyio (V%)

o oxt
XD o (Voey)
ozt

— X (( 0. yee, —H/O‘Diea)

T
oz ozt

Definition The connection coefficients are defined by

<Diea> =AY (pes(p)®, peUi=1,...,n, a=1,....d
p

ozt
AL, = AL(p), AL € C*(U)
Get:

«

DV = X° %V‘ eo + XVEAL 5
IZ

or, writing DxV = (Dx V)" e4:

(DxV)" = X2 + X'VIAY

i.e. derivative plus correction term.

This shows:

e DxV(p) dependas linearly on the value of V' and it’s first derivatives
at p.

e DxV(p) depends linearly only on X(p) and not on any derivatives of
X. We say DxV is tensorial in X or point wise in X.

As a result, we may define
DV, X € T,M,V € C*(E)
via
DV :=DxV(p)

where X € C*°(TM) is any vectorfield such that X (p) = X.
This yields a linear map

DV(p):T,M — E,
X - DV
(DV(p) (X) = DgV

20nd? functions on U



DV (p) € Hom(T,M, E,)

We can form a vector bundle

Hom(TM,E) := UpenyHom(T,M, E,)
DV = (DV(p))peM € C*(Hom(TM, E))
More comments on the formula:
oA VA .

DxV)* = X'— + X'VIAY

( X ) axz + lB
X ’%VT? defines the connection
DYV = X i%vT?ea defines a connection (check!) called the coordinate con-
nection induced by the frame ey, ..., ey4, d = rankFE.

So DY has the property: D%e, = 0 VX € C(TM).

Definition We call a section V' € C*(FE) parallel (for D) if DxV =0VX €
C>(TM).
Example R", F =TR" e; = %

0 J_ iaYJ
(DXY) =X oxt

(usual directional derivative)
Y parallel iff components are constant

Remark It is rare for a connection to have even one parallel section.

Exercise For any choice of nd? smooth functions A? p € U, the above
formula yields a connection.

The correction term yields a bilinear map
X,V XiffﬁAf‘ﬁ(p)ea(p) €E,
X eT,M,V € E,
to which we give the name
A(p) : T,M X E, — E,
So A(p) € Bilin(T,M, E,; E,). We form a smooth vector bundle

Bilin(TM, E; E) := UyeyBilin(T,M, E,; E,)
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and we recognize that
A = (A(p))yerr € C™(Bilin(TM, E; E))

A: M — Bilin(TM, E; E),p — A(p)

Define
A(X,V) e C®(F)

A(X,V)(p) == A(p) (X(p), V(p))
A C®(TM) x C®(E) — C(E)

So we can write:

DxV = Dg(V + A(X,V)
D=D"+A
Theorem 8.1

i. The difference between any two connections on E yields a section of

Bilin(TM, E; E).

ii. Any connection plus any smooth section of Bilin(T M, E; E) yields an-
other connection.

Example
E=5S"<xR>(0,t)
M =St

e1(0) = (0,1)

Ve C®(E), V(0)= Vlel(Q), Ay = a(0)

0 ov?t 1

X = %, D%V = Wel + (l(@)V ((9)61

Let a(f) = —15
1
DoV 8l€1 — ivlel
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Equation for parallel section:

This connection has no (global) parallel section.

1
Do €1 = ——=€6

g 10

i.e. e(f) is decreasing in length (compared to a parallel section) at rate

1
1061

8.3 Inner Products on E and compatible connections
(E,(-,-)) Euclidean bundle

Suppose we have (-,-), : E, x E, — R,p € M a smooth family of inner
products on the fibers of E.

Definition D is compatible with (-, -) if
X - (VW) =(DxV,W) +(V,DxW) VX € C*(TM),V,W € C*(FE)
(Leibniz rule) X - |V|? = (DxV,V)+(V,DxV)
Exercise

i. Prove if D is compatible with (-,-), and V is parallel for D, then |V|?
is constant on M if M is connected.

ii. Show the connection

is not compatible with any inner product.
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8.4 Riemannian Connections

Also called Levi-Civita Connection of a metric g. M,g~> D = D9 on T M.
Definition A connection D on T'M is called torsion-free or symmetric if

DxY —DyX =[X, Y| VX, Y € C(TM). (®)
Example

e True for the usual directional derivative in R™

OV LOX
J = ¢ — ¢
XYY =X'on Yo

e all coordinate connections on T'M are torsion free.

Interpretation of ®

The antisymmetric part of DxY is given by something that comes from the
smooth structure alone. [X,Y].
In particular:

0 0
Po o = Pos

(since [, 2] = 0)

Theorem 8.2 For every (M, g) there exists a unique connection on T'M that
18

e symmetric

e compatible with g

In coordinates:

oY1 9 L 0
DyY = X'— — 4+ X¥yirk _—_
X ox' Oz’ + Y Oxk
where 9 5
=Tk k
Daiz‘ e I e (defines I'j;(p).)

Then D is symmetric iff I'}; = T,
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Proof Symmetry in coordinates:

Ok o OX7 .
(XZ—, +X’Y1Ff’j) — (Y’ o +Y’X3Ffj)

oxt 7
OYF 0XFk

=X'— —-Y'—

ox? oxt

X'YTE =Y'XT}, VXY
k _ 1k
O

Theorem 8.3 (Levi-Civita) Given (M,g), there exists a unique connec-
tion D on T'M satisfying

. D is compatible with g
1. D is torsion-free

D is called the Levi-Civita or Riemannian connection of g.

Proof of uniqueness

X (Y, Z) = (DxY, Z) + Y, Dx 2)
Y (Z,X) = (DyZ,X) + (Z, Dy X)
Z-(X:Y) = (DzX,Y) + (X, DzY)

XY, 2)+Y (Z,X)— Z - (X,Y)
=([Y, Z], X) + {[X, Z],Y) — ([X,Y], Z) + 2(D,Y, Z) = uniqueness

1
(DxY,2) =5 (X - (Y, 2) +Y - (X, Z) = Z - (X,Y) (1)
_<Y7 [Xa Z]> - <X> [K Z]> + Z7 [Xa Y]))
e uniquely characterizes DxY in terms of g and smooth structure of M.

e not quite a formula for DxY (derivatives of Z appear on right hand
side).
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Find a formula for DyY

Insert X =25V =2 7 =2 [.2 2] =0. Recall g;; = (

i 0 1<8g]k IYik agij)

ozt oxi  Oxk

ij Oz
Recall 5y
(DxY)F = X’a— + XYY
where I'¥ ai =D % defines I"
oz
0 0
LHS = (I''——r7V\ —
< Y dxm’ 8x’f )

0 Ogir.  0gij
— TP = (gngr gik g])

oxt oxi  Oxk

multiply by g~'=(g*")
Get:

¢ _ 1 ¢k {99k 0gir, 095
Fij =329 (8:61 + OxJ Oxk

classic formula for Christoffel symbols Ff]

Where oy
Y
(DxY) = X' ot X YT,

Formulas (11) and (#) define a differntial operator D.
It remains to verify (existence part of theorem)

e D is a connection (previous exercise)
e D is symmetric (because I'}; = I'%)
e D is compatible with g.

Must verify:
XY, Z)=(DxY,Z)+ (Y, DxZ)

In coordinates:

-0 A 2 oYt
X'os (Y7 ZFgu) = (X Fr YTy, ) g Z*

oxt

07 .
+ (XZ— + Xzzkrfk) 9o Y?
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NE)E 0ZF 9as g -

This last statement is true, as seen by substitution.

8.5 Parallel Transport

parallel transport of a vector around a 90-90-90 triangle in S? creates a 90
rotation.
E — M bundle, 7 : [a,b] — M smooth curve. (F = TM: main example).

Definition A (smooth) section of E along -y is a smooth function V' : [a, b] —
B, V(t) S Ew(t) vVt € [a,b]

Allowed:
o self-intersections
e =0
Wish to make sense of “D;V”

- ove
N—_——

ave

+Y VPN, Ve C®(E)
dt

eq(7) local frame for £

Notation

B (5w 0an6() ) aloto)

“D;V” covariant derivative of V' along

Clearly

e Z¥ is a smooth section of E along v

D(fV
« SR =RV AL f= 1)
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o LV, W) = (BL,W) + (V,BY) if D is compatible with some inner

product (-, ) on E.

e If V is obtained from an ambient section \N/~ € C*(EU) (U 2 Imy)
(open) via V(t) = V(y(t)) then B(t) = D;V
Definition A section V along ~ is called parallel along ~y if % =0Vt € [a,b].

Proposition 8.4 Fiz v : [a,b] — M,V € E,. Then there exists a unique
parallel section V (t) along v such that V(a) = V.

Proof In a fixed chart U we may solve the d X d system of ODES that says
DY =0,V(a) =V, namely

) dv;t(t) + y’(t)Vﬁ(tA)I‘?ﬁ =0, a=1,....d
Va(a)zv7 Oé:l,...,d

for smooth functions V1(t),..., V%(t) t € [a, ], as long as ¥([a, c]) C U. Now
select a = tg < t; < --- < ty = b such that each ~y([t;, t;11]) lies in a single
chart U;. Existence follow by induction. Uniqueness, smoothness also follow
from ODE theory.

O

Definition Parallel transport is defined along 7 from v(a) to v(b) as the
map

Py Eyay — Eyp)
V=V — V(b
P, is linear since the ODE system we solved to find Py(f/) is linear.

Proposition 8.5 If D is compatible with (-,-) then P, is an isometry from
Ey) t0 Ey)-

Proof Let V(t), W(t) be parallel along . Then

d DV DW
%U/a W) = <an> +({V a

So (V(t),W(t)) is constant.

) =040
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Example Let v be a great circle (transversed at unit speed) on S2. D5 is
the Levi-Civita connection of the induced metric an S2.

Claim 7 is parallel along 7 i.e. Df-jgﬁ =0

Lemma 8.6 (Proof will be an exercise) Given (M, g), and N C M subman-
ifold.

restriction h
—_—

9

to N
1
l l 3 hour

g TS _

projection
hpy(X,Y) = g,(X,Y), pe N, X, Y € T,N
™ N(p) : T,M — T,N
orthogonal projection.
Ezercise X-1 .
DyY = x"(D%Y)
XY

g C®(TM) extend X,Y € C®°(TN). D' is a connection on TN.
(X|N

X, YIN=Y)

I m

Dé\{ff = DYY +normal part
——

tangental part
Proof of Claim Setup:

e1 Ley €R3 ey = les] =1

v(t) = coste; + sinteq
f)/

d
v = T = —sinte; + costey
d2
D§37 = d_tz = —coste; —sintey = —v

Calculate:

D’y = «"(DF)
L C)
= 0
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Observe: a continuous vector field V(¢) is parallel along v iff [V (¢)[? is con-
stant, (V' (t),7(t)) is constant.

Example S? C R? If 3 traverses a 90-90-90 trianlge in S?, then
Pg : T,M — T,M
is rotation by 90.

Definition If 7 is a closed curve in M, vy(a) = vy(b) = p, D cannon E — M,
the linear map P, : £, — £, is called the holonomy map.

9 Geodesics, Exponential Map

A geodesic is a curve with zero acceleration this is equivalent to a locally
length-minimizing curve. Define the acceleration (with respect to D) as

. D

. ://D' i
,y dt ’Y’Y

(a vector field along 7))

Definition v is a geodesic if 4(t) = 0, ¢t € [a,b]. “Motion of a free particle
in a Riemannian manifold”.

Example A great circle of unit speed in S™ is a geodesic

Remarks
o L4 =2(%,4) = 00 || is constant (constant speed)

e Let v(t) be a geodesic = B(t) := y(ct) is a geodesic. 3 = ¥, 3 = 24

ODE for geodesics

Coordinates z',...,2" on U C M. Write

V() = (@) "0)

50 = T

s = (2) o

Yk
= %+7j7ijk(7(t))
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so 7 is a geodesic iff

>yt dry dvk -
D pi
gz T ar Lr0®)

n x n system of nonlinear ODEs.(linear in 2nd order derivatives quadratic in
1st oder, fully nonlinear in -~ itself.)
Consider the initial conditions
7(0) =p
: 2
{ 7(0) =X @

=0,i=1,...,n (1)

peM X eT,M

Theorem 9.1 (Short-term existence for geodesics) Forall p € M and
all X € T,M there is a unique solution v =, x : [0,€) — M of (1) and (2)
for some € > 0.

Proof later

Definition The exponential map by
exp, : {subset of T,M} — M

by
exp,(X) = p,x (1)
whenever this exists.

Lemma 9.2 (Homogeneity)

i Ypax () = p.x (st)

i. t+— exp,(tX) is a geodesic.
Proof

i. t — 7, x(st) is a geodesic by the above remark, with %|07pvx(st) =
s 4| px(t) = sX so t — 4, x(st) and t — 7, .x(t) have the same
initial point, and the same initial velocity so by uniqueness of geodesics
they are the same

11.
expp(tX) = Ypux(1)
”Yp,X(t)

I[=

which is a geodesic.
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9.1 Geodesic Flow

Rewrite (1),(2) (equations and initial conditions for geodesics) as a 2n x 2n
st order ODE system for (y'(t),...,7"(t),Y'(t),...,Y"™(t)) € TM where
M has the coordinates (x!,... 2" X' ... X") and Y(t) shall end up being

D (t).
Get: _
D= Yi), | i=1,....n )
D = —yP)YIOIE (v(E), i=1,....n
7(0) =p, Y(0) =X (27)
Rewrite as .
,y ~ 7
i G(7) (1)
3(0) = (p, X) (27)
where

i@zh@ﬂﬁbﬂ®=ww<£JU€TmM

is the lifting of the path v(¢) via the vector Y (¢) to a curve in T'M where
now

Gla',....a" 2" ... 2" = (Z",..., 2", =22 ,,, ..., — 2P 2T} (x))

pg’

is a smooth vector field on TM. A solution curve F(t) of (17),(2”) yields a
pair y(t), Y (¢) solving (1’),(2") and hence a geodesic () (we call it v, x(t))
solving (1),(2). This proves Short Term Existence Theorem for geodesics (as
it was stated).

Local flow of G
By ODE theory:

Proposition 9.3 Fix p € M. Then there exists a open set U C M with
peU,e>0,0>0and W CTM open of the form

W =A{(z,2)|lzr € U,|Z| < e}
and a smooth map

6 W x [=6,6] — TM
(x,Z) e Wt €0,
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that is the flow for (17),(27), i.e.

Oz, 2,0) = (z,2)

09
5@ 2.1 = G(o(x, Z,1))

¢(p7 X7 t) = (,Yp,X(t)v YZD,X (t))
Smoothness of exp and existence in a neighborhood of 0 in 7,M
")/Lz(t) = 7T(¢(3:7 Z7 t))?” :TM — M
We have

exp,(Z) = Yuz(1)
= %E,Z/é(é)

_ n(6(e, 2/5,5)) \Z

g<5

Thus exp,(Z) is defined for z € U, |Z| < €6 and is smooth in both variables.
Set BPM(0) := {X € T,M,|X| < r}

Lemma 9.4 exp, : BTTPM(O) — M is defined and smooth for sufficiently
small r > 0.
Theorem 9.5 For each p € M Je > 0 such that exp,, : BgT”M(()) — M is a
diffeomorphism onto its (open) image. In fact,
(d epr)O . ToTpM — TpM
——

T,M
15 the identity.

Proof of Theorem By Inverse Function Theorem, it suffices to prove the
latter statement. The path

t— tX in T,M

goes to the path
t e y(t) :=exp,(tX) in M

which is a geodesic in M with v(0) = p,5(0) = X.
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Differentiate:

X = 4(0)
© exp, (tX)
= —ex
dt “Pr
dt
= (d —| (tX
esny) (5| @)
= (d epr)O(X)
O
Exponential Coordinates
e geodesic normal coordinates
e geodesic polar coordinates
Geodesic Normal Coordinates
Let 2!, ..., 2" be orthonormal coordinates on the inner product space (T,,M, g(p)).

Transfer these coordinates to M via exp,, L to obtain geodesic normal coordi-
nates near p:

n
T exp,,

i
n
R Isometry p partial M
T c T c T c
B U

o7

= T M &
e==——DB:" (Vep—
zl,...xn ?

9(X,Y) = gi(2) XY/
5(X,Y) =0, XY = XY
Compare
9= (9ij(x)),x €U
(expressed in exponential normal coordinates) to 6 = (d;;) (the back ground

flat metric coming from z!,... z".)

Theorem 9.6 In geodesic normal coordinates at p,
9gi;
9i5(0) = 8ij, 5(0) = 0, I't(0) = 0.
So gij(x) = b;; + O(|z|?) 2! for x € U near p. “Metric looks Euclidean up to
1st order”.

x| = |z|s = Vaizt, O is some g;;(z) such that |;;(x)| < c|z|?
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Consequence

A Riemannian metric has no first order invariants to distinguish it from flat
space (Euclidean space).

Proof

i. ¢ii(p) = <(a?ci)p’ (%)p) = 0, since we chose orthonormal coordinates

' .. 2™ on T,M.

ii. Fix X = X? (%)p € T,M. Consider the geodesic

(1) = exp, (tX)
with 4(0) = X. In geodesic normal coordinates, v(t) is given by

V() = (XX
A1) = (X', xm) (:Xi(azi)w(t)eTv(t)M>

i.e. 4(t) agrees along v with the constant coefficent vector field

3 ar

Since v is a geodesic,

0= 4(t) = Dyilt) = (Dx X)) (4(2)

At t =0
ik ian iviTk
OzDXX(O) =X B +X XJFU(O)
1.e.

k i
TE(0)X X7 =0, Vk.

Since this holds VX and Ffj is symmetric, polarization yields

k . .o
I7(0) =0 Vi, j, k.
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iii. Compute on U:

Ogjk _ 0 <i i)
ort  Qxi ' Oxd’ Ok
o 0 0 0
= Pg gt T 5 P gt
o 0 0 0
(It = Tt =
< ”0904’8;5’“>+<8x9’ Zk&’zs@)

=0 atxz =0 by(i)

Remark on polarization Let A(X,Y) be symmetric, then

AX,Y) =2 (AX +Y, X +Y) - A(X,X) — A(Y,Y))

DO | —

Exercise (Lee)
Show: if two connections on T'M (not necessarily torsion free!) have the
same symmetric part, then they have the same geodesics.

Corollary 9.7 Any vector X in T,M can be extended to X € C®(T,U),p €
U such that X is parallel at p, 1.e.

Dy X (p) =0 VY.

Geodesic Polar Coordinates

Place polar coordinates on T),M and transfer them to U C M via exp, ! Let
S"=! := unit sphere in T,M (identified with standard unit sphere in R").
Define

[0,00) x St — T,M
(rw) — 1w

~1 and coordinate vector fields 2, -2 0

Obtain coordinates r, w!, ... w ST T

on U\ {p} € M. Write S(r) = {r} x S 1.
Lemma 9.8 In U \ {p}, with respect to g:

i (2,24 =1

i, (£, 2)=0,a=1,....n—1

or’ dw

Radial geodesics t — tw are othognoal to coordinate spheres S(r).
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iii. (3%, 5%) = O(r?)

Proof

i.

ii.

Fix w € S"'. Then y(t) := exp,(tw),t € R is a geodesic with coordi-
nate expression
t (tw' . W™ (t#£0)

Thus 3
w<t>=<1,o,...,0>=(a—) (t £0)
"7 v
SO
gl
- t
oy "
= const

since 7 is a geodesic. What is this constant?

=1 (pre-DG fact) so

Remember: | % | s

9
or

d 2
5| a0t
= 1+0(z

g

(r =|z|, |x| means |z|s) so the constant is 1.

Fix a € {1,...,n— 1} To show: (£, -2} =0 on U\ {p}.

Observe:

0 0 o 0
_p, L _1Z Y2
ar Qw? 357 Or [81“’ &u“]

=0on U\ {p}

r(y(t)) =t, 2 = 4. Now consider 2, -2 as vector fields along y(t) =

exp,(tw), (¥ = ). Compute

=5=0
d d 0 7 9 0 0
E<§’3wa>v(t) = <D%§’0wa>+<§’2}%awa>
= 0—|—<%,'Daga§>
1



so (2,2

5 502) = const along 7. What is this constant?

J0 0 0 0
— Y o< | =] == _
K oy awaﬂ = |or| | 9w ' Cauchy-Schwarz

— 100

so the constant is zero.

iii. Note (52, 52505 = r?hg,(w) (standard metric on S"7!). Since g;; =
0ij + €ij €5 = O(r?), where |e;;(r,w)| < Cr?

o 0

<%a %>9 = r?hgy(w) + O(r?) = O(r?)

O

Corollary 9.9 (Gauss’s Lemma) In geodesic polar coordinates, g has the

form
10 - 0 r
0 w!
=1 r2hi(r,w) :
0 wn—l

where for each r > 0, h;(r,-) is a metric on S with
hij(r,w) = h?j(w) + 0(7"2)
asrT — 0.

Proof A slight refinement of the above.

9.2 Length-minimizing curves

/ |7 |gdt

: |a, ] — M.

The curve 7 is length-mz’mmzzmg if

L(v) < L(pB)

for any smooth curve [ with the same endpoints (resp. strictly length-
minimizing if equality implies 3 = ).
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Theorem 9.10 (Local Length-minimizing Property) Lety be geodesic
Then for each a € dom(vy) and each b sufficiently close to a (b > a) 7|[a,b]
s length-minimizing.

Example « = 7|[a,b]. « is length-minimizing iff L(«) < 7 (strictly length-
minimizing iff L(a) < 7)

Proof Without loss of generality a = 0. Set p = 7(0). Select € > 0 such
that exp,, : BIM(0) S U C M is a diffeomorphism. Fix b < ¢, ¢ := ~(b). Use
geodesic normal coordinates on U. In these coordinates, (t),0 < t < b is
the ray ¢t — (tX',...tX™) where X := (0). Let 8 by any curve connectiong

p =(0) to g =~(b).
L(7|[0,b]) = b To show: L(5) > b. Without loss of generality replace 5 by
the initial segment 3|[0, e] such that

B(e) € 5(b), 8([0,€]) € {r(x) < b}
Show: L((][0,¢]) > b. Write

Blu) = (r(u),wl(u), . ,w”_l(u)) ,0<u<e
: dr dw' dw™ 1
I

dr O N dwt 9

du Or du Ow®
~—— a=1
radial part —

tangental part

= B + )"
0
Bl = 13" + |3
Bl = 1 L=
0

LB, e)) = / 16w du

¢ d
> /\—ﬁdu
o du
> () - (0)
= b—-—0=0b
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O

Furthermore: equality occurs iff Bis a nonnegative multiple of % for all
u € [0, e]. But then, 5 =~[0,b]! v is a strict minimizer,b < ¢!
Recall d(p, q) := inf{L(5)|Fjoins p to ¢}

Definition If exp,, : Bg”M(O) SUCMisa diffeomorphism, we call U a
normal neighborhood of p.

Corollary 9.11 p,q € M, r < £ normal coordinates about p.

d(p.q) = r(q) if q € exp,(B:""(0))
d(g,p) > ¢ ifq¢exp,(B"(0))

9.3 Metric Space Structure

(induced by g)
(M, g) ~ d(q,p)-

Proposition 9.12 (M connected) (M,d) is a metric space. (M not con-
nected: extended metric space: d = 0o allowed.)

Proof
e Triangle inequality:d(z,y) + d(y, z) > d(z, 2)

e symmetry: d(p,q) = d(q,p)

e positivity: if p # ¢ then d(p,q) > 0.

Proof p # q, pick € so q ¢ expp(BZ"M(O)) d(q,p) > e.
Definition

B,(p)(= B(p) = B} (p)) := {q € M|d(p,q) < o}

geodesic ball of radius o about p.
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Example (need not be a topological ball) By the Corollary(9.11):
B.(p) = exp,(B"(0))

(provided exp, |BZ*™(0) is a diffeomorphism onto it’s image.)

This implies

Proposition 9.13 The metric space topology generated by d(-,-) coincides
with the topology induced by the differntial structure.

Proof Both topologes are generated (by taking arbitrary unions) by small
balls B,(p),o < &(p).

O

Theorem 9.14 (Geodesically Convex Balls) Forp € M | there is 0 =
o(p) > 0 such that every pair of points p1,p2 € B,(p) can be joined by a
(unique) minimizing geodesic vy, and 7 lies in B, (p).
Completeness: Hopf-Rinow Theorem
Questions:

e When can geodesics be extended indefinitely

e When can p,q € M be joined by a minimizing geodesic?
Theorem 9.15 (Hopf-Rinow) (M, g) The following are equivalent:

i. (M,d) is metrically complete (cauchy sequences converge).

ii. (M, g) is geodesically complete (each geodesic can be extended indefi-
nitely)

We call M complete.

Example Any compact manifold is complete.
Example R?\ {0}. Metric completion: R2.
R2\ {0} metric completion R?\ {0} U {z}

Corollary 9.16 (of Proof) M connected, complete = every pair p,q can
be joined by a minimum geodesic. < exp, is surjective for all p, i.e. there
are no places you can’t see from p.

Example Hyperbolic space is complete.

Proposition 9.17 If a curve v C M? is the fized-point of a nontrivial isom-
etry, then that curve is a geodesic.
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10 Testing for Flatness

(Lee chap 7) (Motivation for Riemannian curvature tensor.)
How can we tell when 2 Riemannian manifolds are locally isometric? Answer:
Invariants.

10.1 Special case

How can we tell when a Riemannian manifold is flat (= locally isometric to
Euclidean space)?

Observation

If M is flat, then near each point there is a frame e;(x), ..., e,(x) consisting
of parallel vector fields.

(R, §) CV "2 7 C (M, g)
0 )
oxt -9 (835‘)

¢ (DY) = DU 6" (V)

Theorem 10.1 No neighborhood of a point in S? possesses a parallel vector
field. Thus: No neighborhood af any point in S? is isometric to an open set
in R2.

Lemma 10.2 The holonomy about a circle of latitude v = 63952(]\[) is a

nontrivial rotation
H~:T,S* — T,S*

Proof sketch (Do Carmo) Let C be the cone tangent to S* along 7. Since
S? and C have the same tangent planes along v, we have for any vector field
X(t) € Ty)S* along v

Sy L R3 _ nC
DS'X =t (DFX) = DY X
So the holonomy about 7 is the same, whether we regard ~ as a curve in 5>

or in C. But C can be cut and rolled out flat and the holonomy computed
easily.
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Exercise Find the holonomy about any simple closed curve in S2.

C——F

|

M?

[e%

(DxV)* =X° oV

oy +iw(X)V

Ve C®E) wX)=ax)X"(z)+blz)X*(x)

H,:E, — E,2C~R?

Vo eifﬂ(azz(:cl,a:2)—bz1(m )da:ldac V

a,2 — b1 = curl(a, b)(= rot(a, b))

10.2 Try to construct a parallel vector field (locally)

(M?, g) given, p € M fixed. x', 2% local coords near p. Fix Z € T,M. Extend
Z parallel along z'-axis t — (¢,0). Then extend vertically along each curve
t— (z',t) (2! € R fixed). Get:

Do Z=0 allatz?=0.

a1

{DaZ—O all 2!, 22

If D%Z = 0 for all 2!, 22 then Z would be parallel:
Ox
'DXZ:X1DLZ—|—X2'DLZ
ozl ox2

Too see what D o Z is like for 22 # 0, consider how it varies along curve

oz
t — (z',t). Measured by

DaDiZ
022 a1l

Now if we were so lucky and the operators D_o ,D_ s commuted on Z, then
82 B

DaDaZ Dd'DaZ—OVaZx

9z2 Ers Bzl
0

Then D_s_Z would be parallel along t — (z',t). But D_s_Z = 0 at (z*,0).
9zl 1
So D_o_Z would be 0 val, 2.
oz
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So the question of constructing parallel vector fields comes down to: Do
directional derivatives of vector fields commute?
In R™, this is true: D’ = DY = coordinate connections.

. 0z' 0
0 70 i —
PP (70055) = P (G3)

0?7 (z) 0
—(2)=—
Oxtox?" ~ Oxt

- DY, D, Z
ox2 ozl
DxDyZ = DyDxZ
Even in R"”, it’s not so simple.

DUDYL7 = XDO, (Yﬂ'DOi Z)

dxt dxJ

o OV
= X'Vip°, D°, Z+X’a—.D0i z

ozt dxJ 8«1:7' oxJ

Antisymmetrizing, we get

DYDY.Z —-DYDYZ = O+ [X,Y)Do Z

oxJ

= D%y 2.
According;:
Proposition 10.3 In a flat manifold
DxDyZ — DyDxZ — DixyyZ = 0. (1)
Proof D and [, -] are both invariant under isometries.

10.3 Riemann Curvature
Definition Let X,Y, Z W € C*(TM).

i. The Riemann curvature operator of (M, g) is defined as

R(X,Y)Z := —DxDyZ + DyDxZ + DixyZ
ii. The Riemannian curvature tensor is defined by
Ron(X,)Y, Z W) :=(R(X,Y)Z,W)
R(-,) : C(TM) x C®(TM) x C*(TM) — C>*(TM)
R, =0 iff M is flat, (iff later).

’Rm measures how far M is from being Euclidean. ‘
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10.4 Tensors (over R)

V. W vector spaces with bases ey, ...¢e,, and dy,...,d,. V ® W vector space
mn =dim basise; ®d; i =1,...,m,j=1,...,n.
(IS) tensor over V' is a k—linear map

T:Vx---xV-—-R
k

or equivalently an element of V* ® - -- ® V. Typical element: T'=T;,_; e; ®
—_——
k

@€ e}, ..., er dual basis (to e, ..., en) of V¥, ef(X) = X' X, = XVe,
T(Xl, e ,Xm) = T1i1...im (6:1 XX 6:m> (Xla e ,Xm)
= El---ime;(Xl)'..e:(m<Xm)
= Ty X7 X0

1'lm

A (]z) tensor over V' is a k—linear map

k L

or equivalently, an element of V*®--- @ V'@V ®---® V. Given smooth

N~ ~~

k ¢
vector bundles FE, F' — M, we can form smooth vector bundles E*, F ® F

over M with fibers

(E")p = (Ep)" (E® F), = E,®F,
T"M = (TM)*, TyM = (T,M)".
Then a (lz) tensor field T on M is a section

TeC¥(T'M® - @T"MRTM®---® TM)

k 14

Exercise
i. ((1)) tensor fields are vector fields
ii. ((1)) tensor fields are dual vector fields, or 1-forms

iii. ¢ (Riemannian metric) is a (7) tensor field.
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DxY vector field in C>(T'M)

DY = (DY(p):T,M — T,M)
€ C™ (Lin(TM;TM))
€ C™(T"M & TM)

so if Y is a vector field, then DY is a (}) tensor field.
Z =T(X,Y):=DyY —D%Y € C(TM)

T(X,Y)(p) depends only on X (p), Y (p) (bilinearly). T € C*(T*M QT*M ®
TM). So T (the difference between two connections) is a (%) tensor.
R(-,-) 1 C(TM) x C(TM) x C=(TM) — C=(TM)

R(X,Y)Z = —DXDYz—FDyD)(Z—{—D[X,y}Z
Ro(X,Y,Z W) = (R(X,Y)Z,W)

Proposition 10.4 (R(X,Y)Z) (p) depends only on X(p),Y (p), Z(p) (and
not on their derivatives.)

T M, E vector bundles over M

Definition A k—linear map (k—linear over R!)
T:C®(TM)x---x C®TM) — C®(E)
is called tensorial (k—linear over C*°(M)!)

T(fiXe, o fiXe) = fr- il ( Xy, Xe) Y, fe € CF(M)

Criterion for being a tensor field

If a k—linear map (over R)

T:C®(TM) x -+ x C*(TM) — C*(E)

~
k

is in fact k—linear over C*°(M), i.e.

T(fiX1, o f5Xe)=f1 il (Xq, ..., Xg) V1, ..., fr € C(M)

(i.e. T is tensorial), then T is given by a tensor field, i.e. T(X7,..., Xx)(p)
depends only on Xi(p),..., Xx(p) and in fact there are k—linear maps

T(p): T,M x --- x T,M — E,
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such that

T(Xy,..., Xn)(p) = (T()(X1(p), -, Xi(p))
Accordingly, the map

T:p— T(p)
is a section TeC(T"M®---@T*M® E). We drop ~ and identify T with
T.

Proof Let 8%1, e a% be a coordinate fram for T'M defined over some open
U>p.
Fix a cutoff function ¢ for p in U i.e. ¢ € C®°(M), spt¢p CC U, = 1 near
P.
; 0
X; = X/ =—— on U only!
)

Compute

T(X1,...,X)(p) = 6" (p) T(X1,...,X5)(p)

= (¢*T(Xy, ..., Xx))(p)
=T(¢*X1,...,0°Xi)(p

)
= (10xt) - oxIT 0 5 ) )

Ori’ OxJk
J1 Jk 9 9
= Xj (P)"‘Xk (P)T(ﬁb%a--wéﬁ%)@)

depends only on X;(p),..., Xk(p), and indeed, k—linear.

]
Remark
e ¢2 € C*(T'M) meaning
0 _ { ¢ on U
O 0 on M\ spto (open)

o 9X] € C=(M)
X,Y,Z,W € C®(TM)
R(-,-)- : C°(TM) x C=(TM) x C=(TM) — C®(TM)
R(X, Y)Z = —DxpyZ -+ DyDXz + D[X,y}Z
Rn(X,Y, Z, W) = (R(X,Y)Z, W)
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Proposition 10.5
R() € C(T"MT"MT*M @ TM)
Rm € C(T"M@T"MT*M @ T*M)
Proof Ifsuffices to check R(fX,gY)hZ = fghR(X,Y)Z for f,g,h € C*(M)
(Tensoriality Criterion).
Do h:
R(X,Y)(hZ) ZhR(X,Y)Z
DxDy(hZ) =Dx (Yh)Z + hDy Z)
—(X(YR)) Z + (YR)DxZ + (Xh)Dy Z + hDxDy Z
DxDy(hZ) =similar. ..
Dixy)(hZ) =([X,Y]h) Z + hDix y1Z
R(X,Y)(hZ) = — hDxDy Z + hDyDx Z + hDx 11 Z
—(XYh)Z + (YXW)Z + [X,Y]hZ
—hR(X,Y)Z

Do f, g: similar but shorter
O

Definition Define components of the curvature tensor in a coordinate neigh-
borhood by
( g 0 ) g o, 0
Oxt’ Oz’ dxk TR gt

8388R8888

Rijrt .= Ron(5 5 5057 9ar 928) — Plo 520 508 9!
Then we have
- 0
R(X,Y)Z = XYJZkajk@

R X, Y, Z W) = XYIZVW'R i
Note Riju = glefjk. R given by at most n* functions.
Invariance under isometries ¢ : (M, g) — (N, h) isometry

R(X,Y, Z,W)(p) = R (6.X, 0., 9. Z,.W)(¢(p))

Diffeomorphism invariance
) = foo
) = foo™!
0-(RE(X,Y, Z,W)) = RE\D(6.X, 6.Y, 6. Z, 9, W)
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C° functions on R with compact support

. er x>0
fis C=
Claim f®(n) — 0 asn — oo Vk

1
o= —267% f® = ax(z)e”
T

2 1 1
@ = — R PP —2k
/ = ( :1:3+x4)6 lar(z)| <2720 <2< 1)

1
T

Proposition 10.6

¢ _ 9Tt 4, 8Tt _TLp ¢ T
® Riw = 3571k + a7l — Uiplije + 150

® Rijk = gem Ry
Proof
1.
, 0 o 0,0

Rit gt =R a0 523) 50

- P Dai DD, ai
+ Db‘imiﬂ%
=D (M) 4D o (M)
:(—aiirfk)% - Fﬁkpaii% + (%ka)% + kapai]%
== %Fﬁk% - F?krfp% %ka% + karﬁp%

The proposition shows:
deriv deriv

95 — D — Rn

R,, = combinations of various Oth, 1st and 2nd derivatives of components of
the metric tensor g;;(x).

Exercise Find a formula for R;jx in terms of g,;,dg;;, 0%g;; that shows:
Rz’jkzé is
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e linear in

e quadratic in

9%gi;
Ozk ozt

agij
oxk

e nonlinear in g;;.

(recall: same pattern in ODE for geodesics)

10.4.1 Flat Manifolds
(Lee Chap 7.)

Theorem 10.7 (Riemann) R,, = 0 iff M is locally isometric to Euclidean
space.

Proof (<) done
(=) Suppose R,, =0 Fix p € M. 4 steps:

i.

ii.
iii.

1v.

ii.

1ii.

1v.

Build a set of parallel, orthonormal (R, = 0) vector fields Y3,...,Y,
near p.

Then [Y;, Y]] = 0 ¥, j.
Then M has a coordinate system y!,...,y" near p with Y* = %.

A coordinate system whose coordinate vector fields are orthonormal is
the same as an isometry into R".

Dy,Y; = 0 Vi, j by i. 50 [V;,Yj] = Dy,Y; — Dy,Y; = 0
If

(a) Y1,...,Y, commute

(b) Yi,...,Y, linearly independant at p

= there exists a coordinate system. ¢ = (y',...,y"): U C M B v¢ C
R™ near p such that

0
Y, =9¢" .
N ¢ ( ayz )
cUCM e
eR

N

Then (Y;,Y)), 0 0ij = <8?ji’ %)g so ¢ is an isometry.
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Follows from:

Subclaim Any Y € T,M can be extended to parallel vector field near p.
Why does it follow? Fix p. Yi,....Y, € T,M orthonormal basis. Use
subclaim to extend to Yi,...,Y,, parallel deﬁned near p. But X - (Y},Y;) =
(DxY;,Y;) + (Y;,DxY;) = 0o (Y;,Y;) = 0;; is constant near p.

ir ¥ is Xj
Proof of subclaim Let z!,..., 2" be any coordinate system near p.
p=0,U={z|—e<ux;<¢e}
Fix Y € T,M
M, = {(xl,...,xk,O...,O)\ —e< T, <E} =31

{0} =MyC M, C---C M, =U

Extend Y from My to My by parallel transport along v : t — (¢,0,...,0) €
M;. Get:

YIMl — TMl

D%Y = 0on M;

Extend from My to My
r=(2',0,...,0) € M,

Ve it (24,6,0,...,0) € My
Extend Y along ~, by parallel translation. Get:

Y: My — TM

D 2, Y = 0on M,
D 2 Y = 0Oon M;
Y (21, 22,0,...,0) is smooth in x!, 22 by smooth dependence of solutions of

ODEs on intial conditions (and using the fact that (x1,0,...,0) is smooth).
Want: D_o Y =0 on M,. By defintion of curvature

a1

oY = R(55 0.0

DaDaY DaDaY+D[ 71 D2

82 ol ox 8zl ox

=D s , Do Y
s ox2

— )Y

=0
=0 on M2
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So D_s_ Y is parallel along v,. But Do Y = 0 at v,(0) = (z},0,...
a1

9zl

D%Yzoon%i.e. on M.
Proceed by induction.
Extend Y from M, to M, Given:

Want:

DoY =---= D_o» :OOan+1

Xyt oxk+1

Y . Mk 1 — TM
(Hiin) { 3

Using parallel transport along curves

Vo it (xt,... 2% ¢,0,...,0) € M1
(= (2,...,2%,0,...,0) € M,

get

Y My —TM
D_s Y =0o0on My,

oxk+1

Using R,, = 0 as before, we get

D o DoY=DsD o Y=0

ozk+1 't 't dxk+1

=0
on My, 1, so as (before)

Do Y =0on My, Vi

ozt

10.5 Symmetries of Curvature
i.
Rn(X,Y,Z,W) 2 —R.(Y,X,Z,W)



ii. 0=Rn(X,) Y, Z W)+ R, (Y, Z, X, W)+ R,(Z,X,Y,W) (Bianchi I)
Proof

i (a) R(X, Y)Z = —DXpyZ + DyDXZ -+ D[X7y]Z
(b) Differentiate (Z, W) twice:

XY (ZW) = X -(DyZ, W)+ (Z, DyW))
(DxDy Z, W) + (Dy Z, DxW) + (Dx Z, Dy W)
+(Z, DxDy W)

Antisymmetrize in X, Y

[X,Y] - (Z,W) = (DxDyZ—DyDxZ,W)
+(Z, DxDyW — Dy DxW)

[X> Y] ) <Z> W> = <ID[X7Y]Z> W> + <Z> D[X:Y}W>
Rearrange:

(R(X,Y)Z, W)+ (Z,R(X,Y)W) =0

iii. (Bianchi 1) 0 = Rn(X,Y, Z, W) + Ru(Y, Z, X, W) + Rn(Z, X, Y, W).

R(X,Y)Z = —DxDyZ+DyDxZ + DixyZ
R(Y,Z)X = —DyDzX +DyDyX + Dy 5X
R(Z,X)Y = —D;DxY +DxDyY + DY
Sum = —Dx[Y,Z] - Dy[Z, X] — Dz[X,Y] + Dx1Z + Dy X + Dizx]¥

= —[X,[Y,Z]| - 1Y, [Z,X]] — [Z,]X,Y]] = 0 Jacobi identity

ii. combine i. and iii. cleverly. Exercise

In components:
1. Rijke = —Rjive = —Rijen
. Rijrke = Rueij

i, Rijre + Rjkie + Ruije = 0
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Elie Carton called Differential Geometry “the debauch of indices”. Gromov:
“The Riemannian curvature tensor remains a nasty, mysterios bundle of mul-
tilinear algebra.”

Exercise What is the dimension of the space of potential curvature tensors
at a point?

Example

n=1 Ri111 = —Ri111 = Ri111 = 0 no curvature.

n=2 0= R = Razj = Riji1 = Rijoz Ri212 = —Ra112 = —Riz21 = Ra1zn
The Riemannian curvature tensor of a 2—manifold reduces to a single
scalar. What is that scalar?

i. (M?,9) k(p) := Ru(e1, e2,e1,€2), €1, ez orthonormal basis of T, M.
Exercise Prove x(p) is independent of choice of ey, es.

Theorem 10.8 (Theorema Egregium (Gauss)) Suppose (M?,g) is iso-
metrically embedded in R®. Then

K(p) = ki - ke
product of principal curvatures of M? inside R3.
(M™, g),p e M,oc C T,M 2-plane
Definition Sectinal curvature of M at p along o.

K(p,0) == Rp(e1, e, e1,€2)

ey, ez orthonormal basis of 0. (Exercise: independence of ey, e5)

Fact
k(p,o)=1 on S"
k(p,o)=—-1 in H"

Theorem 10.9 If (M, g) has k(p, o)
diam(M) := max, em d(p,q) < 7r K

> 0 Vp,o then M 1is compact and

1
Z
> %2 > 0= M is compact.
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