Differential Geometry Lecture held by Prof. Ilmanen

Darko Pilav Simon Wood

Warning: We are sure there are lots of mistakes in these notes. Use at your own risk! Corrections and other feedback would be greatly appreciated and can be sent to mitschriften@vmp.ethz.ch. If you report an error please always state what version (the first number on the Id line below) you found it in. For further information see:
http://vmp.ethz.ch/wiki/index.php/Vorlesungsmitschriften

Contents

1 Introduction: curves and surfaces 4
1.1 Curves in Space 5
1.2 The Geometry of Surfaces in \mathbb{R}^{3} 10
1.2.1 (Extrinsic) Curvature 11
1.2.2 Intrinsic Geometry 14
2 Differentiable Manifolds 17
2.1 Topology of M 20
2.1.1 Maximal Atlas 21
3 Tangents, differentials of maps 23
3.1 Tangent vector as directional derivative operator 23
3.2 Differential of a map 26
4 Submanifolds, diffeomorphisms, immersions and submersions 31
4.1 Immersions, submersions, diffeomorphisms 33
4.2 Immersions 36
4.3 Submersions 41
5 Lie Groups: S^{3} and $\operatorname{SO}(3)$ 44
5.1 Quaternions 45
5.2 Smooth actions, left, right, adjoint actions of a Lie group on itself 46
6 Lie brackets, flows of vector fields, Lie derivatives 49
6.1 Vector fields 49
6.1.1 Lie Brackets 49
6.2 Integral curves and flows of vector fields 52
6.2.1 Existence, Uniquenes and smooth dependence on ini- tial data 52
6.3 Lie Derivatives 61
7 Riemannian Metrics 69
7.1 Pullbacks of Metrics 72
7.2 Metrics on Lie groups 73
7.3 Volume and Intergrals 75
8 Connections 80
8.1 Vector Bundles 80
8.1.1 Complex vector bundles 83
8.2 Connections on Vector Bundles 85
8.3 Inner Products on \boldsymbol{E} and compatible connections 89
8.4 Riemannian Connections 90
8.5 Parallel Transport 93
9 Geodesics, Exponential Map 96
9.1 Geodesic Flow 98
9.2 Length-minimizing curves 104
9.3 Metric Space Structure 106
10 Testing for Flatness 108
10.1 Special case 108
10.2 Try to construct a parallel vector field (locally) 109
10.3 Riemann Curvature 110
10.4 Tensors (over \mathbb{R}) 111
10.4.1 Flat Manifolds 116
10.5 Symmetries of Curvature 118

1 Introduction: curves and surfaces

Riemannian Geometry is a subset of Differential Geometry
A Riemannian manifold is a smooth manifold endowed with a notion of (infinitesimal) arclength \rightarrow Riemannian metric: $g=g_{i j}(x) d x^{i} d x^{j}$

Figure 1: A Riemannian manifold is endowed with a notion of infinitesimal acrlength, thus a shortest path (a geodesic) can be defined between two points on the manifold.

Curvature

extrinsic curvature $M^{k} \subset \mathbb{R}^{n}$	intrinsic curvature
how M curves inside \mathbb{R}^{n}	how M curves "inside itself"

Figure 2: The radius of curvature is the radius of the circle which most closly approximates the curve at a given point.

Doing calculus on the manifold

$$
D_{i} f, \quad D_{i} D_{j} X^{k} \neq D_{j} D_{i} X^{k}, \quad X \text { a vector field }
$$

Derivatives can't be commuted arbitrarily

$$
D_{i} D_{j} X^{k}=D_{j} D_{i} X^{k}+R_{i j \ell}{ }^{k} X^{\ell}
$$

where R is the Riemannian curvature tensor.

1.1 Curves in Space

Basic notation:

$$
\begin{gathered}
\mathbb{R}^{n}, x=\left(x^{1}, \ldots, x^{n}\right) \\
\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{\mathbb{R}^{n}} \\
|x|_{\mathbb{R}^{n}}:=\langle x, x\rangle_{\mathbb{R}^{n}}^{\frac{1}{2}}
\end{gathered}
$$

A regular curve is a smooth ($=$ infinitely differentiable $=C^{\infty}$) function

$$
\gamma:[a, b] \rightarrow \mathbb{R}^{n}
$$

such that $\frac{d \gamma}{d t} \neq 0 \forall t$

Figure 3: A regular curve and its velocity vector (derivative).

Example of a non regular curve:

$$
t \mapsto\left(t^{2}, t^{3}\right) \in \mathbb{R}^{2}
$$

Figure 4: A curve whose derivative vanishes at 0 and is thus not regular.

Arclength

$$
s(t):=\int_{t_{o}}^{t}\left|\frac{d \gamma}{d t}\right| d t
$$

Reparameterize by arclength, get

$$
\gamma=\gamma(s),\left|\frac{d \gamma}{d s}\right|=1
$$

Unit Tangent Vector

Figure 5: A curve parametrized by arclength always has a tangent vector of unit length.

$$
\tau(s):=\frac{d \gamma}{d s}=\frac{d \gamma / d t}{|d \gamma / d t|}
$$

Definition the curvature vector κ of γ at s is

$$
\kappa(s):=\frac{d \tau}{d s}=\frac{d^{2} \gamma}{d s^{2}} \in \mathbb{R}^{n}
$$

Proposition $1.1 \kappa \perp \tau$
Proof

$$
\begin{gathered}
\langle\tau, \tau\rangle=1 \\
0=\frac{d}{d s}\langle\tau, \tau\rangle=2\left\langle\frac{d \tau}{d s}, \tau\right\rangle=2\langle\kappa, \tau\rangle
\end{gathered}
$$

Exercise: Show for $\gamma(t)$ (not necessarily parametrized by arclength)

$$
\kappa=\frac{1}{\left|\gamma_{t}\right|^{2}}\left(\gamma_{t t}-\left\langle\gamma_{t t}, \frac{\gamma_{t}}{\left|\gamma_{t}\right|}\right\rangle \frac{\gamma_{t}}{\left|\gamma_{t}\right|}\right)
$$

Curves in \mathbb{R}^{2}

κ reduces to a number k. Define k by $\kappa=k N$ (curvature as a scalar)

Figure 6: For kurves in the plane curvature reduces to a number k.
We can show:

$$
\begin{aligned}
k & =\frac{1}{R} & & R:=\text { radius of curvature, i.e. radius of osculating circle } \\
& =\frac{d \theta}{d s} & & \theta:=\text { angle between } \tau \text { and x-axis } \\
& =\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}} & & \text { If we write } \gamma \text { as } y=u(x)
\end{aligned}
$$

Figure 7: The curve γ defined as a graph $y=u(x)$.

Theorem $1.2 k(s)$ determines γ up to a rigid motion of \mathbb{R}^{2} (to make the starting point $\gamma(0)$ and starting direction $\gamma_{s}(0)$ coincide, see figure 8).

Curves in \mathbb{R}^{3}
If $\kappa \neq 0 \forall t$ we call γ an ordinary curve and define

$$
\begin{aligned}
N & :=\frac{\kappa}{|k|} & & \text { normal }(\perp \tau) \\
k & :=|\kappa| & & \text { curvature scalar (note } k>0) \\
B & :=\tau \times N & & \text { binormal }
\end{aligned}
$$

Figure 8: Congruent lines which differ only by rigid motion.

Figure 9: In 3 dimensions κ can move more freely, so a skalar is no longer enough to describe it.
(τ, N, B) orthonormal basis along γ, called a moving frame

Definition

Torsion vector:

$$
\lambda:=\left\langle\frac{d N}{d s}, B\right\rangle B \in \mathbb{R}^{3}
$$

torsion scalar:

$$
\ell:=\left\langle\frac{d N}{d s}, B\right\rangle \in \mathbb{R}
$$

λ is the measure of that portion of the change of N that occurs within the 2-dimensional normal plane spanned by N, B (That is captured by κ and not that part due to the turning of the normal plane itself.
$k(t)$ is a " 2 nd derivative of γ " and ℓ is a " 3 rd derivative"
Exercise
i. Compute k, ℓ at $t=0$ for $t \rightarrow\left(t, a t^{2}, b t^{3}\right)$
ii. If the torsion $\ell \equiv 0$, show γ lies in a plane.

Figure 10: Torsion
iii. If k and ℓ are constant along γ, prove γ is a helix.
iv. * Prove theorem 1.3.

Theorem 1.3 Any given smooth functions $k(s)>0$, and $\ell(s)$ of arclength determine γ in \mathbb{R}^{3} uniquely, up to a rigid motion (isometry) of \mathbb{R}^{3}

Figure 11: A curve of constant torsion and curvature is a helix (spiral staircase).

Some Global Theorems

local (infinitesimal)
curvature measures local geometry $\longleftrightarrow \underset{\begin{array}{c}\text { integral quantities } \\ \text { topology }\end{array}}{\text { global }}$
γ is called simple (or embedded) if γ has no self intersections
γ is called closed if $\gamma:[a, b] \rightarrow \mathbb{R}^{n}, \gamma(a)=\gamma(b)$

Figure 12: A curve with self intersections, which is therefore not simple.

Theorem 1.4γ closed curve in \mathbb{R}^{2}. Then:
i. $\int_{\gamma} k d s=2 \pi n \quad \exists n \in \mathbb{Z}$
ii. If γ is simple, then $n= \pm 1$

Proof i.

$$
\int_{\gamma} k \quad d s=\int_{a}^{b} k \quad d s=\int_{a}^{b} \frac{d \theta}{d s} d s=\theta(b)-\theta(a) \in 2 \pi \mathbb{Z}
$$

θ is well defined on \mathbb{R}, with

$$
\theta(s)=\theta(s+b-a)+2 \pi n \quad \exists n
$$

Theorem 1.5γ closed curve in \mathbb{R}^{3}. Then
i.

$$
\int_{\gamma}|\kappa| d s \geq 2 \pi
$$

ii. (Milnor) If γ is knotted then

$$
\int_{\gamma}|\kappa| d s \geq 4 \pi
$$

This yields a relation between global integrals and global topology.

1.2 The Geometry of Surfaces in \mathbb{R}^{3}

$T_{p} M$ is the tangent space of vectors tangent to M at p and $N \equiv N(p)$ is a unit normal to M at p

knotted
Figure 13: A knotted curve wich cannot be deformed to the standard circle without developing self intersections.

Figure 14: an unknotted curve which can be deformed to standard circle without developing self-intersections

1.2.1 (Extrinsic) Curvature

κ is the curvature vector of γ

$$
\kappa=k N \exists k \in \mathbb{R}
$$

Compute k : Choose orthonormal coordinates in \mathbb{R}^{3} such that

$$
p=(0,0,0)
$$

$$
\begin{gathered}
T_{p} M=x y \text {-plane (i.e. } M \text { is tangent to the } x y \text {-plane at } p \text {) } \\
N=(0,0,1) \text { (i.e. } N \text { points in the positive } z \text {-direction) }
\end{gathered}
$$

Note Then M is the graph (locally) of some function $z=f(x, y)$ such that

$$
f(0,0)=0,\left.\quad \frac{\partial f}{\partial x}\right|_{0,0}=\left.\frac{\partial f}{\partial y}\right|_{0,0}=0
$$

P is spanned by N, v where v is some unit vector in the $x y$-plane, $v=$ $\left(v^{1}, v^{2}, 0\right)$.

Claim The curvature of γ is

$$
k=\left(\begin{array}{ll}
v^{1} & v^{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(p) & \frac{\partial^{2} f}{\partial x \partial y}(p) \\
\frac{\partial^{2} f}{\partial x \partial y}(p) & \frac{\partial^{2} f}{\partial y^{2}}(p)
\end{array}\right)\binom{v^{1}}{v^{2}}=v^{T} D^{2} f(p) v
$$

with $D^{2} f(p)$ being the Hessian of f at p

Proof Give P orthogonal coordinates (u, z). In these coordinates, γ is then given by

$$
\begin{gathered}
z=\begin{array}{c}
g(u):=f\left(u v^{1}, u v^{2}\right) \\
g(0)=g_{u}(0)=0
\end{array} \\
k(0)=\left.\frac{g_{u u}}{\left(1+g_{u}^{2}\right)^{3 / 2}}\right|_{0}=g_{u u}(0)
\end{gathered}
$$

Use chain rule on $g=f \circ\left(u \mapsto\left(u v^{1}, u v^{2}\right)\right)$.

The bilinear form $\left(D^{2} f\right)_{p}$ is called the second fundamental form or extrinsic curvature tensor of M at p. Written:

$$
A(p)(\text { or } I I(p)): T_{p} M \times T_{p} M \rightarrow \mathbb{R}
$$

Warning The Hessian formula for $A(p)$ is valid only when

$$
\left.\frac{\partial f}{\partial x}\right|_{0,0}=\left.\frac{\partial f}{\partial y}\right|_{0,0}=0
$$

Exercise

Suppose M is given as a graph $z=f(x, y)$. Find a formula for $A(p)$ with respect to the coordinates on $T_{p} M$ given by x, y.
Find an analogous formula for the case of a parametrized surface

$$
\phi: \mathbb{R}^{2} \supset U \rightarrow V \subseteq M \subseteq \mathbb{R}^{3}
$$

U, V open, ϕ smooth with injective differential.
We can rotate the $x y$-plane so that $A(p)$ becomes diagonal:

$$
A(p)=\left(\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right)
$$

k_{1} and k_{2} really capture the geometry of the surface
Definition k_{1}, k_{2} : principal curvatures of M at p

$$
\begin{aligned}
H:=k_{1}+k_{2}: & \text { mean curvature of } M \text { at } p \\
K:=k_{1} k_{2}=\operatorname{det} A: & \text { Gauss curvature of } M \text { at } p
\end{aligned}
$$

Examples

Sphere of radius R has

$$
\begin{aligned}
& k_{1}=k_{2}=\frac{1}{R} \\
& K=\frac{1}{R^{2}} \\
& H=\frac{2}{R}
\end{aligned}
$$

Cylinder of radius R has eigenvectors e_{1}, e_{2}, where e_{1} points along the cylinders' axis and e_{2} is tangent to the circle that goes around the cylinder, and eigenvalues $k_{1}=0, k_{2}=\frac{1}{R}$

$$
H=\frac{1}{R}, K=0 \cdot \frac{1}{R}=0
$$

Catenoid C:
It is the rotation of curve $\gamma: y=\cosh x$ around the x-axis. Let e_{1} be tangent to γ and e_{2} tangent to a circle of rotation.
The eigenspaces of A are preserved by the reflections R_{Q} across planes $Q \supseteq x$ axis. Thus the eigenvectors of A must be e_{1}, e_{2} (since these are the only directions preserved by R_{Q}). So evidently $k_{1}>0>k_{2}$ if N is outward.
Compute $k_{1}=A\left(e_{1}, e_{1}\right)=$ curvature of γ, the graph of $g(x)=\cosh x$

$$
k_{1}=\frac{g_{x x}}{\left(1+g_{x}^{2}\right)^{3 / 2}}=\frac{\cosh x}{\cosh ^{3} x}=\frac{1}{\cosh ^{2} x}
$$

Exercise Compute that $k_{2}=-\frac{1}{\cosh ^{2} x}$. Then

$$
H=\frac{1}{\cosh ^{2} x}-\frac{1}{\cosh ^{2} x}=0
$$

We call a surface of equal and opposite curvatures minimal surface

Exercise (Helicoid)

Let L_{1} be a vertical line and let L_{2} be a line normal to L_{1} Move L_{2} upward at constant speed while rotating slowly about the point of intersection with L_{1}.
Prove $H=0$, compute K

1.2.2 Intrinsic Geometry

Let $M \subseteq \mathbb{R}^{3}$.

$$
\begin{gathered}
\gamma:[a, b] \rightarrow M \\
\gamma(a)=p, \gamma(b)=q
\end{gathered}
$$

Length:

$$
L(\gamma):=\int_{a}^{b}\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle_{\mathbb{R}^{3}}^{1 / 2} d t
$$

Intrinsic distance in M

$$
d_{M}(p, q):=\inf \{L(\gamma) \mid \gamma(a)=p, \gamma(b)=q\}
$$

(M, d_{M}) metric space (please verify)

Geodesic:

a curve that locally minimizes length (and therefore: realizes distance)
Example Sphere: an arc of a great circle minimizes length if it has length less than πR, but is a geodesic even if it is longer.

Riemannian metric of M
Restrict $\langle\cdot, \cdot\rangle_{\mathbb{R}^{3}}$ to $T_{p} M$:

$$
\langle X, Y\rangle_{M, p}:=\langle X, Y\rangle_{\mathbb{R}^{3}} \quad Y, X \in T_{p} M
$$

Write $g(p) \equiv\langle\cdot, \cdot\rangle_{M, p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$, a positive definite symmetric bilinear form that determines $L(\cdot)$ and $d_{M}(\cdot, \cdot)$

Definition A property of M is intrinsic if it depends only on g.

Isometries

A bijection $\phi: M \rightarrow N$ is called an isometry if it preserves the metric, i.e.

$$
d_{M}(p, q)=d_{N}(\tilde{p}, \tilde{q}) \quad, \text { where } \phi(p)=\tilde{p}, \phi(q)=\tilde{q}
$$

or

$$
g_{M}(p)(X, Y)=g_{N}(\tilde{p})(\tilde{X}, \tilde{Y}) \quad, \text { where } \phi \text { takes } X \text { to } \tilde{X} \text { and } Y \text { to } \tilde{Y}
$$

(infinitesimal version)

Definition A property (quantity, tensor, structure, etc) is called intrinsic if it is preserved by isometries.

Example The rolling map from the flat plane to the cylinder is a local isometry (i.e. each point has a neighborhood U such that $\phi \mid U: U \rightarrow \phi(U)$ is an isometry.

We see from the example that

$$
\begin{aligned}
& k_{1}, k_{2} \text { are not intrinsic } \\
& \qquad H\left(:=k_{1}+k_{2}\right) \text { is not intrinsic }
\end{aligned}
$$

Example Cone: Also locally isometric to the plane.
Definition A developable surface is a surface in \mathbb{R}^{3} that is local isometric to a plane.

Example ping-pong ball (hemisphere): it can be deformed in space in such a way that it remains isometric to the original hemisphere (the material does not stretch!).

Exercise Show that the catenoid and helicoid are locally isometric!

A local theorem

Theorem 1.6 (Theorema Egregium) K (the Gauss curvature) is intrinsic!
There is an intrinsic characterization of K :

$$
A(r)=\pi r^{2}-\frac{\pi}{12} K r^{4}+\ldots
$$

where $A(r)$ is the area of disk of intrinsic radius r about p.
Example In $S^{2}, A(r)=2 \pi(1-\cos r)$. The area is slightly smaller than expected when K is positive.

Global Theorems

Recall topological classification of closed (compact without boundary), orientable (abstract) surfaces:

Euler chracteristic χ

Theorem 1.7 Let M be a closed surface. The Euler characteristic

$$
\chi(M):=\# \underbrace{\text { faces }}_{2 \text {-simplices }}-\# \underbrace{e d g e s}_{1 \text {-simplices }}+\# \underbrace{\text { vertices }}_{0 \text {-simplices }}
$$

is independent of the choice of triangulation.
Definition n-simplex: $=\left\{x \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{n} \geq 0, x_{1}+\cdots+x_{n} \leq 1\right\}$
Theorem 1.8 (Gauss-Bonnet Theorem)
Let (M, g) be a compact surface without boundary with Riemannian metric g. Then

Theorem 1.9 (Uniformization Theorem)
M compact surface without boundary. Then M possesses a metric g of constant Gauss curvature:

Higher dimensions (preview)

$\left(M^{n}, g\right)$ Riemannian manifold
g_{p} : inner product on each $T_{p} M$
How to define curvature without reference to extrinsic geometry?
Fact:
Given $p \in M, X \in T_{p} M$ there always exists a geodesic (locally length minimizing curve) with initial velocity $\frac{d \gamma}{d t}(0)=X$.
Fix $p \in M$.
Fix a 2-space $P \subseteq T_{p} M$. Let Q be the surface swept out by the geodesics γ_{X} with initial velocity X, where X ranges over unit vectors in P.
Define: $K(P)=K_{p}(P):=$ Gauss curvature of Q at p (called sectional curvature in planardirection P)

$$
K_{p}:\left\{2 \text {-planes in } T_{p} M\right\} \rightarrow \mathbb{R}
$$

Clearly K_{p} is intrinsic.

Theorem 1.10 Cartan's Theorem: If K is constant then M is locally isometric to either

$$
\begin{aligned}
S^{n}: & K & \equiv c>0 \\
\mathbb{R}^{n}: & & K \equiv 0 \\
\mathbb{H}^{n}: & & K \equiv-c<0,
\end{aligned}
$$

where \mathbb{H}^{n} is hyperbolic space.
Theorem 1.11 (Hadamard's Theorem) If $K \leq-c<0$ (and complete) then the universal cover of M is topologically equivalent to \mathbb{R}^{n}.

Note If M is compact it follows that $\pi_{1}(M)$ is infinite.
Note - Negative curvature makes geodesics spread out.

- Positive Curvature makes them come together (as in S^{n}, where they meet on the other side.)

Theorem 1.12 (Bonnet-Myers Theorem) If $K \geq \beta>0$, then M is compact with

$$
d_{M}(p, q) \leq \frac{\pi}{\sqrt{\beta}} \forall p, q \in M
$$

This inequality is exact on S^{2}. Let p, q be antipodal points. We have

$$
\begin{aligned}
& K=\frac{1}{R^{2}} \\
&=: \beta \\
& d(q, p)=\pi R
\end{aligned}=\frac{\pi}{\sqrt{\beta}}
$$

Note It follows that the universal cover M is also compact, so $\left|\pi_{1}(M)\right|<\infty$.

2 Differentiable Manifolds

- A topological manifold is a Hausdorff topological space such that each point has a neighborhood that is locally homeomorphic to \mathbb{R}^{n}
- A differentiable manifold is chatacterized by the additional condition that the overlap maps are smooth.

Definition let M be a set. A chart for M is a pair $(U, \psi), U \subseteq M, \psi: U \rightarrow$ \mathbb{R}^{n} injective, $\psi(U)$ open in \mathbb{R}^{n}.

$$
\psi(p)=\left(x^{1}(p), \ldots, x^{n}(p)\right) \quad(\text { coordinate functions on } U)
$$

We call $\psi^{-1}: \psi(U) \subseteq \mathbb{R}^{n} \longrightarrow U \subseteq M$ a parametrization of U

$$
\psi^{-1}\left(x_{1}, \ldots x_{n}\right)=p
$$

We cover M with charts:

$$
M=\cup_{\alpha \in \mathcal{A}} U_{\alpha}
$$

and examine their behaviour on an overlap

$$
W:=U_{\alpha} \cap U_{\beta} .
$$

Definition We call $\left(U_{\alpha}, \psi_{\alpha}\right)$ and $\left(U_{\beta}, \psi_{\beta}\right)$ (smoothly) compatible if $\psi_{\alpha}(W), \psi_{\beta}(W)$ are open in \mathbb{R}^{n} and the overlap (or transition) map

$$
\psi_{\beta} \circ\left(\left.\psi_{\alpha}^{-1}\right|_{\psi_{\alpha}(W)}\right): \psi_{\alpha}(W) \rightarrow \psi_{\beta}(W)
$$

and its inverse are infinitely differentiable.
Definition A differentiable manifold of dimension n is given by a set M equipped with a collection of charts $\left(U_{\alpha}, \psi_{\alpha}\right)_{\alpha \in \mathcal{A}}$ such that
i. $\cup_{\alpha \in \mathcal{A}} U_{\alpha}=M$
ii. each pair of charts is smoothly compatible
iii. the induced topology of M is Hausdorff

Motivation for ii.

$$
\text { Let } f: M \rightarrow \mathbb{R} \text {. }
$$

Then in coordinates:

$$
\begin{aligned}
& f \circ \psi_{\alpha}^{-1} \text { smooth } \Leftrightarrow f \circ \psi_{\beta}^{-1} \text { smooth } \\
& \underbrace{f \circ \psi_{\alpha}^{-1}}_{\text {on } \mathbb{R}^{n}}=\underbrace{\left(f \circ \psi_{\beta}^{-1}\right)}_{\text {on } \mathbb{R}^{n}} \circ \underbrace{\left(\psi_{\beta} \circ \psi_{\alpha}^{-1}\right)}_{\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}}
\end{aligned}
$$

Example

- \mathbb{R}^{n}
- any open set $M:=U \subseteq \mathbb{R}^{n}$
just one chart

$$
\mathrm{id}_{U}: M \supseteq U \rightarrow U \subseteq \mathbb{R}^{n}
$$

- graph of a smooth function

$$
f: V \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}(V \text { open })
$$

just one chart: projection from the graph to V via $(z, f(z)) \mapsto z$.

- any set $M \subseteq \mathbb{R}^{n}$ that can be written locally as a graph
- e.g.

$$
S^{n}:=\partial B_{1} \subseteq \mathbb{R}^{n+1}
$$

needs $2(n+1)$ charts (of graph projection type)

- Möbius strip:

$$
M:=(0,3) \times(0,1) / \sim
$$

equivalence relation: $(x, y) \sim(x+2, y-1), 0<x<1,0<y<1$.
The natural projection is

$$
\begin{aligned}
\pi:(0,3) \times(0,1) & \rightarrow M \\
(x, y) & \rightarrow[(x, y)]:=\text { equivalence class of }(x, y)
\end{aligned}
$$

2 charts:

$$
\begin{array}{lll}
\psi_{1}^{-1}:=\pi \mid(0,2) \times(0,1) & \rightarrow & M \\
\psi_{2}^{-1}:=\pi \mid(1,3) \times(0,1) & \rightarrow & M
\end{array}
$$

- $G(n, k):=\left\{\right.$ all k-dimensional subspaces of $\left.\mathbb{R}^{n}\right\}$ This is called the (real) Grassmannian of k-planes in \mathbb{R}^{n}.
Exercise What's its dimension?

$$
\begin{aligned}
\mathbb{R} P^{n} & :=\left\{\text { all lines through the origin in } \mathbb{R}^{n+1}\right\} \\
& =G(n+1,1)
\end{aligned}
$$

Exercise Find charts for $\mathbb{R} P^{n}$

- configuration space of all 3-4-5 triangles in \mathbb{R}^{2}
- configuration space of all (equilateral) 1-1-1 triangles
- Even the space of $\left\{a-a-a\right.$ triangles in $\left.\mathbb{R}^{2}: a \geq 0\right\}$ is a manifold. Exercise: What manifold is this?

2.1 Topology of M

How to define a notion of open sets in M ? We transfer them from \mathbb{R}^{n} via charts. This results in a local test, as follows.

Definition $W \subseteq M$ is open (in M) if $\forall \alpha \in A, \psi_{\alpha}\left(W \cap U_{\alpha}\right)$ is open in \mathbb{R}^{n}.
Let $\mathcal{T}:=\{$ open sets S in $M\}$
Proposition 2.1 (Exercise) \mathcal{T} has the following properties:
i.

$$
V, W \in \mathcal{T} \Rightarrow V \cap W \in \mathcal{T}
$$

i i.

$$
W_{\beta} \in \mathcal{T} \forall \beta \in B \Rightarrow \cup_{\beta \in B} W_{\beta} \in \mathcal{T}
$$

iii.

$$
\varnothing, M \in \mathcal{T}
$$

A collection of subsets of a set M that satisfies (1)-(3) is called a topology on M, and (M, \mathcal{T}) is called a topological space.

Example The collection of open sets in a metric space (X, d) always satisfies (1)-(3). It is called the topology induced by the metric d.

In our case, M has no metric. \mathcal{T} is called the topology induced by the charts. Using a topology one can express

- continuity
- convergence, topological boundaries
- paths
- connectedness
- simple connectedness, number of holes

Definition A map $f:(X, \mathcal{T}) \rightarrow(Y, \mathcal{S})$ between topological spaces is called a homeomorphism (or a topological equivalence, or bicontinuous) if f is bijective and preserves open sets:

$$
U \in \mathcal{T} \Leftrightarrow f(U) \in \mathcal{S} .
$$

Exercise Show that U_{α} is open in M, and each chart

$$
\psi_{\alpha}: M \supseteq U_{\alpha} \rightarrow \psi_{\alpha}\left(U_{\alpha}\right) \subseteq \mathbb{R}^{n}
$$

is a homeomorphism.
The topology on U_{α} is defined by $\left.\mathcal{T}_{U_{\alpha}}:=\left\{W \cap U_{\alpha} \mid W \in \mathcal{T}\right)\right\}$ Verify: $\mathcal{T}_{U_{\alpha}}$ is a topology on U_{α}. It is called the subspace topology induced by \mathcal{T} on U_{α}.

Definition (X, \mathcal{T}) is Hausdorff if any two points $x, y \in X, x \neq y$ can be separated by open sets, i.e. $\exists U, V$ in \mathcal{T} so that $x \in U, y \in V, U \cap V=\varnothing$.

Observation: A metric space is Hausdorff.

Example

$$
\mathcal{T}:=\{\varnothing,\{a, b\},\{b\}\}
$$

(b converges to a but a doesn't converge to b)

Why Hausdorff?

Consider the example.

$$
\begin{gathered}
(x, 1) \sim(x, 2), x \neq 0 \\
M:=\mathbb{R} \times\{1\} \cup \mathbb{R} \times\{2\} / \sim
\end{gathered}
$$

The 2 points at the origin cannot be separated by open sets! This space fulfills conditions (1)-(2) of definition of a smooth manifold (check!) but fails to be Hausdorff. This is highly undesirable: For example, M could never be given a metric.

2.1.1 Maximal Atlas

Suppose we have an atlas

$$
\mathcal{A}=\left(U_{\alpha}, \psi_{\alpha}\right)_{\alpha \in A}
$$

There may be many other charts (U, ϕ) that are compatible with each chart in \mathcal{A}. Let

$$
\overline{\mathcal{A}}:=\{\text { all charts }(U, \phi) \text { compatible with each chart in } \mathcal{A}\}
$$

Easy to verify: These charts are also compatible with each other. Thus $\overline{\mathcal{A}}$ is an atlas. $\overline{\mathcal{A}}$ is the (unique) maximal atlas containing \mathcal{A}.
We call $\overline{\mathcal{A}}$ the differentiable structure (or smooth structure) induced by \mathcal{A}. We also observe that $\mathcal{T}_{\overline{\mathcal{A}}}=\mathcal{T}_{\mathcal{A}}$

Definition A differentiable manifold (smooth manifold, C^{∞} manifold) is a pair (M, \mathcal{A}) where \mathcal{A} is a maximal atlas (satisfies (1)-(3)).

Remark (Freedman/Donaldson 1980's)
Starting in $n=4$, there are topological manifolds that cannot be given a smooth structure.

Smooth functions from $M \rightarrow N$

M^{n}, N^{m} smooth manifolds,

$$
\phi: M \rightarrow N
$$

a function.

Definition

i. ϕ is smooth if ϕ is smooth near each $p \in M$.
ii. ϕ is smooth near p if there exist charts ψ, χ

$$
\begin{aligned}
p \in U & \xrightarrow{\psi} \mathbb{R}^{n} \\
\phi(p) \in V & \xrightarrow{\chi} \mathbb{R}^{m}
\end{aligned}
$$

such that $\phi(U) \subseteq V$
and

$$
\chi \circ \phi \circ \psi^{-1} \mid \psi(U): \psi(U) \rightarrow \mathbb{R}^{m}
$$

is infinitely differentiable on U.
Remark Using the chain rule, it follows that ϕ is smooth in all charts.
Definition A function $f:(X, \mathcal{T}) \rightarrow(Y, \mathcal{S})$ is continuous provided

$$
V \in \mathcal{S} \Rightarrow f^{-1}(V) \in \mathcal{T}
$$

Proposition 2.2 A smooth map between differentiable manifolds is continuous with respect to the topologies induced by the smooth structures.

3 Tangents, differentials of maps

Tangent vectors

Here're two alternative ways of defining tangent vectors:
i. Identify together vectors in charts to equivalence classes via the equivalence relation $(X, \alpha, p) \sim(\tilde{X}, \beta, p)$ where

$$
\tilde{X}^{i}=\sum_{j=1}^{n} \frac{\partial\left(\psi_{\beta} \circ \psi_{a}^{-1}\right)^{i}}{\partial x^{j}} X^{j}, \quad i=1, \ldots, n .
$$

ii. A tangent vector is a directional derivative operator coming from differentiation along some smooth curve.

3.1 Tangent vector as directional derivative operator

$$
C^{\infty}(M):=\{\text { infinitely differentiable functions } M \rightarrow \mathbb{R}\}
$$

Motivation

Let $X \in \mathbb{R}^{n}$ be a vector based at $p \in \mathbb{R}^{n}$. X yields a linear operator $C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ as follows: pick curve $\gamma, \gamma(0)=p, \dot{\gamma}(0)=X$, e.g. $t \mapsto p+t X$, then define

$$
\begin{aligned}
X: C^{\infty}\left(\mathbb{R}^{n}\right) & \rightarrow \mathbb{R} \\
f & \left.\mapsto \frac{d}{d t}\right|_{0} f(\gamma(t)) .
\end{aligned}
$$

Compute

$$
\begin{aligned}
X \cdot f & =\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) \frac{d \gamma^{j}}{d t}(0) \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) X^{j}
\end{aligned}
$$

On a manifold, we have the curves γ but not yet X.
Definition Let $p \in M$. A tangent vector to M at p is a linear function

$$
X: C^{\infty}(M) \rightarrow \mathbb{R}, f \mapsto X \cdot f
$$

that arises as the directional derivative along some smooth curve starting at p, i.e.

$$
\exists \gamma:(-\varepsilon, \varepsilon) \rightarrow M \text { smooth, } \gamma(0)=p
$$

such that

$$
X \cdot f=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t)) \forall f \in C^{\infty}(M)
$$

(One says that X is the velocity vector of γ at $t=0$)

Definition

$$
T_{p} M:=\{(p, X) \mid X \text { is a tangent vector to } M \text { at } p\}
$$

tangent space of M at p. Informally, we often use X to stand for the pair (X, p).

Expression in coordinates

i. Coordinate vectors

Let $p \in M, \psi: U \subseteq M \rightarrow \mathbb{R}^{n}$ a chart near $p, \tilde{p}:=\psi(p) . \tilde{f}:=f \circ \psi^{-1}$.
Consider the coordinate curve

$$
\begin{aligned}
& \tilde{\beta}_{i}: t \mapsto \tilde{p}+t e_{i} \text { in } \mathbb{R}^{n}, \\
& \beta_{i}:=\psi^{-1} \circ \tilde{\beta}_{i} \text { in } M .
\end{aligned}
$$

Define

$$
\left(\frac{\partial}{\partial x^{i}}\right)_{p} \equiv\left(\frac{\partial}{\partial x^{i}}\right)_{p, \psi} \in T_{p} M
$$

by

$$
\left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot f:=\left.\frac{d}{d t}\right|_{t=0} f\left(\beta_{i}(t)\right) .
$$

Compute

$$
\begin{aligned}
\left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot f & =\left.\frac{d}{d t}\right|_{0} f \circ \beta_{i} \\
& =\left.\frac{d}{d t}\right|_{0} \tilde{f} \circ \tilde{\beta}_{i} \\
& =\left.\frac{d}{d t}\right|_{0} \tilde{f}\left(\tilde{p}+t e_{i}\right) \\
& =\frac{\partial \tilde{f}}{\partial x^{i}}(\tilde{p})
\end{aligned}
$$

Get $\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x^{n}}\right)_{p} \in T_{p} M$, linearly independent in the vector space $\operatorname{Hom}\left(C^{\infty}(M), \mathbb{R}\right)$.
ii. Claim Any tangent vector X in $T_{p} M$ is a linear combination of the $\left(\frac{\partial}{\partial x^{i}}\right)_{p}$'s.

Proof For some curve γ with $\gamma(0)=p$:

$$
\begin{aligned}
& X \cdot f=\left.\frac{d}{d t}\right|_{0} f(\gamma(t)) \\
= & \left.\frac{d}{d t}\right|_{0} \underbrace{\left(f \circ \psi^{-1}\right)}_{\tilde{f}\left(x_{1}, \ldots, x_{n}\right)} \circ \underbrace{(\psi \circ \gamma)}_{\tilde{\gamma}(t)} \\
= & \sum_{j=1}^{n} \frac{\partial \tilde{f}}{\partial x^{j}}(\tilde{p}) \frac{d \tilde{\gamma}^{j}}{d t}(0)
\end{aligned}
$$

with $\tilde{\gamma}(t)=\left(\tilde{\gamma}^{1}(t), \ldots, \tilde{\gamma}^{n}(t)\right)$

$$
=\left(\sum_{j=1}^{n} \frac{d \tilde{\gamma}^{j}}{d t}(0)\left(\frac{\partial}{\partial x^{j}}\right)_{p}\right) \cdot f
$$

so

$$
X=\sum_{j=1}^{n} \frac{d \tilde{\gamma}^{j}}{d t}(0)\left(\frac{\partial}{\partial x^{j}}\right)_{p}
$$

Thus: $T_{p} M$ is an n-dimensional vectorspace with $\operatorname{basis}\left(\frac{\partial}{\partial x^{1}}\right)_{p}, \ldots\left(\frac{\partial}{\partial x^{n}}\right)_{p}$
iii. Consider the following possible alternative definition of a tangent vector: A tangent vector to M at p is a linear functional

$$
X: C^{\infty}(M) \rightarrow \mathbb{R}
$$

that satisfies the Leibniz rule:

$$
X \cdot(f g)=(X \cdot f) g(p)+f(p) X \cdot g
$$

Exercise Prove this for $n=1$, and find out if it's true for general n.

3.2 Differential of a map

Let $\phi: M^{n} \rightarrow N^{m}$ be smooth, $p \in M$.
Definition Define $d \phi(p) \equiv d \phi_{p}: T_{p} M \rightarrow T_{\phi(p)} N$ as follows: Let $X \in T_{p} M$, choose a path α such that $X=$ velocity vector of α at $t=0$, i.e.

$$
X \cdot f=\left.\frac{d}{d t}\right|_{0} f(\alpha(t)) \forall f \in C^{\infty}(M),
$$

Let $\beta=\phi \circ \alpha$. Define $(Y \equiv) d \phi(p)(X):=$ velocity vector of β at $t=0$ i.e.

$$
Y \cdot g:=\left.\frac{d}{d t}\right|_{0} g(\beta(t)) \forall g \in C^{\infty}(N) .
$$

Since $\beta(0)=\phi(\alpha(0))=\phi(p)$, we get $Y \in T_{\phi(p)} N$.
Observe:

$$
\begin{aligned}
Y \cdot g & =\left.\frac{d}{d t}\right|_{0} g(\phi(\alpha(t))) \\
& =\left.\frac{d}{d t}\right|_{0}(g \circ \phi)(\alpha(t)) \\
& =X \cdot(g \circ \phi)
\end{aligned}
$$

which shows that Y depends only on X and not on the choice of α. This also shows that $d \phi(p)$ is linear. (We could have taken $Y \cdot g:=X(g \circ \phi)$ to be the definition of $d \phi_{p}(X)$)

In coordinates

Let $X \in T_{p} M, \quad Y:=d \phi(p)(X) \in T_{q} M, \quad q:=\phi(p)$.
Write

$$
X=X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p}, \quad Y=\underbrace{Y^{j}\left(\frac{\partial}{\partial y^{j}}\right)_{q}}_{\sum_{j=1}^{m}}
$$

Einstein summation convention: paired indices, one upper, one lower, are summed over appropriately.
We want to express

$$
Y^{j}=? \cdot X^{i} .
$$

Set $\tilde{\phi}:=\chi \circ \phi \circ \psi^{-1}, \tilde{g}:=g \circ \chi^{-1}$
Compute:

$$
\begin{aligned}
Y \cdot g & =X \cdot(g \circ \phi) \\
& =X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot(g \circ \phi) \\
& =X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot[\underbrace{\left(g \circ \chi^{-1}\right.}_{\tilde{g}}) \circ \underbrace{\left(\chi \circ \phi \circ \psi^{-1}\right)}_{\tilde{\phi}} \circ \psi] \\
& =X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p} \tilde{g} \circ \tilde{\phi} \circ \psi \\
& =X^{i} \frac{\partial(\tilde{g} \circ \tilde{\phi})}{\partial x^{i}}(\tilde{p}) \quad 1 \\
& =X^{i} \frac{\partial \tilde{g}}{\partial y^{j}}(\tilde{q}) \frac{\partial y^{j}}{\partial x^{i}}(\tilde{p}) \quad(\text { chain rule }) \\
& =\left(X^{i} \frac{\partial y^{j}}{\partial x^{i}}(\tilde{p})\left(\frac{\partial}{\partial y^{j}}\right)_{q}\right) \cdot g
\end{aligned}
$$

i.e.

$$
Y=X^{i} \frac{\partial y^{j}}{\partial x^{i}}(\tilde{p})\left(\frac{\partial}{\partial y^{j}}\right)_{q}
$$

i.e.

$$
Y=Y^{j}\left(\frac{\partial}{\partial y^{j}}\right)_{q}
$$

where

$$
\underbrace{Y^{j}}_{m}=\underbrace{\frac{\partial y^{j}}{\partial x^{i}}(\tilde{p})}_{m \times n} \underbrace{X^{i}}_{n}
$$

Shows: $d \phi(p)$ is given in coords by the matrix

$$
\frac{\partial y^{j}}{\partial x^{i}}\left(\equiv \frac{\partial \tilde{\phi}^{j}}{\partial x^{i}}\right)
$$

Proposition 3.1 (Chain rule)

$$
{ }^{1} \text { previously showed: }\left(\frac{\partial}{\partial x^{\imath}} \cdot f=\frac{\partial \tilde{f}}{\partial x^{i}}(\tilde{p}), \tilde{f}=f \circ \psi^{-1}\right)
$$

If

$$
\begin{gathered}
M \xrightarrow{f} N \xrightarrow{g} P \\
T_{p} M \xrightarrow{\text { dffp}} T_{f(p)} N \xrightarrow{d g_{f(p)}} T_{g(f(p))} P
\end{gathered}
$$

then:

$$
d(g \circ f)_{p}=d g_{f(p)} \circ d f_{p} .
$$

Proof Transfer the chain rule

$$
\mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}
$$

to M, N, P via charts.

Products

Let M^{m}, N^{n} : be smooth manifolds with atlases

$$
\begin{aligned}
\mathcal{A} & =\left(U_{\alpha}, \psi_{\alpha}\right)_{\alpha \in A} \\
\mathcal{B} & =\left(V_{\beta}, \chi_{\beta}\right)_{\beta \in B}
\end{aligned}
$$

where

$$
\begin{aligned}
\psi_{\alpha}: U_{\alpha} & \rightarrow \mathbb{R}^{m} \\
\chi_{\beta}: V_{\beta} & \rightarrow \mathbb{R}^{n} .
\end{aligned}
$$

Give $M \times N$ the charts

$$
\begin{aligned}
\psi_{\alpha} \times \chi_{\beta}: U_{\alpha} \times V_{\beta} & \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n}, \\
(p, q) & \mapsto\left(\psi_{\alpha}(p), \chi_{\beta}(q)\right)
\end{aligned}
$$

and the atlas

$$
\mathcal{A} \times \mathcal{B}:=\left\{\left(U_{\alpha} \times V_{\beta}, \psi_{\alpha} \times \chi_{\beta}\right) \mid \alpha \in A, \beta \in B\right\}
$$

Canonical projections:

$$
\begin{array}{rll}
\pi_{M}: M \times N & \rightarrow M \\
(p, q) & \mapsto p \\
\pi_{N}: M \times N & \rightarrow N \\
(p, q) & \mapsto q
\end{array}
$$

Proposition 3.2 (Exercise)

Show $(M \times N, \mathcal{A} \times \mathcal{B})$ yields a manifold, and π_{M}, π_{N} are smooth.
Example $\mathbb{R}^{p} \times \mathbb{R}^{q}$ is the same as \mathbb{R}^{p+q}

$$
\begin{gathered}
S^{1} \times S^{1}=T^{2} \quad(2 \text {-Torus }) \\
T^{n}:=S^{1} \times \cdots \times S^{1} \quad(n \text {-torus })
\end{gathered}
$$

Example $\Xi:=\left\{\right.$ space of right handed 3-4-5 triangles in $\left.\mathbb{R}^{2}\right\}$
Project $T \in \Xi$ to $p(T) \in \mathbb{R}^{2}$ (the sharpest vertex) and to $\Theta(T) \in S^{1}$ (the angle that the length 4 side, directed away from $p(T)$, makes with the positive x-axis). Then the bijection $(p, \Theta): \Xi \rightarrow \mathbb{R}^{2} \times S^{1}$ shows $\Xi=\mathbb{R}^{2} \times S^{1}$.

Tangent bundle

M smooth. Define
i.

$$
\begin{aligned}
& T_{p} M:=\left\{(p, X) \mid X \in \operatorname{Hom}\left(C^{\infty}(M), \mathbb{R}\right) \text { is a tangentvector to } M \text { at } p\right\} \\
& \text { so } 0_{p} \neq 0_{q} \text { when } p \neq q .(p, X) \equiv X \text { (abuse of notation) }
\end{aligned}
$$

ii.

$$
T M:=\bigcup_{p \in M} T_{p} M=\left\{(p, X): p \in M, X \in T_{p} M\right\}
$$

$T_{p} M$ is called the fiber at p.
iii.

$$
\begin{array}{rll}
\pi: & T M & \rightarrow M \\
(p, X) & \mapsto p
\end{array}
$$

(canonical projection)
Proposition 3.3 TM has the structure of a 2 -dimensional manifold.
Let (U, ψ) be a chart for M

$$
\begin{aligned}
& p \in U \subseteq M \stackrel{\psi}{\mapsto} \quad \psi(p)=\left(x^{1}(p), \ldots, x^{n}(p)\right) \in \mathbb{R}^{n} \\
& X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p}=X \in T_{p} M \stackrel{\text { d } \psi(p)}{\longrightarrow}\left(X^{1}, \ldots, X^{n}\right) \in \mathbb{R}^{n} . \quad \text { (check this!) }
\end{aligned}
$$

Define a chart for $T M$ as follows:
Set

$$
\mathrm{U}:=T U=\pi^{-1}(U)=\cup_{p \in U} T_{p} M \subseteq T M
$$

Define

$$
\begin{aligned}
\Psi: \mathrm{U} & \rightarrow \psi(U) \times \mathbb{R}^{n} \text { by } \\
(p, X) & \left.\left.\mapsto\left(x^{1}(p)\right), \ldots, x^{n}(p)\right), X^{1}, \ldots, X^{n}\right) \\
& =(\underbrace{x^{1}, \ldots, x^{n}}_{\text {coords of } p}, \underbrace{X^{1}, \ldots, X^{n}}_{\text {coords of } X \text { within } T_{p} X})
\end{aligned}
$$

The associated parametrization has a some what simpler form:

$$
\Psi^{-1}:\left(x^{1}, \ldots, x^{n}, X^{1}, \ldots, X^{n}\right) \mapsto(\underbrace{\psi^{-1}\left(x^{1}, \ldots, x^{n}\right)}_{p}, \sum X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p})
$$

Exercise The charts (U, Ψ) are compatible and give $T M$ the structure of a $2 n$-manifold. $\pi: T M \rightarrow M$ smooth. $T M$ is locally a product $\psi(U) \times \mathbb{R}^{n}$

Example S^{1}
Coordinates:

$$
\begin{array}{rll}
\mathbb{R} & \rightarrow & S^{1} \\
\theta & \mapsto & {[\theta]:=\theta+2 \pi k, k \in \mathbb{Z}} \\
& \\
T S^{1} \quad & \ni\left([\theta], a\left(\frac{\partial}{\partial \theta}\right)_{[\theta]}\right) \quad[\theta] \in S^{1}, a \in \mathbb{R} \\
\cong \mid \text { preserves smooth structure } \\
S^{1} \times \mathbb{R} & \quad & \\
& \ni([\theta], a)
\end{array}
$$

$T S^{1} \simeq S^{1} \times \mathbb{R}$ cylinder, a product, of the base S^{1} with \mathbb{R}.

$$
\begin{aligned}
& T S^{2} \not \neq S^{2} \times \mathbb{R}^{2} \\
& T S^{3} \cong S^{3} \times \mathbb{R}^{3} \\
& T S^{4} \not \not S^{4} \times \mathbb{R}^{4}
\end{aligned}
$$

Definition A smooth vector field on M is a smooth function $X: M \rightarrow T M$ such that $X(p) \in T_{p} M \forall p \in M$.
In coordinates $p \xrightarrow{\psi}\left(x^{1}, \ldots, x^{n}\right)$

$$
\begin{aligned}
& X\left(x^{1}, \ldots x^{n}\right) \stackrel{\text { abuse }}{=} \\
&=\left(x^{1}, \ldots, x^{n}, X^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, X^{n}\left(x^{1}, \ldots, x^{n}\right)\right) \\
&\left.\left(x^{1}, \ldots, x^{n}\right), \ldots, X^{n}\left(x^{1}, \ldots, x^{n}\right)\right)
\end{aligned}
$$

Evidently, X is a smooth vector field \Leftrightarrow components $X^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, X^{n}\left(x^{1}, \ldots, x^{n}\right)$ of X are smooth.
Semi intrinsically, we write

$$
X(p)=\sum_{i=1}^{n} \underbrace{X^{i}\left(x^{1}, \ldots, x^{n}\right)}_{C^{\infty}}\left(\frac{\partial}{\partial x^{i}}\right)_{p}
$$

Question: How many pointwise linearly independant vector fields can we find on S^{n} ? Specifically, we require $\forall p \in S^{n}, e_{1}(p), \ldots e_{k}(p)$ are linearly independent in $T_{p} S^{n}$.

Theorem 3.4 There is no nowhere-vanishing vector field on S^{2}.
Theorem 3.5 (F.Adams) Gives a peculiar formula for the maximum number of pointwise linear independent vectorfields on S^{n}. (See Greenberg ${ }^{8}$ Harper.)

$$
\begin{array}{lll}
T S^{1} \cong S^{1} \times \mathbb{R} & S^{1} & 1 \\
& S^{2} & 0 \\
T S^{3} \cong S^{3} \times \mathbb{R}^{3} & S^{3} & 3 \\
& S^{4} & 0 \\
& S^{5} & \neq 0,5 \\
& S^{6} & 0 \\
T S^{7} \cong S^{7} \times \mathbb{R}^{7} & S^{7} & 7
\end{array}
$$

4 Submanifolds, diffeomorphisms, immersions and submersions

Reference: Guillemin and Pollack Chap 1, pp 1-27
Let M be a smooth manifold, $N \subseteq M$ a subset.

Definition N is a (smooth) k-dimensional submanifold of M if $\forall x \in N$, $\exists U \ni x$ open and a chart $\psi: U \rightarrow \mathbb{R}^{n}$ such that

$$
\psi(N \cap U)=\left(\mathbb{R}^{k} \times\{0\}\right) \cap \psi(U)
$$

Atlas for N :
$\mathcal{A}_{N}:=\left\{(V, \chi)|\quad V:=N \cap U \quad \chi:=\psi| N \cap U: N \cap U \rightarrow \mathbb{R}^{k},(U, \psi)\right.$ as above $\}$.

Examples

- open subset of a manifold
- S^{n} in \mathbb{R}^{n+1}
- S^{n-1} in S^{n}
- (prove later) classical groups $O(n), U(n), S p(n), \ldots$ are submanifolds of $M^{n \times n} \cong \mathbb{R}^{n^{2}}$
- open upper hemisphere of S^{n}, in \mathbb{R}^{n+1}

Proposition 4.1

- $\left(N, \mathcal{A}_{N}\right)$ is a smooth k-manifold.
- The inclusion map of N in $M i \equiv i_{N \subseteq M}$:

$$
\begin{aligned}
N & \rightarrow M \\
p & \mapsto p
\end{aligned}
$$

is smooth.

- It's differntial

$$
d i_{p}: T_{p} N \rightarrow T_{p} M
$$

is an injection $\forall p$, modelled on the linear inclusion $\mathbb{R}^{k} \subseteq \mathbb{R}^{n}$.

- The subspace topology on N coincides with the chart topology. For any $N \subseteq\left(M, \mathcal{T}_{M}\right)$ (not necessarily a submanifold), we define $\mathcal{T}_{N}:=$ $\left\{U \cap N \mid U \in \mathcal{T}_{M}\right\}$. called the subspace topology induced on N from $\left(M, \mathcal{T}_{M}\right)$

Proposition 4.2 \mathcal{T}_{N} is a topology on N

Big Questions:

i. When is the image of a smooth map a submanifold?
ii. When is the zero-set of a smooth map a submanifold?

4.1 Immersions, submersions, diffeomorphisms

Let

$$
\begin{array}{cccc}
f: & M^{n} & \rightarrow & N^{m} \\
d f_{p}: & T_{p} M & \rightarrow & T_{f(p)} N .
\end{array}
$$

be smooth, and consider

Definition

i. f is an immersion if $d f_{p}$ is injective $\forall p \in M$
ii. f is a submersion if $d f_{p}$ is surjective $\forall p \in M$
iii. f is a diffeomorphism if f is bijective and f^{-1} is also smooth. (NB: then $f^{-1} \circ f=i d_{M},\left(d f^{-1}\right)_{f(p)} \circ d f_{p}=i d_{T_{p} M}$, so $d f_{p}$ is an isomorphism)

Correspondingly, we have
i. Local immersion theorem (Blatter II p.106)
ii. Local submersion theorem (\equiv Implicit function theorem) (Blatter II p.99)
iii. Inverse function theorem (Blatter II p.88)

The first two are dual and both are proved from iii.

Diffeomorphisms

$$
(M, \mathcal{A}) \underset{f^{-1}}{\stackrel{f}{\leftrightarrows}}(N, \mathcal{B})
$$

f diffeomorphism $\Leftrightarrow f^{-1}$ diffeomorphism.
Write: $M \stackrel{\text { diff }}{\cong} N$
It means: M and N "look the same" from a differentiable viewpoint.

Advanced Fact (Taubes/Donaldson 80's)

Starting in $n=4$, a topological manifold can have 0,1 or ≥ 2 distinct (i.e. non-diffeomorphic) differentiable structures.

Example (Milnor 50's) The topological manifold S^{7} has 28 distinct differentiable structures.
Standard one: $S^{7}:=\left\{x \in \mathbb{R}^{8}| | x \mid=1\right\}$
Theorem 4.3 (Inverse function theorem) Let $f: M \rightarrow N$ be smooth.
If df $f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is an isomorphism, then f is a diffeomorphism near p, that is, $\exists U \ni p, V \ni f(p)$ open such that $f \mid U: U \rightarrow V$ is a diffeomorphism.

Proof Transfer the usual Inverse Function Theorem from \mathbb{R}^{n} to M, N via charts.

Definition Let $f: M \rightarrow N$
i. f is a local diffeomorphism if every $p \in M$ has a neighborhood $U \ni p$ such that $f(U)$ is open in N and $f \mid U: U \rightarrow f(U)$ is a diffeomorphism.
ii. f is a (smooth) covering map if every $q \in N$ has a neighborhood $V \ni q$ such that $f^{-1}(V)=\cup_{\delta \in \Delta} U_{\delta}$, where the U_{δ} are open disjoint sets in M, and $f \mid U_{\delta}: U_{\delta} \rightarrow V$ is a diffeomorphism for each δ.

Clear:

Covering map $\underset{\nLeftarrow}{\Rightarrow}$ local diffeomorphism

Exercise Prove that the number of preimage points $f^{-1}(q)$ is constant on each connected component of N, if f is a covering map.

Example

$$
\begin{aligned}
S^{n} & \xrightarrow{\pi} \mathbb{R} P^{n} \\
p & \mapsto \pi(p):=\text { line through } p \text { and } 0
\end{aligned}
$$

π is a covering map (where we give $\mathbb{R} P^{n}$ a suitable smooth structure). Each $L \in \mathbb{R} P^{n}$ has two preimage points $p,-p$ in S^{n}.

Let Γ be a group of diffeomorphisms from M to M, i.e.

$$
\begin{aligned}
i d_{M} \in \Gamma, \quad g \in \Gamma & \Rightarrow g^{-1} \in \Gamma \\
g, h \in \Gamma & \Rightarrow g \circ h \in \Gamma
\end{aligned}
$$

Definition Γ acts freely and properly discontinuously on M if $\forall p \in M \exists U_{\text {open }} \ni$ p such that

$$
g \neq h \in \Gamma \Rightarrow g(U) \cap h(U)=\varnothing .
$$

Example

$$
\mathbb{Z}_{2} \cong\left\{i d_{s^{n}}, g\right\}
$$

where $g(x):=-x, g^{2}=i d_{M}$. Then \mathbb{Z}_{2} acts freely and properly discontinuous on S^{n}.

Definition Let Γ be a group and M a manifold. Γ acts smoothly on M if there is a homomorphism of Γ to the group of diffeomorphisms ($\equiv \operatorname{Diff}(M)$) of M.

Example \mathbb{Z}^{n} acts freely and properly discontinuously on \mathbb{R}^{n} by translation.

Notation

$$
\begin{aligned}
\rho: \Gamma & \rightarrow \operatorname{Diff}(M) \quad \text { group action } \\
g & \mapsto \rho(g) \\
\rho(g)(x) & \equiv g(x)
\end{aligned}
$$

Definition We call $\Gamma \cdot x:=\{g(x) \mid g \in \Gamma\}$ the orbit of x under action of Γ.
M decomposes into a disjoint union of orbits. Specifically one can easily see:
i. for all $x, y \in M$, either $\Gamma \cdot x=\Gamma \cdot y$ or $\Gamma \cdot x \cap \Gamma \cdot y=\varnothing$
ii. $M=\cup_{x \in M} \Gamma \cdot x$

Each orbit is an equivalence class for the relation

$$
x \sim y \Leftrightarrow y=g(x) \exists g \in \Gamma .
$$

We obtain:

$$
\begin{aligned}
& \pi: M \rightarrow M / \Gamma \\
& x \quad \mapsto \quad \Gamma \cdot x \\
& M / \Gamma:=\{\text { set of orbits }\} \\
& =\{\Gamma \cdot x \mid x \in M\} \\
& =M / \sim
\end{aligned}
$$

Theorem 4.4 (Exercise)
If Γ acts freely and properly discontinuously on M, then $\pi: M \rightarrow M / \Gamma$ induces a smooth structure on M / Γ such that π is a covering map.

Warning Not every covering map comes from an appropriate group action!
Exercise Find an example.
Definition A subset A of a topological space X is discrete if for each $x \in$ $A \exists U$ open such that $A \cap U=\{x\}$.

Exercise G Lie group (a manifold such that the group operations are smooth), Γ discrete subgroup (not necessarily normal!) and G / Γ coset space of Γ in G

- $S L(2, \mathbb{R}) / S L(2, \mathbb{Z})=$? (3-manifold)
- $S^{3} /\{ \pm 1\} \cong \mathbb{R} P^{3}, S^{3} / \mathbb{Z}_{\ell}$ (some 3-manifold)

$$
\mathbb{Z}_{\ell}:=\left\{e^{2 \pi i k / \ell} \mid k=0, \ldots, \ell-1\right\}
$$

Exercise

Find all the manifolds (up to diffeomorphism) of the form $\mathbb{R}^{2} / \Gamma, \Gamma$ acts freely and properly discontinuously on \mathbb{R}^{2} by isometries (translations, rotations, refections and slide reflections).

* Same problem for \mathbb{R}^{3}.

4.2 Immersions

An immersion is a function such that

$$
\begin{array}{ccccc}
f: & M^{k} & \rightarrow & N^{n} & \text { smooth } \\
d f(p): & T_{p} M & \rightarrow & T_{f(p)} N & \text { is an injection. }
\end{array}(\Rightarrow k \leq n)
$$

Example The inclusion map $i: M \rightarrow N, x \mapsto x$ of any submanifold M of N is an immersion.

Example (curves) A regular curve $(\dot{\gamma}(t) \neq 0)$

$$
\mathbb{R} \ni t \mapsto \gamma(t) \in \mathbb{R}^{2}
$$

is an immersion.

Example (Canonical linear immersion)

$$
\begin{aligned}
i: \mathbb{R}^{k} & \rightarrow \mathbb{R}^{n} \\
\left(x^{1}, \ldots, x^{k}\right) & \mapsto\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)
\end{aligned}
$$

Theorem 4.5 (Local Immersion Theorem) Let $f: M \rightarrow N$ be smooth, $p \in M$ be fixed. Suppose

$$
d f_{p}: T_{p} M \rightarrow T_{f(p)} N
$$

is injective. Then there exist local coordinates $\left(x^{1}, \ldots, x^{k}\right)$ about $p,\left(y^{1}, \ldots, y^{n}\right)$ about $f(p)$ such that in these coordinates, f has the form

$$
\left(x^{1}, \ldots, x^{k}\right) \mapsto\left(x^{1}, \ldots x^{k}, 0, \ldots, 0\right)=\left(y^{1}, \ldots, y^{n}\right)
$$

near p.
This says " f is smoothly equivalent to i ". This means that any immersion can be straightend, out at least locally.
Proof later.
Corollary 4.6 If $d f_{p}$ is injective at p then $d f_{p}$ will be injective for all q near p.
So $\left\{p \in M \mid d f_{p}\right.$ injective $\}$ is open. "That is, injectivity of the differential of f is an open condition on points of M ".

Corollary 4.7 The image under an immersion of a sufficiently small open set of M is a submanifold of N.

Question:

When is the image of a smooth map a submanifold of the target manifold?
Theorem 4.8 If $f: M \rightarrow N$ is an injective immersion and a homeomorphism onto it's image ${ }^{2}$, then $f(M)$ is a smooth submanifold of N and f is a diffeomorhism from M to $f(M)$.

Proof

[^0]i. Fix $q \in f(M), p:=f^{-1}(q)$ (unique, $f: M \rightarrow f(M)$ bijective). By the Local Immersion Theorem, $\exists U_{\text {open }} \ni p, W_{\text {open }} \ni q$ such that
$$
f \mid U: U \rightarrow W
$$
is the cannonical linear immersion
$$
i: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{n-k}
$$
in coordinate systems $\left(x^{1}, \ldots, x^{k}\right)$ on U and $\left(y^{1}, \ldots, y^{n}\right)$ on W. Thus $f(U)$ is a submanifold of N and $f \mid U$ is a diffeomorphism from U to $f(U)$. Since f is a homeomorphism from M to $f(M)$ and U is open in $M, f(U)$ is open in $f(M)$, i.e.
$$
f(U)=V \cap f(M)
$$
for some V open in N.
This tells us: $f(U)$ is cleanly separated via V from the rest of $f(M)$.
In fact, we have that $f(M) \cap V$ is a submanifold of N. (Recall that in the coordinates y^{1}, \ldots, y^{n} on N near $q, f(M)$ maps to an open set in \mathbb{R}^{k})

Since such a V can be found about any point q of $f(M)$, it follows that $f(M)$ is a submanifold of N.
ii. $f: M \rightarrow f(M)$ is a local diffeomorphism by the above, and $f: M \rightarrow$ $f(M)$ is a homeomorphism. So $f^{-1}: f(M) \rightarrow M$ exists. Using the Inverse Function Theorem, f^{-1} is smooth.

Homeomorphism-ness is hard to test directly.
Definition If $f: M \rightarrow N$ satisfies the conclusions of the previous Theorem (ie $f(M)$ is a submanifold of N and $f: M \rightarrow f(M)$ is a diffeomorphism), we call f an embedding of M in N.

Theorem 4.9 Suppose $f: M \rightarrow N$ is an injective immersion and M is compact. Then f is an embedding.

Proof Must show: $f: M \rightarrow f(M)$ homeomorphism. Note that f is bijective and continuous. Thus it suffices to show that f^{-1} is continuous, i.e. show: if U open in M then $f(U)$ is open in $f(M)$.

$$
\begin{aligned}
U \text { open in } M & \Rightarrow M \backslash U \text { closed in } M \\
& \Rightarrow M \backslash U \text { compact (since } M \text { is compact } \\
& \Rightarrow f(M \backslash U)=f(M) \backslash f(U) \text { compact } \\
& \Rightarrow f(M) \backslash f(U) \text { closed in } f(M) \\
& \Rightarrow f(U) \text { open in } f(M) .
\end{aligned}
$$

Proof (Local Immersion Theorem)

The theorem is entirely local, so without loss of generality we may assume

$$
f: \mathbb{R}^{k} \supseteq U \rightarrow V \subseteq \mathbb{R}^{n}, U, V \text { open, } p=0
$$

Without loss of generality (via postcomposition with a linear tronsformation of \mathbb{R}^{n}) we may assume

$$
\begin{aligned}
d f_{p}=i: \mathbb{R}^{k} \rightarrow & \mathbb{R}^{n} \\
\left(x^{1}, \ldots, x^{k}\right) \mapsto & \left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right) \\
& \text { (canonical linear immersion) }
\end{aligned}
$$

To apply the Inverse Function Theorem we augment \mathbb{R}^{k} to \mathbb{R}^{n} by adding $n-k$ new variables. We extend f to a new function F by

$$
\begin{aligned}
U \times \mathbb{R}^{n-k} & \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{n-k} \\
\left(x^{\prime}, x^{\prime \prime}\right) & \mapsto f\left(x^{\prime}\right)+\left(0, x^{\prime \prime}\right)
\end{aligned}
$$

Compute for: $\left(X^{\prime}, X^{\prime \prime}\right)=X \in T_{P}\left(U \times \mathbb{R}^{n-k}\right)=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$

$$
\begin{aligned}
d F_{p}\left(X^{\prime}, X^{\prime \prime}\right) & =\underbrace{d f_{p}}_{i}\left(X^{\prime}\right)+\left(0, X^{\prime \prime}\right) \\
& =\left(X^{\prime}, 0\right)+\left(0, X^{\prime \prime}\right) \\
& =\left(X^{\prime}, X^{\prime \prime}\right)
\end{aligned}
$$

i.e.

$$
d F_{p}=\mathrm{id}_{\mathbb{R}^{n}}
$$

As matrices:

$$
d F_{p}=(\underbrace{d f_{p}}_{x^{\prime}} \left\lvert\, \underbrace{\frac{0}{I}}_{x^{\prime \prime}}\right.)\binom{y^{\prime}}{y^{\prime \prime}}=\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)=I
$$

By the Inverse Function Theorem, $\exists W$ open $\ni p, F(W)$ open $\ni F(p, 0)=$ $f(p)$ such that

$$
F \mid W: W \rightarrow F(W)
$$

is a diffeomorphism. So $G:=(F \mid W)^{-1}$ is a valid chart for $F(W)$. So we can use $\left(x^{1}, \ldots, x^{n}\right)$ as coordinates on $F(W)$. Let $U_{1}:=W \cap(U \times\{0\})$.
Get: $\quad\left(x^{1}, \ldots, x^{k}\right) \quad$ coordinates on U,
$\left(X^{1}, \ldots, X^{n}\right)$ coordinates on $F(W)$
Then in these coordinates f has the form

$$
\left(x^{1}, \ldots x^{k}\right) \mapsto\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right) .
$$

Theorem 4.10 (Graphical Image Theorem) (Restatement of Local Immersion Theorem)
The image of a smooth map whose differential is injective at one point can be written locally, in the original target varibles $\left(y^{1}, \ldots, y^{n}\right)$, as the graph of $(n-k)$ of the variables as a function of remaining k.

Recall that if $f: M \rightarrow N$ is injective immersion and M compact then f is an embedding. Let's try to generalize this to M noncompact.

Definition $f: X \rightarrow Y$ is proper if $K \subseteq Y, K$ compact $\Rightarrow f^{-1}(K)$ compact
Theorem 4.11 If $f: M \rightarrow N$ injective immersion and proper then f is an embedding.

Proof Exercise.

Example $\mathbb{R} \rightarrow T^{2}$ with an irrational slope: injective immersion, not proper. The image is dense in T^{2} so it isn't an embedding.

Definition We call a topological space (X, \mathcal{T}) second countable if there exists a countable collection of open sets that generate the topology \mathcal{T} via arbitrary unions, i.e. \mathcal{T} has a countable base.

Example

$\mathbb{R} \quad\left\{\left.\left(\frac{p}{q}, \frac{r}{s}\right) \right\rvert\, p, q, r, s \in \mathbb{Z}, q, s \neq 0\right\}$ countable base
$\mathbb{R}^{n} \quad$ products of such intervals: countable base

Theorem 4.12 (Whitney Theorem) Every (paracompact or second countable) smooth n-manifold can be embedded smoothly in $\mathbb{R}^{2 n}$.

Example

$S^{1} \subseteq \mathbb{R}^{2} \quad$ embedding
$\mathbb{R} P^{2} \subseteq \mathbb{R}^{4} \quad$ Veronese embedding
$\mathbb{R} P^{2} \rightarrow \mathbb{R}^{3} \quad$ Boy's immersion
There exist no embedding of $\mathbb{R} P^{2}$ in \mathbb{R}^{3}

4.3 Submersions

Zero Sets

Question $f: M \rightarrow N$ smooth. When is $f^{-1}(q)$ a submanifold of M ?

Example

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$f(x, y):=x^{3}-y^{2}, f^{-1}(0)$ is a cone with a cusp (not smooth at $(0,0)$

$$
\nabla f=\left(3 x^{2}, 2 y\right)
$$

Consider

$$
\begin{aligned}
f: M & \rightarrow N \text { smooth } \\
d f_{p}: T_{p} M & \rightarrow T_{f(p)} N
\end{aligned}
$$

We require: $d f_{p}$ surjective $\forall p \in M$.
Example (Canonical linear projection) Let $n \geq k$ and define

$$
\begin{aligned}
\pi: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{k} \\
\left(x^{1}, \ldots, x^{n}\right) & \mapsto\left(x^{1}, \ldots, x^{k}\right) .
\end{aligned}
$$

Then π is a submersion.

Example

Then π_{M}, π_{N} are submersions.
Example (Exercise) $T M \xrightarrow{\pi} M$ is a submersion.
Theorem 4.13 (Local Submersion Theorem) $f: M^{n} \rightarrow N^{k}$ smooth, $p \in M, d f_{p}: T_{p} M \rightarrow T_{f(p)} N$ surjective. Then there are coordinates $\left(x^{1}, \ldots, x^{n}\right)$ near $p,\left(y^{1}, \ldots, y^{k}\right)$ near $f(p)$, such that f has the form

$$
\left(x^{1}, \ldots, x^{n}\right) \mapsto\left(y^{1}, \ldots, y^{k}\right)
$$

Notation:

$$
\begin{gathered}
\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k} \ni\left(x^{1}, \ldots, x^{k}, x^{k+1}, \ldots, x^{n}\right)=\left(x^{\prime}, x^{\prime \prime}\right) \\
\pi^{\prime}: \quad \mathbb{R} \rightarrow \mathbb{R}^{k}, \quad x \mapsto x^{\prime} \\
\pi^{\prime \prime}: \quad \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-k}, \quad x \mapsto x^{\prime \prime}
\end{gathered}
$$

Proof Since the theorem is local, we may work in open sets in Euclidean space:

$$
\begin{array}{ll}
f: U \subseteq \mathbb{R}^{n} & \rightarrow \\
\left(x^{1}, \ldots, x^{n}\right) & V \subseteq \mathbb{R}^{k} \\
& \left(y^{1}, \ldots, y^{k}\right)
\end{array}
$$

U, V open.
Precomposing f with an appropriate linear transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we may assume

$$
\begin{aligned}
d f_{p}=\pi^{\prime}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{k} \\
\left(x^{\prime}, x^{\prime \prime}\right) & \mapsto x^{\prime}
\end{aligned}
$$

To apply the Inverse Function Theorem, complete f to a map F as follows:

$$
\begin{aligned}
F: U & \rightarrow V \times \mathbb{R}^{n-k} \\
\left(x^{\prime}, x^{\prime \prime}\right) & \mapsto(f\left(x^{\prime}, x^{\prime \prime}\right), \underbrace{\pi^{\prime \prime}(x)}_{\equiv x^{\prime \prime}})
\end{aligned}
$$

Now let $X=\left(X^{\prime}, X^{\prime \prime}\right) \in T_{p}\left(\mathbb{R}^{k} \times \mathbb{R}^{n-k}\right)=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$

Compute

$$
\begin{aligned}
d F_{p}\left(X^{\prime}, X^{\prime \prime}\right) & =(\underbrace{d f_{p}}_{\pi^{\prime}}\left(X^{\prime}, X^{\prime \prime}\right), \underbrace{d \pi_{p}^{\prime \prime}}_{\pi^{\prime \prime}}\left(X^{\prime}, X^{\prime \prime}\right)) \\
& =\left(X^{\prime}, X^{\prime \prime}\right)
\end{aligned}
$$

So $d F_{p}=\operatorname{id}_{\mathbb{R}^{n}}$ is an isomorphism.

$$
(d F_{p}=(\underbrace{d f_{p}}_{x^{\prime}} \left\lvert\, \underbrace{\frac{0}{I}}_{x^{\prime \prime}}\right.)\binom{y^{\prime}}{y^{\prime \prime}}=\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right)=I)
$$

Thus by the Inverse Function Theorem, $\exists U_{1} \subseteq U$ open, $W \subseteq V \times \mathbb{R}^{n-k}$ open such that

$$
U_{1} \xrightarrow{F \mid U_{1}} W
$$

is a diffeomorphism. So $F \mid U_{1}$ is a valid chart map and we may replace the coordinates x^{1}, \ldots, x^{n} on U_{1} by the coordinates $y^{1}, \ldots y^{n}$ coming form W. Then U_{1} has the coordinates $\left(y^{1}, \ldots, y^{n}\right) . V \cap\left(W \cap \mathbb{R}^{k} \times\{0\}\right)$ has coordinates $\left(y^{1}, \ldots, y^{k}\right)$. In these coordinates, f is represented by

$$
\left(y^{1}, \ldots, y^{n}\right) \mapsto\left(y^{1}, \ldots, y^{k}\right) .
$$

Corollary $4.14 d f_{p}$ surjective at $p \Rightarrow d f_{p}$ surjective for all q near p (i.e. surjectivity of $d f$ is an open condition in the domain manifold.)

We return to our question:

When is the preimage $f^{-1}(q)$ a submanifold of M ?
Corollary 4.15 Let $f: M^{n} \rightarrow N^{k}$ be a submerison. Then $f^{-1}(q)$ is an ($n-k$)-dimensional submanifold of M for any $q \in N$.

Note that the Local Submersion Theorem is really the Implicit Function Theorem in disguise.
We can be more precise in an answer to the above question.
Definition $f: M \rightarrow N$ smooth

- $p \in M$ regular point if $d f_{p}$ surjective
- $p \in M$ critical point if $d f_{p}$ not surjective
- $q \in N$ regular value if every $p \in f^{-1}(q)$ is a regualar point
- $q \in N$ critical value if some $p \in f^{-1}(q)$ is a critical point.

Note that the set of regular points is open and the set of critical points is closed.

Example (Very standard!)

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
f(x, y) & :=x^{2}-y^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
d f & =2 x d x-2 y d y, \quad \text { or more precisly } \\
d f_{(x, y)} & =2 x d x_{(x, y)}-2 y d y_{(x, y)}
\end{aligned}
$$

Thus (x, y) critical $\Leftrightarrow d f_{(x, y)}=0 \Leftrightarrow(x, y)=(0,0)$
All $f^{-1}(q)$ are smooth exept $f^{-1}(0)$.
Corollary $4.16 f: M^{n} \rightarrow N^{k}$ smooth, $q \in N$ regular value, then $f^{-1}(q)$ is a smooth submanifold of M.

5 Lie Groups: S^{3} and $\mathrm{SO}(3)$

Definition A Lie group is a group that has the structure of a smooth manifold such that the group operations

$$
\begin{array}{cccccc}
G \times G & \rightarrow & G & G & \rightarrow & G \\
(a, b) & \mapsto & a b
\end{array} \quad a \quad l l a a^{-1}
$$

are smooth.

Example

$$
\begin{aligned}
\mathrm{O}(n) & :=\left\{A \in M^{n \times n} \mid A^{T} A=\mathbb{1}\right\} \\
& =\left\{A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid\langle A x, A y\rangle=\langle x, y\rangle \forall x, y \in \mathbb{R}^{n}\right\} \\
\mathrm{SO}(n) & :=\mathrm{O}(n) \cap\{\operatorname{det} A=1\} \quad \text { (orientation preserving) }
\end{aligned}
$$

Exercise Prove $\mathrm{O}(n)$ is a Lie group by showing that $\mathbb{1}$ is a regular value of the function

$$
A \in M^{n \times n} \mapsto A^{T} A \in M_{\text {symm }}^{n \times n}
$$

Example The group of isometries of any Riemannian manifold is a Lie group (not easy at this stage).

Example

$$
\operatorname{Isom}\left(\mathbb{R}^{n}\right)=\left\{x \mapsto A x+b \mid A \in \mathrm{O}(n), b \in \mathbb{R}^{n}\right\}
$$

Exercise What is Isom $\left(T_{\text {square }}^{2}\right)$?

5.1 Quaternions

$$
\begin{aligned}
\mathcal{H} & :=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\} \\
& \cong \mathbb{R}^{4} \text { as a vector space over } \mathbb{R}
\end{aligned}
$$

$(\mathcal{H},+, \cdot)$ is an algebra over \mathbb{R}.
Multiplication: 1 is multiplicative unit, and we require

$$
i j=-j i=k, j k=-k j=i, k i=-i k=j
$$

so that

$$
\begin{aligned}
(a+b i+c j+d k)(e+f i+g j+h k) & =a e-b f-c g-d h \\
& +(a f+b e+c h-d g) i \\
& +(a g+c e-b h+d f) j \\
& +(d e+a h+b g-c f) k
\end{aligned}
$$

Let $u=a+b i+c j+d k$ define $\bar{u}:=a-b i-c j-d k$
Check: $\overline{\bar{u}}=u, \overline{u v}=\bar{v} \bar{u}$.
Set $|u|^{2}:=u \bar{u}=a^{2}+b^{2}+c^{2}+d^{2}>0$ (usual norm on \mathbb{R}^{4}).
Observe:

- $\frac{\bar{u}}{|u|^{2}}$ is the inverse of $u \neq 0$ so $(\mathcal{H} \backslash\{0\}, \cdot)$ is a Lie group.
- $|u v|^{2}=u v \overline{u v}=u v \bar{v} \bar{u}=|v|^{2}|u|^{2}$ i.e. $|u v|=|u||v|$, , $|\cdot|$ is multiplicative".
- $S^{3}:=\{u \| u \mid=1\}$ is closed under multiplication and inversion, so $\left(S^{3}, \cdot\right)$ is a Lie group called the group of unit quaternions. Note that $S^{3} \cong \mathrm{SU}(2) \cong \mathrm{Sp}(1)$

Definition A 1-parameter subgroup of a Lie group G is a homomorphism

$$
(\mathbb{R},+) \rightarrow(G, \cdot)
$$

Example

$$
\begin{aligned}
(\mathbb{R},+) & \rightarrow \mathbb{C} \subseteq(\mathcal{H}, \cdot) \\
\theta & \mapsto e^{i \theta}:=\cos \theta+i \sin \theta
\end{aligned}
$$

Then $e^{i(\phi+\psi)}=e^{i \phi} \cdot e^{i \psi}$, so $\theta \mapsto e^{i \theta}$ is a 1-parameter subgroup of S^{3}. Now set

$$
\begin{aligned}
e^{j \theta} & :=\cos \theta+j \sin \theta \\
e^{k \theta} & :=\cos \theta+k \sin \theta
\end{aligned}
$$

These are also 1-parameter subgroups.
Take $u:=a i+b j+c k, a^{2}+b^{2}+c^{2}=1$. Verify $u^{2}=-1$ so $\{a+b u \mid a, b \in \mathbb{R}\} \cong \mathbb{C}$ as an algebra. Then

$$
e^{u \theta}:=\cos \theta+u \sin \theta
$$

is also a 1-parameter sub group of S^{3}.
Picture of S^{3}

$$
\begin{aligned}
& i \mapsto(1,0,0) \\
& j \mapsto(0,1,0) \\
& 1 \mapsto(0,0,0) \\
& S^{3} \backslash\{-1\} \cong \stackrel{\cong}{\rightrightarrows} \mathbb{R}^{3}
\end{aligned}
$$

In stereographic projection, the 1-parameter subgroups become lines through the origin.
All 1-parameter subgroups are equivalent, i.e. $\exists v \in S^{3}$ such that $v\left(e^{u \theta}\right) v^{-1}=$ $e^{i \theta}$ (Proof later).

5.2 Smooth actions, left, right, adjoint actions of a Lie group on itself

Definition G Lie group, M smooth manifold. A smooth action of G on M is a smooth map

$$
\begin{aligned}
\phi: G \times M & \rightarrow M \\
(a, x) & \mapsto \phi(a, x) \equiv \phi_{a}(x)
\end{aligned}
$$

such that

$$
\begin{aligned}
\phi_{e} & =\operatorname{id}_{M} \\
\phi_{a} \circ \phi_{b} & =\phi_{a b} .
\end{aligned}
$$

Consequences

- Each ϕ_{a} is diffeomorphism. To see this, compute

$$
\phi_{a} \phi_{a^{-1}}=\phi_{a a^{-1}}=\phi_{e}=\operatorname{id}_{M}
$$

so ϕ_{a} is invertible with $\left(\phi_{a}\right)^{-1}=\phi_{a^{-1}}$, so ϕ_{a} is a diffeomorphism.

- ϕ yields a homomorphism

$$
\begin{aligned}
\phi: G & \rightarrow \operatorname{Diff}(M) \\
a & \mapsto \phi_{a} .
\end{aligned}
$$

in agreement with our previous defintion of an action of a group on a manifold.

Definition

$$
\begin{aligned}
L_{a}: & G \rightarrow G \quad \text { left translation } \\
& b \mapsto a b
\end{aligned}
$$

$a \mapsto L_{a}$ and $a \mapsto R_{a^{-1}}$ are smooth actions of G on itself:

$$
\begin{array}{cl}
L_{a} L_{b}=L_{a b}, & L_{e}=\operatorname{id}_{G} \\
R_{a^{-1}} R_{b^{-1}}=R_{(a b)^{-1}}=R_{b^{-1} a^{-1}}, & R_{e}=\operatorname{id}_{G}
\end{array}
$$

Note also that $L_{a} R_{b}=R_{b} L_{a}$.
Definition The adjoint action is defined by

$$
\begin{aligned}
\operatorname{Ad}_{a}: & G \rightarrow G \\
& b \mapsto a b a^{-1}=L_{a} R_{a^{-1}} b=R_{a^{-1}} L_{a} b
\end{aligned}
$$

which is also a smooth action.

Example

$$
\mathbb{R}^{4} \cong \mathcal{H}=\{a+b i+c j+d k\} \supseteq S^{3}
$$

Take $u \in S^{3}$, then
$L_{u}, R_{u}, \operatorname{Ad}_{u}: \mathcal{H} \rightarrow \mathcal{H}$ are isometries, since $|u v|=|u||v|=|v|$. Set

$$
\mathbb{R}^{3}:=\{x i+y j+z k \mid x, y, z \in \mathbb{R}\}
$$

Note that

$$
T_{1} S^{3} \perp \mathbb{R} \cdot 1
$$

where $a \in \mathbb{R}$.

Now Ad_{u} preserves $\mathbb{R} \cdot 1$, so Ad_{u} preserves \mathbb{R}^{3}, and

$$
\operatorname{Ad}_{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

is an isometry preserves O . Thus $\operatorname{Ad}_{u} \in \mathrm{O}(3)$ and

$$
\mathrm{Ad}: S^{3} \rightarrow \mathrm{O}(3)
$$

is a homomorphism, i.e. $\operatorname{Ad}_{u} \operatorname{Ad}_{v}=\operatorname{Ad}_{u v}$. Now $\mathrm{O}(3)$ consits of two connected components, namely the orientation-preserving orthogonal transformations $(\mathrm{SO}(3))$, and the orientation-reversing ones. Clearly $\mathrm{Ad}: S^{3} \rightarrow \mathrm{O}(3)$ is continuous (you may check this by finding a formula for it), and S^{3} is connected. Thus $\operatorname{Ad}\left(S^{3}\right) \subseteq \mathrm{SO}(3)$, i.e.

$$
\mathrm{Ad}: S^{3} \rightarrow \mathrm{SO}(3)
$$

Exercise Find a formula for $\operatorname{Ad}_{u} \in \mathrm{SO}(3)$ and interpret it geometrically.

Kernel of Ad:

$$
\begin{align*}
u \in \operatorname{ker}(\mathrm{Ad}) & \Leftrightarrow u v u^{-1}=v \forall v \in \mathbb{R}^{3} \\
& \Leftrightarrow u=a \in \mathbb{R} \cdot 1 \tag{check}\\
& \Rightarrow u= \pm 1 \\
\operatorname{ker}(\mathrm{Ad}) & =\{ \pm 1\} \\
\text { so } S^{3} /\{ \pm 1\} & \cong \mathrm{SO}(3) \text { (as a group) }
\end{align*}
$$

Exercise One easily verifies: $\mathrm{Ad}: S^{3} \rightarrow \mathrm{SO}(3)$ is a $2: 1$ covering map that takes u and $-u$ to the same point in $\mathrm{SO}(3)$. So

$$
\mathrm{SO}(3) \stackrel{\text { diff }}{\cong} S^{3} /\{ \pm 1\} \stackrel{\text { diff }}{\cong} \mathbb{R} P^{3}
$$

as smooth manifolds.
Recall the following lemmas, which might help.
Lemma 5.1 A local diffeomorphism $M \rightarrow N$ with a compact domain M is a covering map.

Lemma 5.2 A covering map with connected target has a constant preimage size

$$
\# \pi^{-1}(q), q \in N
$$

6 Lie brackets, flows of vector fields, Lie derivatives

6.1 Vector fields

Notation:

$$
X: M \rightarrow T M, X(p) \in T_{p} M \forall p
$$

Let ψ be a chart $\psi: U \subseteq M \rightarrow \mathbb{R}^{n}$

$$
X(p)=\sum_{i=1}^{n} X^{i}\left(\psi^{-1}\left(x^{1}, \ldots, x^{n}\right)\right)\left(\frac{\partial}{\partial x^{i}}\right)_{p}
$$

Warning Standard abuse of notation:

$$
=\sum_{i=1}^{n} X^{i}\left(x^{1}, \ldots, x^{n}\right) \frac{\partial}{\partial x^{i}}
$$

where we identify p with $\left(x^{1}, \ldots, x^{n}\right)$, i.e. we drop ψ.

$$
\begin{aligned}
C^{\infty}(T M) & :=\left\{C^{\infty} \text { vector fields on } M\right\} \\
\Gamma(T M) & :=\{\text { all vector fields on } M\}
\end{aligned}
$$

Also write: $C^{\infty}(M, T M), C^{\infty}(U, T M)$, where $U \subseteq M$ is open.

$$
\begin{aligned}
& C^{\infty}(M):=\left\{C^{\infty} \text { functions } M \rightarrow \mathbb{R}\right\} \\
& C^{0}(M):=\{\text { continuous functions } M \rightarrow \mathbb{R}\} \\
& C^{1}(M):=\{\text { continuously differentiable functions } M \rightarrow \mathbb{R}\} \\
& C^{k}(M):=\{\text { functions } M \rightarrow \mathbb{R} \text { such that all derivatives of orders } \\
&0, \ldots, k \text { exist and are continuous (in coordinates) }\}
\end{aligned}
$$

We say X is $C^{k} \Leftrightarrow X^{i}\left(x^{1}, \ldots, x^{n}\right)$ are C^{k}

6.1.1 Lie Brackets

We wish to define $[X, Y], X, Y \in C^{\infty}(T M) .^{3}$

[^1]We have the map

$$
\begin{aligned}
C^{\infty}(T M) \times C^{\infty}(M) & \rightarrow \Gamma(M):=\{\text { functions } M \rightarrow \mathbb{R}\} \\
(X, f) & \mapsto X \cdot f \\
(X \cdot f)(p) & :=\underbrace{X(p)}_{\in T_{p} M} \cdot \underbrace{f}_{\in C^{\infty}(M)} \in \mathbb{R}
\end{aligned}
$$

Proposition 6.1 $X \cdot f \in C^{\infty}(M)$
Proof Use a chart

$$
\begin{aligned}
\psi: U & \rightarrow \psi(U) \subseteq \mathbb{R}^{n} \\
p & \mapsto\left(x^{1}, \ldots, x^{n}\right)
\end{aligned}
$$

Compute

$$
\begin{aligned}
(X \cdot f)(p) & =X(p) \cdot f \\
& =X^{i}(p)\left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot f \\
& =X^{i}\left(\psi^{-1}\left(x^{1}, \ldots, x^{n}\right)\right) \frac{\partial\left(f \circ \psi^{-1}\right)}{\partial x^{i}}\left(x^{1}, \ldots, x^{n}\right)
\end{aligned}
$$

Consider the 2nd order differential operator $X \cdot(Y \cdot f)$, also written as $X Y f$.
Proposition 6.2 Let $X, Y \in C^{\infty}(T M)$. Then there exists a unique vector field $Z \in C^{\infty}(T M)$ such that

$$
Z \cdot f=(X Y-Y X) f, f \in C^{\infty}(M)
$$

Basic idea: the 2nd order derivatives cancel.
Proof Get an expression for $(X Y-Y X) f$ in coordinates. Suppress ψ.
Write

$$
X=X^{i} \frac{\partial}{\partial x^{i}}, Y=Y^{j} \frac{\partial}{\partial x^{j}} .
$$

Compute

$$
\begin{aligned}
X Y f & =\sum_{i} X^{i} \frac{\partial}{\partial x^{i}}\left(\sum_{j} Y^{j} \frac{\partial f}{\partial x^{j}}\right) \\
& =\sum_{i, j} X^{i} Y^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}+X^{j}\left(\frac{\partial Y^{i}}{\partial x^{j}}\right) \frac{\partial f}{\partial x^{i}} \\
Y X f & =\sum_{i, j} Y^{i} X^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}+Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}}
\end{aligned}
$$

So we get

$$
(X Y-X Y) f=\sum_{i, j}\left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \frac{\partial f}{\partial x^{i}} .
$$

Define the smooth vector field Z in the chart U by

$$
Z:=\sum_{i} Z^{i} \frac{\partial}{\partial x^{i}}, Z^{i}:=\sum_{j}\left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right)
$$

Then

$$
Z \cdot f=(X Y-Y X) f
$$

This shows Z is well-defined independent of parametrization, smooth and unique.

Definition

$$
\begin{gathered}
{[\cdot, \cdot]: C^{\infty}(T M) \times C^{\infty}(T M) \rightarrow C^{\infty}(T M)} \\
\quad[X, Y]:=X Y-Y X
\end{gathered}
$$

(as differential operator on $C^{\infty}(M)$) is called a Lie bracket.
Proposition 6.3 Let $X, Y, Z \in C^{\infty}(T M), a, b \in \mathbb{R}, f, g \in C^{\infty}(M)$. Then
i. $[X, Y]=-[Y, X]$ (anticommutative)
ii. $[a X+b Y, Z]=a[X, Z]+b[Y, Z]$ (bilinear)
iii. $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$ (Jacobi identity)
iv. $[f X, g Y]=f g[X, Y]+f(X \cdot g) Y-g(Y \cdot f) X$

Proof Jacobi Identity

$$
\begin{gathered}
{[[X, Y], Z]=[X Y-Y X, Z]=(X Y-Y X) Z-Z(X Y-Y X)} \\
{[[Y, Z], X]=[Y Z-Z Y, X]=(Y Z-Z Y) X-X(Y Z-Z Y)} \\
{[[Z, X], Y]=[Z X-X Z, Y]=(Z X-X Z) Y-Y(Z X-X Z)} \\
\end{gathered}
$$

Definition A vector space V equipped with a bracket $[\cdot, \cdot]: V \times V \rightarrow V$ satisfying $i, i i, i i i$ is called a Lie algebra. So $C^{\infty}(T M)$ forms a Lie algebra.

Example Another famous Lie algebra:
V vector space over a field \mathbb{K}

$$
\begin{aligned}
\operatorname{End}_{\mathbb{K}}(V) & :=\operatorname{Hom}_{\mathbb{K}}(V, V) \\
{[A, B] } & :=A B-B A
\end{aligned}
$$

$\left(\operatorname{End}_{\mathbb{K}}(V),[\cdot, \cdot]\right)$ is a Lie algebra.
Example $M^{n \times n}(\mathbb{R}), M^{n \times n}(\mathbb{C})$.
Relationships between the two kinds of $[\cdot, \cdot]$ occurs via the Lie Algebra of (matrix) Lie groups.

6.2 Integral curves and flows of vector fields ${ }^{4}$

Definition An integral curve of X is a path $\gamma:[a, b] \rightarrow M$ such that

$$
\dot{\gamma}(t)=X(\gamma(t)), t \in[a, b] .
$$

In coordinates, this is an $n \times n$ first order ODE system. We write and obtain:

$$
\begin{aligned}
\gamma(t) & =\left(x^{1}(t), \ldots, x^{n}(t)\right) \in U \subseteq \mathbb{R}^{n} \\
\frac{d x^{1}}{d t} & =X^{1}\left(x^{1}(t), \ldots, x^{n}(t)\right) \\
\vdots & \\
\frac{d x^{n}}{d t} & =X^{n}\left(x^{1}(t), \ldots, x^{n}(t)\right), a \leq t \leq b .
\end{aligned}
$$

6.2.1 Existence, Uniquenes and smooth dependence on initial data

Consider the ODE system

$$
(*)\left\{\begin{array}{cccc}
\frac{d \gamma(t)}{d t} & = & X(\gamma(t)) & -a<t<b, a, b>0 \\
\gamma(0) & = & p & \text { require: } \gamma \text { is } C^{1}
\end{array}\right.
$$

Theorem 6.4 (Short-term existence, uniqueness, regularity for γ) Let $X \in C^{\infty}(T M)$. Then
i. $\exists \delta>0$ such that (*) has a C^{1} solution defined for $-\delta<t<\delta$. (Existence)

[^2]ii. Any C^{1} solution of (*) is C^{∞} (Regularity)
iii. Any two C^{1} solutions of (*) on $(-a, b),(-c, d), a, b, c, d>0$ agree on their commmon interval of definition $(-a, b) \cap(-c, d)$. (Uniqueness)

Proof

Analysis: Either Inverse Function Theorem on Banach spaces, or a successive approximation method ${ }^{5}$.
ii. Exercise

Remark $X \in C^{k} \Rightarrow$ Theorem holds but with γ in C^{k+1}

Dependence on Initial Conditions

Write $\gamma_{x}(t) \equiv \phi(x, t) \equiv \phi^{t}(x)$ (integral curve with initial point $\gamma_{x}(0)=x$). The equation ($*$) becomes

$$
(*)^{\prime}\left\{\begin{aligned}
\frac{\partial \phi(x, t)}{\partial t} & =X(\phi(x, t)), & & x \in U,-a<t<b \\
\phi(x, 0) & =x, & & x \in U .
\end{aligned}\right.
$$

Theorem 6.5 (Dependence on initial conditions of ϕ) Let $X \in C^{\infty}(T M), p \in$ M.
i. $\exists U \ni p, \delta>0$ and a function $\left(C^{1}\right.$ in $\left.t\right) \phi: U \times(-\delta, \delta) \rightarrow M$ that solves $(*)^{\prime}$.
ii. Any solution of $(*)^{\prime}$ that is C^{1} in t is C^{∞} in x and t.
iii. Any two solutions $\phi: U \times(-a, b) \rightarrow M, \psi: V \times(-c, d) \rightarrow M$ agree on the intersection of their domains.

Remark $X \in C^{k} \Rightarrow \phi$ is C^{k} in (x, t) (recall from above that ϕ is C^{k+1} in t).
New point of view:

$$
\phi_{t}: \underbrace{U}_{\subseteq M} \rightarrow \underbrace{\phi_{t}(U)}_{\subseteq M}
$$

The family $\left(\phi_{t}\right)_{-a<t<b}$ is called a local flow of X.

Notation:

$A \subset \subset B$ means \bar{A} is compact and $\bar{A} \subseteq B$, read " A compactly contained in $B^{\prime \prime}$. If \bar{A} is compact, we say A is precompact.

[^3]Theorem 6.6 (Larger \boldsymbol{U}, smaller $\boldsymbol{\delta}$) For any $U \subset \subset M \exists \delta>0$ such that the local flow is defined on $U \times(-\delta, \delta)$.

Proof By compactness of \bar{U}, we may cover \bar{U} by finitely many open sets V_{1}, \ldots, V_{n} such that there are flows (solving $\left.(*)^{\prime}\right)$

$$
\phi_{i}: V_{i} \times\left(-\delta_{i}, \delta_{i}\right) \rightarrow M .
$$

Set $\delta:=\min \delta_{i}>0$. Define

$$
\phi: U \times(-\delta, \delta) \rightarrow M
$$

by:

$$
\phi:=\phi_{i} \text { on } V_{i} \times(-\delta, \delta)
$$

(Consistent by uniqueness assertion (iii) in previous Theorem)

Theorem 6.7 (Pseudogroup Property) If $\phi^{t} \circ \phi^{s}$ is defined on U for $|s|<S,|t|<T$, then ϕ^{u} is defined on U for $|u|<S+T$ and

$$
\phi^{t+s}=\phi^{t} \circ \phi^{s} \text { on } U
$$

If $\phi_{t}: M \rightarrow M$ exists for all time $t \in \mathbb{R}$, then ϕ_{t} is called a complete flow. Note that ϕ_{t} injective \Leftrightarrow uniqueness of initial value problem for backwards flow.

Proof Fix $|s|<S,|t|<T$. Combine the two paths via

$$
\alpha(u):=\left\{\begin{array}{cc}
\gamma_{x}(u) & 0 \leq u \leq s \\
\gamma_{\gamma_{x}(s)}(u-s) & s \leq u \leq s+t
\end{array}\right.
$$

Note that

$$
\begin{aligned}
\gamma_{x}(s)=y=\gamma_{\gamma_{x}}(0) & \Rightarrow \alpha \text { is } C^{0} \\
\dot{\gamma}_{x}(s) \stackrel{(*)}{=} X(y) \stackrel{(*)}{=} \dot{\gamma}_{\gamma_{x}(s)} & \Rightarrow \alpha \text { is } C^{1}
\end{aligned}
$$

Also α solves $(*)$. So define (extend) γ via $\gamma_{x}(u):=\alpha(u), 0 \leq u \leq t+s$.
Remark (Used in above step) If $\gamma(u), a \leq u \leq b$ solves ODE $(*)$, then so does the time shifted curve $\gamma(u-k), a+k \leq u \leq b+k$.

So $\phi^{u}: U \rightarrow M$ exists, $0 \leq u \leq t+s$ and $\phi^{t} \circ \phi^{s}=\phi^{t+s}$. Speciffically:

$$
\begin{aligned}
\phi^{t} \circ \phi^{s}(x) & =\phi^{t}\left(\phi^{s}(x)\right) \\
& =\phi^{t}\left(\gamma_{x}(s)\right) \\
& =\gamma_{\gamma_{x}(s)}(t) \\
& =\alpha(s+t) \\
& =\gamma_{x}(s+t) \\
& =\phi^{s+t}(x) .
\end{aligned}
$$

Corollary 6.8 Assume U open and ϕ_{t} exists on U. Then: $\phi_{t}(U)$ is open and $\phi_{t} \mid U: U \rightarrow \phi_{t}(U)$ is a diffeomorphism.

Proof

i. Assume first that ϕ_{t} is complete. Then by previous Theorem:

$$
\phi_{-t} \circ \phi_{t}=\phi_{-t+t}=\phi_{0}=\operatorname{id}_{M} .
$$

So ϕ_{t} is invertible with inverse

$$
\left(\phi_{t}\right)^{-1}=\phi_{-t}: M \rightarrow M
$$

and ϕ_{-t} is smooth, so $\Rightarrow \phi_{t}: M \rightarrow M$ is a diffeomorphism and $\phi_{t}(U)$ open for any open $U \subseteq M$ and $\phi_{t} \mid U: U \rightarrow \phi_{t}(U)$ is a diffeomorphism.
ii. Next we do the global case (when ϕ_{t} is not complete).

Let $U \subset \subset M$ and try for small t. Choose V open such that $U \subset \subset$ $V \subset \subset M$. Choose δ so small that

$$
\begin{array}{cc}
\phi: \quad U \times[0, \delta] & \rightarrow V \\
\phi: V \times[-\delta, 0] & \rightarrow M
\end{array}
$$

are defined. Then

$$
\phi_{-\delta} \circ \phi_{\delta}: U \rightarrow M
$$

is defined, so by above Theorem $\phi_{-\delta} \circ \phi_{\delta}=\mathrm{id}$ on U. It follows that $\phi_{\delta} \mid U$ is a local diffeomorphism, $\phi_{\delta}(U)$ is open, and $\phi_{\delta} \mid U$ is a diffeomorphism.

Lemma 6.9 A smooth map

$$
\phi: U \rightarrow M(U \text { open })
$$

with a smooth left inverse $\psi: A \supseteq \phi(U) \rightarrow M, A$ open

$$
\psi \circ \phi=i d_{U}
$$

is a diffeomorphism and $\phi(U)$ is open.
iii. Next, let $U \subset \subset M$ and let $t>0$ be an arbitrary time such that ϕ_{t} exsists on \bar{U}. Choose V open such that

$$
\phi(\bar{U} \times[0, t]) \subset \subset V \subset \subset M
$$

For δ small enough, ϕ_{δ} will be defined on V and $\phi_{\delta}: V \rightarrow \phi_{\delta}(V)$ will be a diffeomorphism. Making δ slightly smaller, we can arrange

$$
t=k \delta, \phi_{t}=\underbrace{\phi_{\delta} \circ \cdots \circ \phi_{\delta}}_{k}
$$

on U. Thus $\phi_{t} \mid U$ is a diffeomorphism onto the open set $\phi_{t}(U)$.
iv. Now let $U \subseteq M$ be an arbitrary open set and let ϕ_{t} be defined on U. For ever $V \subset \subset U, \phi_{t}(V)$ is open and $\phi_{t} \mid V: V \rightarrow \phi_{t}(V)$ is a diffeomorphism. It follows that $\phi_{t}(U)$ is open and $\phi_{t} \mid U: U \rightarrow \phi_{t}(U)$ is a diffeomorphism.

Get in succession:

$$
\begin{gathered}
\phi_{\delta}: V \rightarrow \phi_{\delta}(V) \text { diffeomorphism, } \phi_{\delta}(V) \text { open } \\
U \subseteq V, \text { so } \phi_{\delta}(U) \text { is open } \\
\phi_{\delta} \mid U: U \rightarrow \phi_{\delta}(U) \text { diffeomorphism } \\
\phi_{\delta}(U) \subseteq V, \text { so } \phi_{\delta}\left(\phi_{\delta}(U)\right) \text { is open } \\
\phi_{\delta} \mid \phi_{\delta}(U): \phi_{\delta}(U) \rightarrow \phi\left(\phi_{\delta}(U)\right) \text { diffeomorphism } \\
\text { Thus } \phi_{2 \delta}=\phi_{\delta} \circ \phi_{\delta}: U \rightarrow \phi_{\delta} \circ \phi_{\delta}(U) \text { diffeomorphism } \\
\text { Induction } \Rightarrow \phi_{t}: U \rightarrow \phi_{t}(U) \text { diffeomorphic } \\
\phi_{t}(U) \text { is open. }
\end{gathered}
$$

Remark on uniqueness

$$
\dot{x}(t)=X(x(t)), x(t) \in U \subseteq \mathbb{R}^{n}
$$

Sufficient conditions for uniqueness: X is Lipschitz.

Example Fix $0<\alpha<1$. Consider

$$
\left\{\begin{aligned}
\dot{x} & =x(t)^{\alpha}, \quad t \geq 0 \\
x(0) & =0
\end{aligned}\right.
$$

Solving, we find a solution

$$
x(t)=((1-\alpha) t)^{\frac{1}{1-\alpha}}, t \geq 0
$$

In fact, we have two solutions

$$
\begin{aligned}
x(t) & :=\left\{\begin{array}{cc}
0 & t \leq 0 \\
((1-\alpha) t)^{\frac{1}{1-\alpha}}, & t \geq 0
\end{array}\right. \\
y(t) & :=0 \quad t \in \mathbb{R} .
\end{aligned}
$$

Since $\frac{1}{1-\alpha}>1, x(t)$ is C^{1} in t.
Question How far can we extend the flow?
Definition A vector field is called complete if it possesses a flow $\phi_{t}: M \rightarrow M$ defined for all $-\infty<t<\infty$.

Remark Then $t \mapsto \phi_{t}$ defines a 1-parameter subgroup of $\operatorname{Diff}(M)$, or equivalently, a smooth action of \mathbb{R} on M.

Example

$$
X(x, y):=(x,-y) \text { on } \mathbb{R}^{2}
$$

A typical solution traces out a curve: $x y=$ const, and has the form

$$
\gamma(t):=\left(C_{1} e^{t}, C_{2} e^{-t}\right), t \in \mathbb{R}
$$

So this X is complete.

Example

$$
\dot{x}=x^{2}, x(t) \in M:=\mathbb{R}, X(x)=x^{2} \frac{\partial}{\partial x} .
$$

Solution: $x(t)=\frac{1}{C-t},-\infty<t<c$ (or $c<t<\infty$) So this X is incomplete.
Example Clearly

$$
\dot{y}=1, y(t) \in N:=(-\infty, 0)
$$

is incomplete
Transform the equation to $x=-\frac{1}{y}, \dot{x}=\frac{\dot{y}}{y^{2}}=\frac{1}{(1 / x)^{2}}=x^{2}$. It becomes equivalent to the previous problem, with $M=(0, \infty)$. In both cases, the trajectory runs off the end of the manifold in finite time

Example

$$
X=\frac{\partial}{\partial x}, U \subseteq \mathbb{R}^{2}
$$

Typically incomplete.
Corollary 6.10 (to group property and short-time existence) If ϕ : $U \times[0, T) \rightarrow M$ and $\phi(U \times[0, T)) \subset \subset M$ then ϕ can be extended to a solution $\phi: U \times[0, T+\delta) \rightarrow M$ for some $\delta>0$.

Proof Pick V such that

$$
\phi(U \times[0, T)) \subseteq V \subset \subset M
$$

ϕ_{t} is defined on V for $0 \leq t<T$ and $\delta>0$ such that there is a local flow

$$
\phi: V \times[0, \delta) \rightarrow M
$$

Then ϕ_{s} is defined on V for $0 \leq s<\delta$. Apply the group property to yield

$$
\phi^{s+t}=\phi^{s} \circ \phi^{t}=\phi^{u}, \quad 0 \leq u<T+\delta,
$$

i.e. we can extend ϕ to

$$
\phi: U \times[0, T+\delta) \rightarrow M
$$

Significance A trajectory $\gamma(t)$ can be continued as long as it stays in a compact set of M. (i.e. if $[0, T)$ is the maximum time of existence of $\gamma(t)$, then $\gamma(t)$ must leave every compact set of M.)

Corollary 6.11 If M is compact, then every smooth vector field on M is complete.

Theorem 6.12 If $X \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ has at most linear growth, i.e.

$$
|X(x)| \leq C_{1}|x|+C_{2}, x \in \mathbb{R}^{n},
$$

then X is complete.

Example

$$
\dot{x}=x, \dot{x}=x+1, \dot{x}=\left\{\begin{array}{cc}
\log x, & x \geq 1 \\
\cdots & x \leq 1
\end{array}\right.
$$

Proof Let $\dot{x}(t)=X(x(t)), x(t) \in \mathbb{R}^{n}, X: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
It follows:

$$
\begin{aligned}
\frac{d}{d t}|x(t)| & =\left\langle\frac{d x}{d t}, \frac{x}{|x|}\right\rangle \\
& \leq\left|\frac{d x}{d t}\right| \\
& =|X(x(t))| \\
& \leq C_{1}|x(t)|+C_{2}
\end{aligned}
$$

Compare $|x(t)|$ to the solution of

$$
\left\{\begin{aligned}
\frac{d a}{d t} & =C_{1} a+C_{2}, \quad a(t) \in \mathbb{R} \\
a(0) & =|x(0)|
\end{aligned}\right.
$$

Lemma 6.13

$$
|x(t)| \leq a(t), t \geq 0
$$

Proof Let $b(t):=|x(t)|-a(t)$. Compute

$$
\begin{aligned}
\frac{d b}{d t} & =\frac{d|x(t)|}{d t}-\frac{d a}{d t} \\
& \leq C_{1}|x|+C_{2}-\left(C_{1} a+C_{2}\right) \\
& =C_{1} b
\end{aligned}
$$

So $b(t)$ solves:

$$
\left\{\begin{array}{ccc}
b(0) & = & 0 \\
\frac{d b(t)}{d t} & \leq & C_{1} b(t)
\end{array}\right.
$$

Claim

$$
b(t) \leq 0 \forall t \geq 0
$$

To see this, we argue as follows.
On the open set $I \subseteq \mathbb{R}$ where we compute that $b(t)>0$, set $B(t):=\log b(t)$.
Write $I=\cup_{\alpha}\left(a_{\alpha}, b_{\alpha}\right)$, where $\left(a_{\alpha}, b_{\alpha}\right) \cap\left(a_{\beta}, b_{\beta}\right)=\varnothing . \frac{d B}{d t} \leq C_{1}$.
Now $B(t) \rightarrow-\infty$ as

$$
\text { so } B(t)-C_{1} t \rightarrow-\infty \text { as }
$$

$$
\begin{aligned}
& t \rightarrow a_{\alpha}{ }^{t} \quad \text { inside }\left(a_{\alpha}, b_{\alpha}\right) \\
& t \rightarrow a_{\alpha}{ }^{t}
\end{aligned}
$$

but $B(t)-C_{1} t$ is nonincreasing. This is impossible. Thus $I=\varnothing$.
This proves the claim.

Upshot:

$$
|x(t)| \leq a(t)=\left(|x(0)|+\frac{C_{2}}{C_{1}}\right) e^{C_{1} t}-\frac{C_{2}}{C_{1}}
$$

which is finite, as long as $0 \leq t<T$. This shows: $x([0, T))$ lies in a compact subset of \mathbb{R}^{n} for any $T<\infty$. Thus: $x(t)$ can be continued forever (i.e. $\forall t$).

Theorem 6.14 Let $X \in C^{\infty}(T M)$. Fix $p \in M$. If $X(p) \neq 0$, then there are coordinates $\left(x^{1}, \ldots, x^{n}\right)$ near p with $X(q)=\left(\frac{\partial}{\partial x^{1}}\right)_{q}$ for all q near p.

Meaning: There are no local invariants of nonzero vector fields (they are all the same, locally).

Proof Choose coords y^{1}, \ldots, y^{n} on a small neighborhood $U \ni p$ such that

$$
X(p)=\left(\frac{\partial}{\partial y^{1}}\right)_{p}, p=(0, \ldots, 0) .
$$

We have

$$
\begin{array}{lccc}
\phi: \quad U \times(-\varepsilon, \varepsilon) & \rightarrow & M \\
& \left(y^{1}, \ldots, y^{n}, t\right) & \mapsto & \left(\phi^{1}, \ldots, \phi^{n}\right) .
\end{array}
$$

Now $N:=U \cap\left\{y^{1}=0\right\}$ is a submanifold of M passing through p. Define

$$
\begin{array}{rlcc}
\psi:=\left.\phi\right|_{N \times(-\varepsilon, \varepsilon)}: & N \times(-\varepsilon, \varepsilon) & \rightarrow & M \\
& \left(y^{2}, \ldots, y^{n}, t\right) & \mapsto & \left(\psi^{1}, \ldots, \psi^{n}\right)
\end{array}
$$

Concretely. $\psi^{i}\left(y^{2}, \ldots, y^{n}, t\right):=\phi^{i}\left(0, y^{2}, \ldots, y^{n}, t\right)$. We wish to apply the Inverse Function Theorem to ψ at the point

$$
(p, 0) \in N \times(-\varepsilon, \varepsilon), \psi(p, 0)=p,
$$

to prove that $\left(y^{2}, \ldots, y^{n}, t\right)$ can be taken as coordinates on M near p. For $(q, t) \in N \times(-\varepsilon, \varepsilon):$

$$
(d \psi)_{(q, t)}: T_{(q, t)}(N \times(-\varepsilon, \varepsilon))=T_{q} N \times \mathbb{R} \rightarrow T_{\psi(q, t)} M
$$

Compute for $(q, t) \in N \times(-\varepsilon, \varepsilon)::$

$$
\begin{aligned}
(d \psi)_{(q, t)}\left(\left(\frac{\partial}{\partial t}\right)_{(q, t)}\right) & =\frac{\partial \psi}{\partial t}(q, t) \\
& =\frac{\partial \phi}{\partial t}(q, t) \\
& =X(\phi(q, t)) \\
& =X(\psi(q, t)) .
\end{aligned}
$$

At $(p, 0)$, we have:

$$
\begin{gathered}
\psi(p, 0)=p \\
d \psi_{(p, 0)}: T_{q} N \times \mathbb{R} \\
\frac{\partial}{\partial y^{2}}, \ldots, \frac{\partial}{\partial y^{n}}, \frac{\partial}{\partial t}
\end{gathered} \rightarrow \frac{T_{p} M}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{n}} .
$$

We get

$$
\left(\frac{\partial}{\partial t}\right)_{p, 0} \mapsto X(p)=\left(\frac{\partial}{\partial y^{1}}\right)_{p} \quad \text { (by above) }
$$

and

$$
\left(\frac{\partial}{\partial y^{i}}\right)_{(p, 0)} \mapsto\left(\frac{\partial}{\partial y^{i}}\right)_{p} i=2, \ldots, n
$$

since $\psi \mid N \times\{0\}$ is just the inclusion $N \rightarrow M$. Thus $(d \psi)_{(p, 0)}$ is an isomorphism, so by Inverse Function Theorem,

$$
\psi: V \times(-\delta, \delta) \rightarrow W \subseteq M
$$

is a diffeomorphism for some small $p \in V \subseteq N, p \in W \subseteq M, \delta>0$. So we may take $\left(y^{2}, \ldots, y^{n}, t\right)$ as coordinates on W. For $r:=\psi(q, t) \in W$, we get:

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}\right)_{r} & =(d \psi)_{(q, t)}\left(\left(\frac{\partial}{\partial t}\right)_{q, t}\right) \\
& =X(\psi(q, t)) \\
& =X(r)
\end{aligned}
$$

Definition (Codimension) Let M^{n} be a manifold, $N^{k} \subseteq M^{n}$ a submanifold of M. Then the codimension of N inside M is $\operatorname{dim} M-\operatorname{dim} N=n-k$.

6.3 Lie Derivatives

Pushforward and Pullback of Vector fields

$$
f: M \rightarrow N
$$

Definition (Pushforward) Given $X \in C^{\infty}(T M)$ we wish to produce $f_{*}(X) \in$ $C^{\infty}(T N)$
If f is bijective, define the pushforward of X via f by

$$
f_{*}(X)(q):=d f_{f^{-1}(q)}\left(X\left(f^{-1}(q)\right)\right) \in T_{q}(N) \forall q \in N .
$$

Definition (Pullback)

$$
f^{*}(X) \in C^{\infty}(T M) \leftarrow X \in C^{\infty}(T N)
$$

If $d f_{p}: T_{p} M \rightarrow T_{f(p)} N$ is bijective $\forall p \in M$, define the pullback of X via f by

$$
f^{*}(X)(p):=\left(d f_{p}\right)^{-1}(X(f(p)))
$$

Easy case: f is a diffeomorphism $\Rightarrow f_{*}, f^{*}$ are both defined.
Proposition 6.15 (Exercise)
i. $f_{*}(X), f^{*}(Y)$ are smooth if X, Y are smooth
ii. Given

$$
\begin{gathered}
M \stackrel{f}{\stackrel{f}{g}} \stackrel{g}{\longrightarrow} P, \\
X \in C^{\infty}(T M), Z \in C^{\infty}(T P)
\end{gathered}
$$

We have

$$
\begin{aligned}
g_{*} f_{*} X & =(g \circ f)_{*}(X) \\
f^{*} g^{*} Z & =(g \circ f)^{*}(Z)
\end{aligned}
$$

iii. f a diffeomorphism $\Rightarrow f^{*} Y=\left(f^{-1}\right)_{*} Y, f_{*} X=\left(f^{-1}\right)^{*} X f^{*} f_{*} X=$ $X, f_{*} f^{*} Y=Y$.

Lie Derivative

We wish to define $L_{X} Y, X, Y \in C^{\infty}(T M)$. We wish to differentiate Y in the direction of X.
Let $X, Y \in C^{\infty}(T M)$. Let ϕ_{t} be the flow of X. Idea: look forward along the flow of X to see how Y is changing. We must pull back Y by ϕ_{t} to make the comparison.
$\phi_{t}^{*}(Y)$: family of vector fields on M, with starting value

$$
\phi_{0}^{*}(Y)=\mathrm{id}_{M}^{*}(Y)=Y(t=0) .
$$

Definition

$$
\begin{aligned}
L_{X} Y(p) & :=\left.\frac{d}{d t}\right|_{0} \phi_{t}^{*}(Y)(p)=\lim _{t \rightarrow 0} \frac{\phi_{t}^{*}(Y)(p)-Y(p)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(d \phi_{p}^{t}\right)^{-1}\left(Y\left(\phi_{t}(p)\right)\right)-Y(p)}{t} \in T_{p} M
\end{aligned}
$$

The subtraction is permitted because $\phi_{t}^{*}(Y)(p)$ and $Y(p)$ both live in $T_{p} M$.

Proposition 6.16 If $X, Y \in C^{\infty}(T M)$, then the defintion exists, $L_{X} Y$ is a smooth vector field, and

$$
L_{X} Y=[X, Y]
$$

Proposition 6.17

i. $f^{*}\left(L_{X} Y\right)=L_{f^{*} X} f^{*} Y$
ii. $f^{*}[X, Y]=\left[f^{*} X, f^{*} Y\right]$ if $d f_{p}$ is bijective $\forall p$, i.e f is a local diffeomorphism.

We leave ii as an exercise.

Proof of i)

Assume f is any local diffeomorphism, work in a small neighborhood and f becomes a diffeomorphism.

To prove: $\widetilde{L_{X} Y}=L_{\tilde{X}} \tilde{Y}$.
Claim The pullback of a flow of X is a flow of the pullback of X
Proof (of claim)
For simplicity, just do the case where X is complete.

Let ϕ_{t} be the flow of X. Then

$$
\tilde{\phi}_{t}:=f^{-1} \circ \phi_{t} \circ f:=f^{*}\left(\phi_{t}\right)
$$

is the flow of $f^{*}(X)$
Note $d\left(f^{-1}\right)_{q}=\left((d f)_{f^{-1}(q)}\right)^{-1}$, where $q=f(p)$.

Compute

$$
\begin{aligned}
\frac{\partial}{\partial t} \tilde{\phi}_{t}(p) & =\frac{\partial}{\partial t} f^{-1} \circ \phi_{t} \circ f(p) \\
& =d\left(f^{-1}\right)_{\phi_{t}(f(p))}\left(\frac{\partial}{\partial t}\left(\phi_{t}(f(p))\right)\right) \\
& =\left(d f_{f^{-1}\left(\phi_{t}(f(p))\right)}\right)^{-1}\left(X\left(\phi_{t}(f(p))\right)\right) \\
& =\left(d f_{\tilde{\phi}_{t}(p)}\right)^{-1}(X(f(\underbrace{f^{-1}\left(\phi_{t}(f(p))\right)}_{\tilde{\phi}_{t}(p)})) \\
& =f^{*}(X)\left(\tilde{\phi}_{t}(p)\right) \\
& =\tilde{X}\left(\tilde{\phi}_{t}(p)\right)
\end{aligned}
$$

We return to the proof of $L_{\tilde{X}} \tilde{Y}=\widetilde{L_{X} Y}$. Compute

$$
\begin{aligned}
L_{\tilde{X}} \tilde{Y} & =\left.\frac{\partial}{\partial t}\right|_{0} \tilde{\phi}_{t}^{*}(\tilde{Y}) \\
& =\left.\frac{\partial}{\partial t}\right|_{0}\left(f^{-1} \circ \phi_{t} \circ f\right)^{*}\left(f^{*} Y\right) \\
& =\left.\frac{\partial}{\partial t}\right|_{0} f^{*} \phi_{t}^{*}\left(f^{-1}\right)^{*} f^{*} Y \\
& =\left.f^{*} \frac{\partial}{\partial t}\right|_{0}\left(\phi_{t}^{*} Y\right) \\
& =f^{*}\left(L_{X} Y\right) \\
& =\widetilde{L_{X} Y}
\end{aligned}
$$

Proof of \dagger. Both sides are well-defined, coordinate free concepts, as shown by the Lemma. Thus it suffices to prove claim (\dagger) in a chart, $U \subseteq \mathbb{R}^{n}$. That is, we prove it for the push forwards of X and Y on $V \subseteq M$ to $U \subseteq \mathbb{R}^{n}$ via the chart $\psi: V \rightarrow U$, then pull back the result to M.
So let $X, Y \in C^{\infty}\left(U, \mathbb{R}^{n}\right), U \subseteq \mathbb{R}^{n}$ open, fix $p \in U$. Let ϕ_{t} be a local flow of X near p. (defined on $p \in V \subset \subset U,-\delta<t<\delta)$.

Compute:

$$
\begin{aligned}
Z(p) & :=L_{X} Y(p)=\left.\frac{d}{d t}\right|_{0} \phi_{t}^{*}(Y)(p) \\
& =\left.\frac{d}{d t}\right|_{0}\left(d \phi_{t}(p)\right)^{-1}\left(Y\left(\phi_{t}(p)\right)\right)
\end{aligned}
$$

Where

$$
d \phi_{t}(p): T_{p} U=\mathbb{R}^{n} \rightarrow T_{\phi_{t}(p)} U=\mathbb{R}^{n}
$$

Lemma 6.18 Let $A(t): V \rightarrow W$ be a smooth family of invertible linear maps. Then

$$
\frac{d}{d t} A(t)^{-1}=-A(t)^{-1} \frac{d}{d t} A(t) \circ A(t)^{-1}
$$

Proof Write $B(t):=A(t)^{-1}$ so differentiate $A(t) \circ B(t)=I$ get $A^{\prime}(t) \circ B(t)+$ $A(t) \circ B^{\prime}(t)=0$. Now solve for $B^{\prime}(t)$:

$$
B^{\prime}(t)=-A(t)^{-1} \circ A^{\prime}(t) \circ A(t)^{-1}
$$

Continue with the computation of $L_{X} Y$, we get:

$$
\begin{aligned}
Z(p) & =\left.\frac{d}{d t}\right|_{0}\left(d \phi_{t}(p)\right)^{-1}\left(Y\left(\phi_{0}(p)\right)\right)+\left.\frac{d}{d t}\right|_{0}\left(d \phi_{0}(p)\right)^{-1}\left(Y\left(\phi_{t}(p)\right)\right) \\
& =-\left.d \phi_{0}(p)^{-1} \frac{d}{d t}\right|_{0} d \phi_{t}(p) d \phi_{0}(p)^{-1}(Y(p))+\left.\frac{d}{d t}\right|_{0} Y\left(\phi_{t}(p)\right) \\
& =-\left.\frac{d}{d t}\right|_{0} d \phi_{t}(p)(Y(p))+\left.\frac{d}{d t}\right|_{0} Y\left(\phi_{t}(p)\right)
\end{aligned}
$$

We used the fact that $\left.\frac{d}{d t}\right|_{0} f(t, 0)=\left.\frac{d}{d t}\right|_{0} f(t, t)-\left.\frac{d}{d t}\right|_{0} f(0, t)$.
Now we use the coordinates of \mathbb{R}^{n} explicitly ${ }^{6}$. Write

$$
\begin{gathered}
Z=\left(Z^{i}\right) \in \mathbb{R}^{n} \\
d \phi_{t}(p)=\left(\frac{\partial \phi_{t}^{i}(p)}{\partial x^{j}}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
\end{gathered}
$$

[^4]$$
X=\left(X^{i}\right), X^{i}(p)=\left.\frac{\partial \phi_{t}^{i}(p)}{\partial t}\right|_{0}, Y=\left(Y^{i}\right)
$$

Compute

$$
\begin{aligned}
Z^{i} & =-\left.\frac{\partial}{\partial t}\right|_{0} \frac{\partial \phi_{t}^{i}(p)}{\partial x^{j}} Y^{j}(p)+\left.\frac{\partial Y^{i}}{\partial x^{j}}(p) \frac{\partial \phi_{t}^{j}}{\partial t}\right|_{0}(p) \\
& =-\left.\frac{\partial}{\partial x^{j}} \frac{\partial \phi_{t}^{i}(p)}{\partial t}\right|_{0} Y^{j}(p)+\frac{\partial Y^{i}}{\partial x^{j}}(p) X^{j}(p) \\
& =-\frac{\partial X^{i}}{\partial x^{j}} Y^{j}(p)+\frac{\partial Y^{i}}{\partial x^{j}} X^{j}(p)=[X, Y]^{i}
\end{aligned}
$$

So we get the important formula:

$$
\left(L_{X} Y\right)^{i}=-\frac{\partial X^{i}}{\partial x^{j}} Y^{j}+\frac{\partial Y^{i}}{\partial x^{j}} X^{j}=[X, Y]^{i}
$$

i.e. $L_{X} Y=[X, Y]$, as desired.

Corollary 6.19

$$
L_{X} Y=-L_{Y} X
$$

Interpretation of $[X, Y]$ via the flows of X and Y
Construction: Fix p. Set

$$
f(s, t):=\psi_{-s} \circ \phi_{-t} \circ \psi_{s} \circ \phi_{t}(p)
$$

Where ϕ_{t} is the flow of X and ψ_{s} the flow of Y.
Question: How does $f(s, t)$ differ from p ?
Theorem 6.20 In any coordinate system

$$
f(s, t)=p+s t[X, Y](p)+O\left((|s|+|t|)^{3}\right)
$$

(for s, t small).
This says: the flows commute up to 1st oder, and the (2nd order) discrepancy is measured by $[X, Y]$.

Proof Exercise.

Theorem 6.21

$$
[X, Y]=0 \Leftrightarrow \psi_{s} \circ \phi_{t}=\phi_{t} \circ \psi_{s}
$$

Proof \Leftarrow by above (differentiation)
\Rightarrow exercise (integration)

Definition If $[X, Y]=0$, we say X, Y commute.

Example

- $\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0$
- $\left[\frac{\partial}{\partial x}, x \frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right]=\left[\frac{\partial}{\partial x}, x \frac{\partial}{\partial x}\right]+\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right]=\frac{\partial x}{\partial x} \frac{\partial}{\partial x}-x \frac{\partial}{\partial x} \frac{\partial}{\partial x}=\frac{\partial}{\partial x}$

Corollary 6.22 Fix p. If $X(p), Y(p)$ are linearly independent and $[X, Y]=$ 0 near p, then there are coordinates near p with

$$
X=\frac{\partial}{\partial x^{1}}, \quad Y=\frac{\partial}{\partial x^{2}}
$$

Proof of Corollary Take s, t as coordinates, defining

$$
\begin{gathered}
\Psi(s, t):=\psi_{s}\left(\phi_{t}(p)\right) \quad\left(=\phi_{t}\left(\psi_{s}(p)\right)\right) \\
\Psi: \mathbb{R}^{2} \supseteq U \ni(0,0) \rightarrow M \quad \text { smooth }
\end{gathered}
$$

We compute

$$
\begin{aligned}
d \Psi_{(s, t)}\left(\frac{\partial}{\partial s}\right) & =\frac{\partial}{\partial s} \Psi(s, t) \\
& =\frac{\partial}{\partial s} \psi_{s}\left(\phi_{t}(p)\right) \\
& =Y\left(\psi_{s}\left(\phi_{t}(p)\right)\right) \\
& =Y(\Psi(s, t))
\end{aligned}
$$

Similarly here we use, that the flows commute

$$
d \Psi_{(s, t)}\left(\frac{\partial}{\partial t}\right)=X(\Psi(s, t)) .
$$

Note

$$
\begin{aligned}
d \Psi_{(0,0)}: & \frac{\partial}{\partial s}
\end{aligned} \begin{aligned}
& \\
& \frac{\partial}{\partial t}
\end{aligned} \mapsto X(p)
$$

so $d \Psi_{(0,0)}$ is an isomorphism, so Ψ is a diffeomorphism near $(0,0)$, so s, t are valid smooth coordinates on a neighborhood of p, and the coordinate vector field $\left(\frac{\partial}{\partial s}\right)_{q}$ (for $q=\Psi(s, t)$ near p) is given by $d \Psi_{(s, t)}\left(\frac{\partial}{\partial s}\right)$, which is $Y(q)$ as we have just seen. Similarly, $\left(\frac{\partial}{\partial t}\right)_{q}=X(q)$.

Interpretations of Jacobi Identity

Recall the Jacobi identity

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

i. Rewrite the Jacobi identity as

$$
L_{X}[Y, Z]=\left[Y, L_{X} Z\right]+\left[L_{X} Y, Z\right]
$$

A Leibniz rule relating L_{X} to the $[\cdot, \cdot]$ product. One says: L_{X} is a derivation for $[,, \cdot]$.
ii. Rewrite the Jacobi identity as

$$
L_{[X, Y]} Z=L_{X} L_{Y} Z-L_{Y} L_{X} Z
$$

i.e.

$$
L_{[X, Y]}=L_{X} \circ L_{Y}-L_{Y} \circ L_{X}\left(=:\left[\left[L_{X}, L_{Y}\right]\right]\right) .
$$

The later bracket operator, $[[\cdot, \cdot]]$ is the anticommutator defined on any algebra of endomorphisms. So

$$
\begin{aligned}
L: \quad C^{\infty}(T M) & \rightarrow \operatorname{End}\left(C^{\infty}(T M)\right) \\
X & \mapsto L_{X}
\end{aligned}
$$

so L is a bracket homomorphism from $\left(C^{\infty}(T M),[\cdot, \cdot]\right)$ to $\left(\operatorname{End}\left(C^{\infty}(T M)\right),[[\cdot, \cdot]]\right)$

7 Riemannian Metrics

Do Carmo Chap 1
Definition Let M be a smooth manifold. A (smooth) Riemannian metric on M is a choice of inner product

$$
\langle\cdot, \cdot\rangle_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}
$$

on each tangent space, that is smooth in the sense defined below.

- bilinear, symmetric
- positive definite, i.e.

$$
\langle X, X\rangle_{p}>0, \forall X \neq 0 .
$$

Notation: Also write g_{p} or $g(p)$ for $\langle\cdot, \cdot\rangle_{p}$. Write g for the map $p \mapsto g_{p}$. We call (M, g) a Riemannian manifold.

Coordinate Expression

Let $U \subseteq M, X=X^{i} \frac{\partial}{\partial x^{i}}, Y=Y^{j} \frac{\partial}{\partial x^{j}}$ on U.
Write

$$
\begin{aligned}
g(p)(X(p), Y(p)) & =g(p)\left(X^{i}(p)\left(\frac{\partial}{\partial x^{i}}\right)_{p}, Y^{j}(p)\left(\frac{\partial}{\partial x^{j}}\right)_{p}\right) \\
& =X^{i}(p) Y^{j}(p) g(p)\left(\left(\frac{\partial}{\partial x^{i}}\right)_{p},\left(\frac{\partial}{\partial x^{j}}\right)_{p}\right) \\
& =X^{i}(p) Y^{j}(p) g_{i j}(p)
\end{aligned}
$$

Where

$$
g_{i j}(p):=g(p)\left(\left(\frac{\partial}{\partial x^{i}}\right)_{p},\left(\frac{\partial}{\partial y^{j}}\right)_{p}\right)
$$

We say g is C^{∞} iff $g_{i j}$ is $C^{\infty}, i, j=1, \ldots, n$.

Change of variables

Let $\phi:=\psi_{2} \circ \psi_{1}^{-1}$ be an overlap map. Say

$$
\begin{aligned}
& d \phi_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \frac{\partial}{\partial x^{i}} \mapsto \frac{\partial \phi^{j}}{\partial x^{i}}(x) \frac{\partial}{\partial y^{j}}
\end{aligned}
$$

or from another view point $\left(\frac{\partial}{\partial x^{i}}\right)_{p}=\frac{\partial \phi^{j}}{\partial x^{i}}(x)\left(\frac{\partial}{\partial y^{j}}\right)_{p}$ in $T_{p} M$. Then

$$
\begin{aligned}
g_{i j}^{\prime}\left(x^{1}, \ldots, x^{n}\right) & =\left\langle\left(\frac{\partial}{\partial x^{i}}\right)_{p},\left(\frac{\partial}{\partial x^{j}}\right)_{p}\right\rangle_{p} \\
& =\left\langle\frac{\partial \phi^{k}}{\partial x^{i}}(x)\left(\frac{\partial}{\partial y^{k}}\right)_{p}, \frac{\partial \phi^{\ell}}{\partial x^{j}}(x)\left(\frac{\partial}{\partial y^{\ell}}\right)_{p}\right\rangle_{p} \\
& =\frac{\partial \phi^{k}}{\partial x^{i}}\left(x^{1}, \ldots, x^{n}\right) \frac{\partial \phi^{\ell}}{\partial x^{j}}\left(x^{1}, \ldots, x^{n}\right) g_{k \ell}\left(y^{1}, \ldots, y^{n}\right)
\end{aligned}
$$

where $y^{i}=\phi^{i}\left(x^{1}, \ldots, x^{n}\right)$.
Briefly written: $g_{i j}^{\prime}=\frac{\partial \phi^{k}}{\partial x^{i}} \frac{\partial \phi^{\ell}}{\partial x^{j}} g_{k \ell}$ (Change of variables)
Consequence: If g is smooth in one coordinate system, then g is smooth in all other coordinate systems.
Some things we get from a metric:

$$
|X|_{p}:=\sqrt{\langle X, X\rangle_{p}}
$$

- lengths and angles in $T_{p} M$
- lengths of paths
- distance
- volume
- covariant differentiation
- etc...

Prefered identification of $\left(T_{p} M\right)^{*}$ with $T_{p} M$.
Example (Poincaré ball model of hyberbolic space)

$$
g_{i j}(x):=\frac{4 \delta_{i j}}{\left(1-|x|_{\text {euc }}^{2}\right)^{2}}, x \in B_{1}^{n}
$$

where $\delta_{i j}$ is the Euclidean metric

$$
X^{i} \delta_{i j} Y^{j}=\sum_{i} X^{i} Y^{i}
$$

Let γ be the path

$$
\gamma(t):=(0, t) \in B^{2}
$$

Compute

$$
\begin{aligned}
\dot{\gamma}(t) & =(0,1) \\
|\dot{\gamma}|_{g}^{2} & =\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle_{g(\gamma(t))} \\
& =\frac{4 \delta_{i j} \dot{\gamma}^{i}(t) \dot{\gamma}^{j}(t)}{\left(1-|\gamma(t)|_{e u c}^{2}\right)^{2}} \\
& =\frac{4|\dot{\gamma}(t)|_{e u c}^{2}}{\left(1-|\gamma(t)|_{e u c}^{2}\right)^{2}} \\
& =\frac{4 \cdot 1}{\left(1-t^{2}\right)^{2}} \\
|\dot{\gamma}(t)|_{g} & =\frac{2}{1-t^{2}} \\
L(\gamma)=\int_{t=0}^{t=1}|\dot{\gamma}(t)| d t & =\int_{t=0}^{t=1} \frac{2}{1-t^{2}} d t=\infty
\end{aligned}
$$

Then hyperbolicspace is

$$
\mathbb{H}^{n}:=\left(B_{1}^{n}, g_{i j}\right)
$$

Homogeneous ${ }^{7}$, isotropic ${ }^{8}$, constant curvature $K=-1$. It is the only space with these properties (up to isometry).

Exercise Find an isometry of \mathbb{H}^{2} that takes $(0,0)$ to $(a, 0)$.
Theorem 7.1 Every smooth manifold that is a union of countably many coordinate charts can be given a Riemannian metric.

Remark For manifolds, "union of countably many coordinate charts" \Leftrightarrow 2nd countable.

Let $\operatorname{Sym}^{2}\left(V^{*}\right)$ be the symmetric bilinear forms T on $V . \operatorname{Sym}_{+}^{2}\left(V^{*}\right):=$ $\left\{T \in \operatorname{Sym}^{2}\left(V^{*}\right) \mid(X, X)>0 \forall X \in T_{p} M\right\}$.

Proposition $7.2 \operatorname{Sym}_{+}^{2}\left(V^{*}\right)$ is a convex cone in the vector space $\operatorname{Sym}^{2}\left(V^{*}\right)$.

[^5]
7.1 Pullbacks of Metrics

Suppose $f: M^{n} \rightarrow\left(N^{p}, g\right)$ is smooth. Define the pullback of g by f, on M via

$$
\begin{aligned}
f^{*}(g)_{p}: T_{p} M \times T_{p} M & \rightarrow \mathbb{R}, p \in M, \\
f^{*}(g)(p)(X, Y) & :=g(f(p))\left(d f_{p}(X), d f_{p}(Y)\right), X, Y \in T_{p} M .
\end{aligned}
$$

Remark concerning $f^{*}(g)$

- $f^{*}(g)_{i j}(x)=\frac{\partial f^{k}}{\partial x^{i}}(x) \frac{\partial f^{\ell}}{\partial x^{j}}(x) g_{k \ell}(f(x))$ (verify!)
- pullback is always defined (no bijectivity requirements, in contrast to the case of vectors)
- $f^{*}(g)$ is bilinear, symmetric, nonnegative
- $f^{*}(g)$ is positive definite $\Leftrightarrow d f_{p}$ is injective (so: f immersion $\Rightarrow f^{*}(g)$ is a Riemannian metric)
- If f is a diffeomorphism then $f^{*}(g)$ is a perfect copy of g.

Definition An isometry is a diffeomorphism

$$
f:(M, g) \rightarrow(N, h)
$$

such that $f^{*}(h)=g$.

Definition

$$
\operatorname{Isom}((M, g)):=\left\{f: M \rightarrow M \mid f^{*}(g)=g \text { and } f \text { a diffeomorphism }\right\}
$$

Example $\operatorname{Isom}\left(\left(S^{n}\right.\right.$, round $\left.)\right) \cong \mathrm{O}(n)$
Example (Poincaré upper half-plane model of hyperbolic space) Set $H:=$ $\{z=x+i y \in \mathbb{C} \mid \Im z>0\}, \hat{g}_{i j}(z):=\frac{\delta_{i j}}{y^{2}}$. We obtain a second defintion of hyperbolic space

$$
\mathbb{H}^{2}:=\left(H, \hat{g}_{i j}\right) .
$$

Exercise i. Find an isometry from the upper half-plane model to the Poincaré disk model:

$$
(H, \hat{g}) \rightarrow\left(B_{1}^{2}, g\right)
$$

ii. Show that the orientation preserving isometries of (H, \hat{g}) are

$$
z \mapsto \frac{a z+b}{c z+d} \quad a d-b c>0, a, b, c, d \in \mathbb{R}
$$

iii. Show

$$
\operatorname{Isom}((H, g)) \cong \operatorname{GL}_{+}(2, \mathbb{R}) / \mathbb{R} \cdot \mathbb{1} \cong \operatorname{SL}(2, \mathbb{R}) /\{ \pm \mathbb{1}\}=: \operatorname{PSL}(2, \mathbb{R})
$$

(real) projective special linear group
iv. Show \mathbb{H}^{2} is homogeneous and isotropic, i.e.
homogenous: $\forall p, q \in \mathbb{H}^{2} \exists$ isometry $p \mapsto q$.
isotropic at $p: \quad \forall X, Y \in T_{p} \mathbb{H}^{2} \exists$ isometry fixing p and taking $X \mapsto Y$
Definition An isometric immersion of (M, g) into (N, h) is an immersion $f: M \rightarrow N$ such that $f^{*}(h)=g$. We call $f^{*}(h)$ the metric induced by the immersion.

Example Let $M \subseteq(N, h)$, with

$$
\begin{aligned}
i: M & \rightarrow N \\
x & \mapsto x
\end{aligned}
$$

be the inclusion map. Then $i^{*}(h)$ is the same as the induced metric we defined weeks ago, namely

$$
\langle X, Y\rangle_{p}^{M}:=\langle X, Y\rangle_{p}^{N} \quad \forall p \in M, \forall X, Y \in T_{p} M
$$

Theorem 7.3 (Nash Embedding Theorem (hard)) ($\left.M^{n}, g\right)$ Riemannian manifold compact (union of countable many charts). Then \exists isometric embedding

$$
(M, g) \xrightarrow{f}\left(\mathbb{R}^{p}, \delta\right)
$$

for some large p. (Here δ is the the standard metric on \mathbb{R}^{p}.)

7.2 Metrics on Lie groups

Theorem 7.4 Every Lie group possesses a left-invariant metric, i.e a metric g such that

$$
L_{a}^{*}(g)=g \forall a \in G
$$

where (recall)

$$
\begin{aligned}
L_{a}: G & \rightarrow G \\
b & \mapsto a b .
\end{aligned}
$$

Proof Let $g(e)$ be any inner product on $T_{e} G$. Where $e \in G$ is the identity element.
Note:

$$
\begin{aligned}
L_{a}: G & \rightarrow G \\
e & \mapsto a \\
\left(d L_{a}\right)_{e}: T_{e} G & \rightarrow T_{a} G
\end{aligned}
$$

Copy $g(e)$ from $T_{e} G$ to $T_{a} G$ via $\left(d L_{a}\right)_{e}$: for $X, Y \in T_{a} G$, set

$$
g(a)(X, Y):=g(e)\left(\left(d L_{a}\right)_{e}^{-1}(X),\left(d L_{a}\right)_{e}^{-1}(Y)\right)
$$

It is trivial to verify that g is invariant under left translation by any L_{b} : $G \rightarrow G, b \in G$. One checks that $L_{b}: G \rightarrow G$ is an isometry i.e. $\left(d L_{b}\right)_{a}:$ $\left(T_{a} G, g(a)\right) \rightarrow\left(T_{b a} G, g(b a)\right)$ is an isometry $\forall a \in G$.

Exercise Prove a left-invariant metric on a Lie group is smooth.
Theorem 7.5 Every Lie group has at least one left-invariant metric.
Exercise Show that the metric induced on $\mathrm{SO}(n)$ by the standard inclusion

$$
\mathrm{SO}(n) \subseteq M^{n \times n}(\mathbb{R})=\mathbb{R}^{n^{2}}
$$

is both left and right invariant (=: bi-invariant). Note that $M^{n \times n}(\mathbb{R})$ gets the metric induced by the inner product

$$
\langle A, B\rangle:=\sum_{i, j} A_{i}^{j} B_{i}^{j}
$$

Theorem 7.6 Every compact Lie group has a bi-invariant metric ${ }^{9}$.
Example We already saw that

$$
L_{a}, R_{a}: S^{3} \rightarrow S^{3}
$$

are isometries.

[^6]
7.3 Volume and Intergrals

Given a metric g and some map $u: M \rightarrow \mathbb{R}$, let us define integration on M

$$
\int u d \mu \equiv \int_{M} u(x) d \mu_{g}(x)
$$

3 ways to define it

- volume n-form: a section of $C^{\infty}\left(\bigwedge^{n} T^{*} M\right)$, namely $\sqrt{\operatorname{det} g_{i j}} d x^{1} \wedge \cdots \wedge$ $d x^{n}$
- has a sign
- M must be orientable
- requires exterior algebra ${ }^{10}$ (k-forms)
- Hausdorff measure \mathcal{H}^{n}
- valid in any metric space \mathcal{H}^{n}
- valid for any $\alpha \in[0, \infty)$
- requires measure theory
- define in charts

$$
\int_{U} f\left(x^{1}, \ldots, x^{n}\right) \sqrt{\operatorname{det} g_{i j}(x)} d x^{1} \ldots d x^{n}
$$

easiest

Basic Formula in a Chart

Let $\left(U, g_{i j}\right) \subseteq \mathbb{R}^{n}$. Define

$$
\int_{U} f d \mu_{g}:=\int_{U} f(x) \sqrt{\operatorname{det}_{i j}(x)} d x^{1} \ldots d x^{n}
$$

Definition

- $C_{c}^{0}(M):=\{$ continuous functions $M \rightarrow \mathbb{R}$ with compact support $\}$
- support of u : supp $:=\overline{\{x \mid u(x) \neq 0\}}$

[^7]
Desired properties of integration

$$
I_{g}: u \mapsto \int_{M} u d \mu_{g}
$$

i. $I_{g}: C_{c}^{0}(M) \rightarrow \mathbb{R}$ linear (over $\left.\mathbb{R}\right)$
ii. I_{g} positive, i.e. $u \geq 0 \Rightarrow I_{g}(u) \geq 0$.
iii. I_{g} agrees with the usual integral on flat \mathbb{R}^{n}.
iv. (Change of Variables / Area formula)

If $\phi:(M, g) \xrightarrow{\phi}(N, h)$ is C^{1} and bijective then

$$
\int_{N} u(y) d \mu_{h}(y)=\int_{M} u(\phi(x))|J \phi(x)|_{g, h} d \mu_{g}(x)
$$

for any $u \in C_{c}^{0}$. Here $|J \phi(x)|$ is the volume expansion factor (Jacobian determinant) from $\left(T_{x} M, g(x)\right)$ to ($T_{\phi(x)}, g(x)$)

Theorem 7.7 There exsits a unique system of maps

$$
u \mapsto \int_{M} u d \mu_{g}
$$

with properties (i)-(iv). They are given locally by formula ($\dagger \dagger$).
Remark (for measure theory experts)
$I_{g} \xrightarrow{\text { Riesz Rep. }}{ }^{\text {Thm }}$ Radon measure μ_{g}.
I_{g} is a linear functional satisfying (i), (ii) and $\left|\int u d \mu_{g}\right| \leq C(K) \operatorname{supp}|u|$ for spt $u \subseteq K \subseteq M$, with K compact.
μ_{g} is called the Riemannian volume measure of g.
Definition of the Jacobian determinant Suppose we are given

$$
L:(V, g) \rightarrow(W, h) \text { linear }
$$

(V, g) and (W, h) being inner product spaces. Define

$$
|J L| \equiv|J L|_{g, h}:=\sqrt{\operatorname{det}\left(L^{T} L\right)}
$$

Where the transpose $L^{T}: W \rightarrow V$ is characterized by $g\left(v, L^{T} w\right)=h(L v, w)$

Motivation

Suppose $L: V \rightarrow V$ is linear. Then $\operatorname{det} L \in \mathbb{R}$ is defined (independent of coordinates and metrics!) Where as if $L: V \rightarrow W$, then $\operatorname{det} L$ is not defined. We note that $L^{T} L: V \rightarrow V$ is symmetric with respect to the inner product g, i.e. $g\left(v_{1}, L^{T} L v_{2}\right)=g\left(L^{T} L v_{1}, v_{2}\right)$.

Lemma 7.8 (Singular value Decomposition) For any $L:(V, g) \rightarrow(W, h)$ there exists an orthonormal basis v_{1}, \ldots, v_{n} of V and orthonormal basis w_{1}, \ldots, w_{n} of W with $\lambda_{1}, \ldots, \lambda_{n} \geq 0^{11}$ such that $L v_{i}=\lambda_{i} w_{i}$.

Proof Diagonalize $L^{T} L$:

$$
L^{T} L v_{i}:=\mu_{i} v_{i}, i=1, \ldots, n
$$

where v_{1}, \ldots, v_{n} is an orthonormal basis of V.
Observe:

$$
h\left(L v_{i}, L v_{j}\right)=g\left(L^{T} L v_{i}, v_{j}\right)=g\left(\mu_{i} v_{i}, v_{j}\right)=0
$$

So $L v_{1}, \ldots, L v_{n}$ is an orthogonal set in W.
Define

$$
w_{i}=\left\{\begin{array}{cc}
\frac{L v_{i}}{\left|L v_{i}\right|} & L v_{i} \neq 0 \\
\text { any completion to orthonormal basis } & L v_{i}=0
\end{array}\right.
$$

$$
\lambda_{i}:=\left|L v_{i}\right| \geq 0
$$

Then w_{1}, \ldots, w_{n} orthonormal basis with respect to h, and

$$
L v_{i}=\lambda_{i} w_{i},
$$

as required.

Further: $L^{T} w_{i}=\lambda_{i} v_{i}$, so $\mu_{i}=\lambda_{i}^{2}$. Thus

$$
|J L|_{g, h}:=\sqrt{\operatorname{det}\left(L^{T} L\right)}=\sqrt{\mu_{1} \cdots \mu_{n}}=\lambda_{1} \cdots \lambda_{n}
$$

is seen to be the volume expansion factor of L from g to h.

[^8]Definition Suppose $\phi:(M, g) \rightarrow(N, h)$ is C^{1}. Define

$$
|J \phi(x)|_{g, h}:=|J d \phi(x)|_{g(x), h(\phi(x))} .
$$

In coordinates: on V, W respectively, we have

$$
g=\left(g_{i j}\right), h=\left(h_{k l}\right), L=\left(L_{i}^{k}\right),
$$

and

$$
\begin{aligned}
& \nu \in V_{L^{*}=\left(L_{i}^{k}\right)}^{*} W^{*} \ni \omega
\end{aligned}
$$

$h: W \rightarrow W^{*}$ is defined by

$$
h(w):=h(w, \cdot) \in W^{*}
$$

$g^{-1}: V^{*} \rightarrow V$ is characterized by

$$
g\left(g^{-1}(\nu), \cdot\right)=\nu \in V^{*}
$$

We find that $g^{-1}=\left(g^{i j}\right)$, i.e. the matrix of the inverse of g is the inverse of the matrix of g. The dual map to L is defined by $L^{*}(\omega):=\omega \circ L \in L^{*}$. We have

$$
v \mapsto L v,(L v)^{k}=L_{i}^{k} v^{i}
$$

And also

$$
\begin{aligned}
\omega & \mapsto L^{*} \omega \\
\left(L^{*} \omega\right)_{i} & =L_{i}^{k} \omega_{k} .
\end{aligned}
$$

To see the symmetry of this, observe

$$
v^{i} L_{i}^{k} \omega_{k}=w(L v)=\left(L^{*}(\omega)\right)(v) .
$$

Next, we can verify

$$
\begin{aligned}
L^{T} & =g^{-1} \circ L^{*} \circ h, \\
\left(L^{T}\right)_{\ell}^{i} & =g^{i j} L_{j}^{k} h_{k \ell}
\end{aligned}
$$

Formulae

$$
\begin{aligned}
|J \phi(x)| & =\sqrt{\operatorname{det}\left(d \phi(x)^{T} \circ d \phi(x)\right)} \\
& =\sqrt{\operatorname{det}\left(g^{i j}(x) \frac{\partial \phi^{k}}{\partial x^{j}}(x) h_{k \ell}(\phi(x)) \frac{\partial \phi^{\ell}}{\partial x^{i}}(x)\right)}
\end{aligned}
$$

- $|J \phi|_{\delta, \delta}=\left|\operatorname{det}\left(\frac{\partial \phi^{i}}{\partial x^{j}}\right)\right| \stackrel{\phi(x)=x}{=}|J \phi|_{g, g}$
- $\left|J_{\mathrm{id}}\right|_{\delta, g}=\sqrt{\operatorname{det} g_{i j}}$, if $\phi(x)=x$.
- $|J(\phi \circ \psi)|_{g, k}=|J \phi|_{h, k}|J \psi|_{g, h}$, where $(M, g) \xrightarrow{\psi}(N, h) \xrightarrow{\phi}(P, k)$

Local Formula

$$
\int_{U} u d \mu:=\int_{U} u(x) \underbrace{\sqrt{\operatorname{det} g_{i j}(x)}}_{J_{\mathrm{id}} \delta_{\delta, g}} d x^{1} \cdots d x^{n}
$$

Verify the Area Formula (in a chart)

Given $\phi:(U, g) \rightarrow(V, h), C^{1}$ and bijective with coordinates x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n} respectively. Show $\int_{V} u d \mu_{h}=\int_{U} u \circ \phi|J \phi|_{g, h} d \mu_{g}$.
Compute:

$$
\begin{aligned}
\text { LHS } & =\int_{V} u \sqrt{\operatorname{det} h_{k \ell}} d y^{1} \cdots d y^{n} \\
& =\int_{U} u \circ \phi \sqrt{\operatorname{det} h_{k \ell} \circ \phi}\left|\operatorname{det}\left(\frac{\partial \phi^{k}}{\partial x^{i}}\right)\right| d x^{1} \cdots d x^{n}
\end{aligned}
$$

(by the usual change of variables formula), where as

$$
\mathrm{RHS}=\int_{U} u \circ \phi \sqrt{\operatorname{det}\left(g^{i j} \frac{\partial \phi^{k}}{\partial x^{j}} h_{k \ell} \circ \phi \frac{\partial \phi^{\ell}}{\partial x^{i}}\right)} \sqrt{\operatorname{det} g_{i j}} d x^{1} \cdots d x^{n}
$$

Note By taking ϕ to be an isometry, this also verifies that our definition (\ddagger) is independent of the coordinates that we chose on the open set $U \subseteq M$, as
follows:

Next step:

extend our defintion of the integral from each chart U to all of M. Say $M=\cup_{\alpha} U_{\alpha}$, then we must move from

$$
\int_{U_{\alpha}} u d \mu_{g} \leadsto \int_{M} u d \mu_{g}
$$

We obtain (as mentioned above)
Theorem 7.9 There exists an integral $\int_{M} u d \mu_{g}$ that satisfies (i)-(iv)

8 Connections

First we'll look at connections on vector bundles in general, then we'll specialize to the Riemannian or Levi-Civita connection on TM (induced by a Riemannian metric g)

8.1 Vector Bundles

(Lee Chap 2)
Let M be a smooth manifold. Attach a vector space E_{p} (disjoint!) to each point in M. Main example: $T M=\cup_{p} T_{p} M$.

Definition A vector bundle of rank k over M (base space) is a smooth manifold E (total space) together with a smooth map $\pi: E \rightarrow M$ such that
i. Each fiber $E_{p}:=\pi^{-1}(p)$ is endowed with the structure of a k-dimensional vector space.
ii. For every $p \in M, \exists U \ni p$ open and a diffeomorphism

$$
\Psi: \pi^{-1}(U) \rightarrow U \times \mathbb{R}^{k}
$$

such that
iia. The following diagram commutes

This says:

$$
\Psi \mid E_{p}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{k}
$$

iib. $\Psi \mid E_{p}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{k}$ is a linear isomorphism.
We call the map Ψ a local trivialization (of E over U). If U has coordinates $\left(x^{1}, \cdots x^{n}\right)$, then Ψ yields coordinates $(x^{1}, \ldots, x^{n}, \underbrace{V^{1}, \ldots, V^{k}}_{\text {coords on } \mathbb{R}^{k}})$ on $\pi^{-1}(U)$

Examples

TM
$T^{*} M:=\cup_{p \in M}\left(T_{p} M\right)^{*}$ cotangent bundle of M
$M \times \mathbb{R}^{k} \xrightarrow{\pi} M$ trivial bundle (of rank k)

Simplest nontrivial vector bundle

$M=S^{1}$, Fiber= $\mathbb{R}($ rank 1) Where

$$
\begin{gathered}
S^{1}=[0,2 \pi] /(0 \sim 2 \pi) \\
E:=[0,2 \pi] \times \mathbb{R} / \sim \ni(\theta, t),
\end{gathered}
$$

where $(0, t) \sim(2 \pi,-t)$

$$
\begin{aligned}
\pi([\theta, t]) & =[\theta] \\
\pi: E & \rightarrow S^{1}
\end{aligned}
$$

E is the Möbius band, viewed as a line bundle over S^{1} We call it the twisted \mathbb{R}-Bundle over S^{1}.

Example

$$
\cup_{p \in M} \operatorname{Bilin}\left(T_{p} M \times T_{p} M \rightarrow \mathbb{R}\right)
$$

is a vector bundle over M of rank $k=n^{2}$. A metric is a smooth and positive section ${ }^{12}$ of this bundle

[^9]
\mathbb{R}^{2} bundles over S^{2}

Give S^{2} the "charts"
$H_{+}:=$closed northern hemisphere
$H_{-}:=$closed southern hemisphere
$H_{+} \cap H_{-}=\{$equator $\} \cong S^{1}$
To get S^{2} : glue H_{+}to H_{-}along $\partial H_{+}, \partial H_{-}$by the map

$$
\begin{aligned}
\phi: \partial H_{+} & \rightarrow \partial H_{-} \\
e^{i \theta} & \mapsto e^{i \theta}
\end{aligned}
$$

To get E : observe

$$
\begin{aligned}
\partial\left(H_{+} \times \mathbb{R}^{2}\right) & =\left(\partial H_{+}\right) \times \mathbb{R}^{2} \cong S^{1} \times \mathbb{R}^{2} \\
\partial\left(H_{-} \times \mathbb{R}^{2}\right) & =\left(\partial H_{-}\right) \times \mathbb{R}^{2} \cong S^{1} \times \mathbb{R}^{2}
\end{aligned}
$$

Glue $H_{+} \times \mathbb{R}^{2}$ to $H_{-} \times \mathbb{R}^{2}$ along their boundaries via

$$
\Phi: \partial H_{+} \times \mathbb{R}^{2} \rightarrow \partial H_{-} \times \mathbb{R}^{2}
$$

defined by

$$
\Phi\left(e^{i \theta},\binom{x}{y}\right):=\left(\phi\left(e^{i \theta}\right), A_{e^{i \theta}}\binom{x}{y}\right)
$$

Where we choose any family of linear maps

$$
\begin{array}{r}
A_{e^{i \theta}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
A_{e^{i \theta}} \in \mathrm{GL}(2, \mathbb{R}) \\
A: \partial H_{+} \rightarrow \mathrm{GL}(2, \mathbb{R})
\end{array}
$$

Our special choice: Fix $k \in \mathbb{Z}$, define

$$
A: \partial H_{+} \mapsto \mathrm{SO}(2) \subseteq \mathrm{GL}(2, \mathbb{R})
$$

by

$$
A\left(e^{i \theta}\right):=\left(\begin{array}{cc}
\cos k \theta & \sin k \theta \\
-\sin k \theta & \cos k \theta
\end{array}\right)
$$

We obtain

$$
\Phi\left(e^{i \theta},\binom{x}{y}\right):=\left(e^{i \theta},\left(\begin{array}{cc}
\cos k \theta & \sin k \theta \\
-\sin k \theta & \cos k \theta
\end{array}\right)\binom{x}{y}\right)
$$

The result is called the k-twisted \mathbb{R}^{2} bundle over S^{2}

Question

What is k for the tangent bundle $T S^{2}$ of the 2-Sphere?

8.1.1 Complex vector bundles

Same definition, exept each E_{p} is a complex vector space of complex dimension d. Then $\operatorname{dim}_{\mathbb{R}}=n+2 d^{13}$.

Question

Can you think of a real vector bundle of even rank that cannot be made into a complex vector bundle?

Definition Let $M \xrightarrow{f} N$ with vector bundles E and F over M and N respectivly. A (linear) bundle map over f is a smooth map

$$
L: E \rightarrow F
$$

such that

commutes, i.e. $L\left(E_{p}\right) \subseteq F_{f(p)}$ and

$$
L_{p}:=L \mid E_{p}: E_{p} \rightarrow F_{f(p)}
$$

is linear map.
Definition A bundle isomorphism is a (linear) bundle map that is a diffeomorphism ${ }^{14}$

Example In an exerciese, we found a bundle isomorphism

$i, j, k \in C^{\infty}\left(T S^{3}\right)$ and $i(p), j(p), k(p)$ form a basis for $T_{p} S^{3} \forall p$

$$
(p,(x, y, z)) \mapsto(p, x i(p)+y j(p)+z k(p))
$$

[^10]Definition A subbundle of E is a submanifold $F \subseteq E$ such that $F_{p}:=$ $F \cap E_{p}\left(=(\pi \mid F)^{-1}(p)\right)$ is a vector subspace of E (of constant dimension). F is then (check!) a vector bundle over M in it's own right.

Example

i. $M^{n} \subseteq \mathbb{R}^{q}$ submanifold $T M^{18}=\cup\{p\} \times T_{p} M \subseteq M \times \mathbb{R}^{q 19}$ is a subbundle with $n \leq q$.
ii.

$$
N M:=\cup_{p \in M}\{p\} \times N_{p} M \subseteq M \times \mathbb{R}^{q}
$$

subundle (called normal bundle of M in $\left.\mathbb{R}^{q}, N_{p} M=\left(T_{p} M\right)^{\perp}\right)$.
Definition A section of E is a function $V: M \rightarrow E$ such that $V(p) \in$ $E_{p}, p \in M$. We call V smooth if it is smooth as a map between smooth manifolds.

Definition The 0 -section is the section $O(p):=0 \in T_{p} M, p \in M$.
$\Gamma(E)$: all sections
$C^{\infty}(E)$: all smooth sections

$$
V, W \in C^{\infty}(E) \Rightarrow a V+b W \in C^{\infty}(E)
$$

Definition A local frame for E is a list $e_{1}(p), \ldots, e_{d}(p), p \in U$ of sections in $C^{\infty}(E \mid U)$ that form a basis for E_{p} at each $p \in U$.
A local fram alway yields a local trivialization (and viceversa)
Given a frame over U, we may express any section V locally as a linear combination:

$$
V(p)=V^{\alpha}(p) e_{\alpha}(p), p \in U
$$

Where V^{α} are the component functions
Evidently: V is smooth iff each component function V^{α} is smooth. Thus $v, w \in C^{\infty}(E) \Rightarrow a V+b W \in C^{\infty}(E)$.

[^11]
Example

$$
\operatorname{Bilin}(T M, T M ; \mathbb{R}):=\cup_{p \in M} \operatorname{Bilin}\left(T_{p} M \times T_{p} M \rightarrow \mathbb{R}\right)
$$

can be given the structure of a smooth vector bundle over M, and a Riemannian metric is a (smooth, symmetric, positive) section of this bundle.

Example Every smooth section of the twisted \mathbb{R}-bundle over S^{1} has a zero

8.2 Connections on Vector Bundles

Aim: Given $\tilde{X} \in T_{p} M, V \in C^{\infty}(E)$, form

$$
\mathcal{D}_{\tilde{X}} V \in E_{p}
$$

directional derivative of V in the direction \tilde{X} at p.
[Try:]

- $X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}}, X=X^{j} \frac{\partial}{\partial x^{j}}, V=V^{\alpha} e_{\alpha}$.

Does not transform correctly (depends on choice of frame).

- $\left.\frac{d}{d t}\right|_{t=0} \frac{V(\gamma(t))-V(\gamma(0))}{t}$ where γ is a path in $M, \gamma(0)=p, \dot{\gamma}(0)=\tilde{X}$.

Cannot compare vectors in $E_{\gamma}(t)$ to $E_{\gamma(0)}$ in an intrinsic way.
Upshot To differntiate V in directions \tilde{X}, we must declare, or impose a structure E called a connection

Definition

$$
E \rightarrow M \quad \text { vector bundle }
$$

An (affine) connection or covariant derivative operator, on E is a map

$$
\begin{array}{ccccc}
\mathcal{D}: C^{\infty}(T M) & \times & C^{\infty}(E) & \rightarrow & C^{\infty}(E) \\
X & V & \mapsto & \mathcal{D}_{X} V
\end{array}
$$

that satisfies

- $\mathcal{D}_{X}(a V+b W)=a \mathcal{D}_{X} V+b \mathcal{D}_{X} W, a, b \in \mathbb{R}$ (linear in V over $\left.\mathbb{R}\right)$
- $\mathcal{D}_{f X+g Y} V=f \mathcal{D}_{X} V+g \mathcal{D}_{Y} V, f, g \in C^{\infty}(M)$ (linear in X over $\left.C^{\infty}(M)\right)$
- $\mathcal{D}_{X}(f V)=f \mathcal{D}_{X} V+(X \cdot f) V, f \in C^{\infty}(M)$ (Leibniz rule)

Expression in coordinates

$X=X^{i} \frac{\partial}{\partial x^{i}}, V=V^{\alpha} e_{\alpha}$ over U

$$
\begin{aligned}
\mathcal{D}_{X} V & =\mathcal{D}_{X^{i} \frac{\partial}{\partial x^{i}}}\left(V^{\alpha} e_{\alpha}\right) \\
& =X^{i} \mathcal{D} \frac{\partial}{\partial x^{i}}\left(V^{\alpha} e_{\alpha}\right) \\
& =X^{i}\left(\left(\frac{\partial}{\partial x^{i}} \cdot V^{\alpha}\right) e_{\alpha}+V^{\alpha} \mathcal{D}_{\frac{\partial}{\partial x^{i}}} e_{\alpha}\right)
\end{aligned}
$$

Definition The connection coefficients are defined by

$$
\begin{gathered}
\left(\mathcal{D}_{\frac{\partial}{\partial x^{2}}} e_{\alpha}\right)_{p}=\Delta_{i \alpha}^{\beta}(p) e_{\beta}(p)^{20}, p \in U i=1, \ldots, n, \alpha=1, \ldots, d \\
\Delta_{i \alpha}^{\beta}=\Delta_{i \alpha}^{\beta}(p), \Delta_{i \alpha}^{\beta} \in C^{\infty}(U)
\end{gathered}
$$

Get:

$$
\mathcal{D}_{X} V=X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}} e_{\alpha}+X^{i} V^{\alpha} \Delta_{i \alpha}^{\beta} e_{\beta}
$$

or, writing $\mathcal{D}_{X} V=\left(\mathcal{D}_{X} V\right)^{\alpha} e_{\alpha}$:

$$
\left(\mathcal{D}_{X} V\right)^{\alpha}=X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}}+X^{i} V^{\beta} \Delta_{i \beta}^{\alpha}
$$

i.e. derivative plus correction term.

This shows:

- $\mathcal{D}_{X} V(p)$ dependas linearly on the value of V and it's first derivatives at p.
- $\mathcal{D}_{X} V(p)$ depends linearly only on $X(p)$ and not on any derivatives of X. We say $\mathcal{D}_{X} V$ is tensorial in X or point wise in X.

As a result, we may define

$$
\mathcal{D}_{\tilde{X}} V, \tilde{X} \in T_{p} M, V \in C^{\infty}(E)
$$

via

$$
\mathcal{D}_{\tilde{X}} V:=\mathcal{D}_{X} V(p)
$$

where $X \in C^{\infty}(T M)$ is any vectorfield such that $X(p)=\tilde{X}$. This yields a linear map

$$
\begin{aligned}
\mathcal{D} V(p): T_{p} M & \rightarrow E_{p} \\
\tilde{X} & \mapsto \mathcal{D}_{\tilde{X}} V \\
(\mathcal{D} V(p))(\tilde{X}) & \equiv \mathcal{D}_{\tilde{X}} V
\end{aligned}
$$

[^12]$$
\mathcal{D} V(p) \in \operatorname{Hom}\left(T_{p} M, E_{p}\right)
$$

We can form a vector bundle

$$
\begin{aligned}
\operatorname{Hom}(T M, E) & :=\cup_{p \in M} \operatorname{Hom}\left(T_{p} M, E_{p}\right) \\
\mathcal{D} V & :=(\mathcal{D} V(p))_{p \in M} \in C^{\infty}(\operatorname{Hom}(T M, E))
\end{aligned}
$$

More comments on the formula:

$$
\left(\mathcal{D}_{X} V\right)^{\alpha}=X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}}+X^{i} V^{\beta} \Delta_{i \beta}^{\alpha}
$$

$X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}}$ defines the connection
$\mathcal{D}_{X}^{0} V:=X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}} e_{\alpha}$ defines a connection (check!) called the coordinate connection induced by the frame $e_{1}, \ldots, e_{d}, d \equiv \operatorname{rank} E$.
So \mathcal{D}^{0} has the property: $\mathcal{D}_{X}^{0} e_{\alpha}=0 \forall X \in C^{\infty}(T M)$.
Definition We call a section $V \in C^{\infty}(E)$ parallel (for $\left.\mathcal{D}\right)$ if $\mathcal{D}_{X} V=0 \forall X \in$ $C^{\infty}(T M)$.

Example $\mathbb{R}^{n}, E=T \mathbb{R}^{n}, e_{i} \equiv \frac{\partial}{\partial x^{i}}$

$$
\left(\mathcal{D}_{X}^{0} Y\right)^{j}=X^{i} \frac{\partial Y^{j}}{\partial x^{i}}
$$

(usual directional derivative)
Y parallel iff components are constant
Remark It is rare for a connection to have even one parallel section.
Exercise For any choice of $n d^{2}$ smooth functions $\Delta_{i \alpha}^{\beta}, p \in U$, the above formula yields a connection.

The correction term yields a bilinear map

$$
\begin{gathered}
\tilde{X}, \tilde{V} \mapsto \tilde{X}^{i} \tilde{V}^{\beta} \Delta_{i \beta}^{\alpha}(p) e_{\alpha}(p) \in E_{p} \\
\tilde{X} \in T_{p} M, \tilde{V} \in E_{p}
\end{gathered}
$$

to which we give the name

$$
\Delta(p): T_{p} M \times E_{p} \rightarrow E_{p}
$$

So $\Delta(p) \in \operatorname{Bilin}\left(T_{p} M, E_{p} ; E_{p}\right)$. We form a smooth vector bundle

$$
\operatorname{Bilin}(T M, E ; E):=\cup_{p \in M} \operatorname{Bilin}\left(T_{p} M, E_{p} ; E_{p}\right)
$$

and we recognize that

$$
\begin{gathered}
\Delta:=(\Delta(p))_{p \in M} \in C^{\infty}(\operatorname{Bilin}(T M, E ; E)) \\
\Delta: M \rightarrow \operatorname{Bilin}(T M, E ; E), p \mapsto \Delta(p)
\end{gathered}
$$

Define

$$
\begin{gathered}
\Delta(X, V) \in C^{\infty}(E) \\
\Delta(X, V)(p):=\Delta(p)(X(p), V(p)) \\
\Delta: C^{\infty}(T M) \times C^{\infty}(E) \rightarrow C^{\infty}(E)
\end{gathered}
$$

So we can write:

$$
\begin{gathered}
\mathcal{D}_{X} V=D_{X}^{0} V+\Delta(X, V) \\
\mathcal{D}=\mathcal{D}^{0}+\Delta
\end{gathered}
$$

Theorem 8.1

i. The difference between any two connections on E yields a section of $\operatorname{Bilin}(T M, E ; E)$.
ii. Any connection plus any smooth section of $\operatorname{Bilin}(T M, E ; E)$ yields another connection.

Example

$$
\begin{gathered}
E=S^{1} \times \mathbb{R} \ni(\theta, t) \\
\vdots \downarrow \\
M \stackrel{\downarrow}{=} S^{1}
\end{gathered}
$$

$e_{1}(\theta)=(\theta, 1)$

$$
\begin{gathered}
V \in C^{\infty}(E), V(\theta)=V^{1} e_{1}(\theta), \Delta_{11}^{1}=a(\theta) \\
X=\frac{\partial}{\partial \theta}, \mathcal{D}_{\frac{\partial}{\partial \theta}} V=\frac{\partial V^{1}}{\partial \theta} e_{1}+a(\theta) V^{1}(\theta) e_{1}
\end{gathered}
$$

Let $a(\theta)=-\frac{1}{10}$

$$
\mathcal{D}_{\frac{\partial}{\partial \theta}} V=\frac{\partial V^{1}}{\partial \theta} e_{1}-\frac{1}{10} V^{1} e_{1}
$$

Equation for parallel section:

$$
\begin{gathered}
0=\left(\frac{\partial V^{1}}{\partial \theta}-\frac{1}{10} V^{1}\right) e_{1} \\
\frac{d V^{1}}{d \theta}=\frac{1}{10} V^{1} \\
V^{1}(\theta)=c e^{\theta / 10}, c=1
\end{gathered}
$$

This connection has no (global) parallel section.

$$
\mathcal{D}_{\frac{\partial}{\partial \theta}} e_{1}=-\frac{1}{10} e_{1}
$$

i.e. $e_{1}(\theta)$ is decreasing in length (compared to a parallel section) at rate $-\frac{1}{10} e_{1}$.

8.3 Inner Products on E and compatible connections

$$
(E,\langle\cdot, \cdot\rangle) \quad \text { Euclidean bundle }
$$

Suppose we have $\langle\cdot, \cdot\rangle_{p}: E_{p} \times E_{p} \rightarrow \mathbb{R}, p \in M$ a smooth family of inner products on the fibers of E.

Definition \mathcal{D} is compatible with $\langle\cdot, \cdot\rangle$ if

$$
\begin{gathered}
X \cdot\langle V, W\rangle=\left\langle\mathcal{D}_{X} V, W\right\rangle+\left\langle V, \mathcal{D}_{X} W\right\rangle \forall X \in C^{\infty}(T M), V, W \in C^{\infty}(E) \\
\text { (Leibniz rule) } X \cdot|V|^{2}=\left\langle\mathcal{D}_{X} V, V\right\rangle+\left\langle V, \mathcal{D}_{X} V\right\rangle
\end{gathered}
$$

Exercise

i. Prove if \mathcal{D} is compatible with $\langle\cdot, \cdot\rangle$, and V is parallel for \mathcal{D}, then $|V|^{2}$ is constant on M if M is connected.
ii. Show the connection

$$
\mathcal{D}_{\frac{\partial}{\partial \theta}} V=\left(\frac{\partial V^{1}}{\partial \theta}-\frac{1}{10} V^{1}\right) e_{1}
$$

is not compatible with any inner product.

8.4 Riemannian Connections

Also called Levi-Civita Connection of a metric $g . M, g \sim \mathcal{D}=\mathcal{D}^{g}$ on $T M$.
Definition A connection \mathcal{D} on $T M$ is called torsion-free or symmetric if

$$
\mathcal{D}_{X} Y-\mathcal{D}_{Y} X=[X, Y] \forall X, Y \in C^{\infty}(T M) .
$$

Example

- True for the usual directional derivative in \mathbb{R}^{n}

$$
[X, Y]^{j}=X^{i} \frac{\partial Y^{j}}{\partial x^{i}}-Y^{i} \frac{\partial X^{j}}{\partial x^{i}}
$$

- all coordinate connections on $T M$ are torsion free.

Interpretation of \odot

The antisymmetric part of $\mathcal{D}_{X} Y$ is given by something that comes from the smooth structure alone. $[X, Y]$.
In particular:

$$
\mathcal{D}_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\mathcal{D}_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}}
$$

$\left(\right.$ since $\left.\left[\frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{j}}\right]=0\right)$
Theorem 8.2 For every (M, g) there exists a unique connection on $T M$ that is

- symmetric
- compatible with g

In coordinates:

$$
\mathcal{D}_{X} Y=X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}+X^{i} Y^{j} \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}
$$

where

$$
\mathcal{D}_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}\left(\text { defines } \Gamma_{i j}^{k}(p) .\right)
$$

Then \mathcal{D} is symmetric iff $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.

Proof Symmetry in coordinates:

$$
\begin{gathered}
\left(X^{i} \frac{\partial Y^{k}}{\partial x^{i}}+X^{i} Y^{j} \Gamma_{i j}^{k}\right)-\left(Y^{i} \frac{\partial X^{j}}{\partial x^{i}}+Y^{i} X^{j} \Gamma_{i j}^{k}\right) \\
=X^{i} \frac{\partial Y^{k}}{\partial x^{i}}-Y^{i} \frac{\partial X^{k}}{\partial x^{i}} \\
X^{i} Y^{j} \Gamma_{i j}^{k}=Y^{i} X^{j} \Gamma_{i j}^{k} \forall X, Y \\
\Leftrightarrow \Gamma_{i j}^{k}=\Gamma_{j i}^{k}
\end{gathered}
$$

Theorem 8.3 (Levi-Civita) Given (M, g), there exists a unique connection \mathcal{D} on $T M$ satisfying
i. \mathcal{D} is compatible with g
ii. \mathcal{D} is torsion-free
\mathcal{D} is called the Levi-Civita or Riemannian connection of g.
Proof of uniqueness

$$
\begin{aligned}
X \cdot\langle Y, Z\rangle & =\left\langle D_{X} Y, Z\right\rangle+\left\langle Y, D_{X} Z\right\rangle \\
Y \cdot\langle Z, X\rangle & =\left\langle D_{Y} Z, X\right\rangle+\left\langle Z, D_{Y} X\right\rangle \\
Z \cdot\langle X ; Y\rangle & =\left\langle D_{Z} X, Y\right\rangle+\left\langle X, D_{Z} Y\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& X \cdot\langle Y, Z\rangle+Y \cdot\langle Z, X\rangle-Z \cdot\langle X, Y\rangle \\
&=\langle[Y, Z], X\rangle+\langle[X, Z], Y\rangle-\langle[X, Y], Z\rangle+2\left\langle D_{x} Y, Z\right\rangle \Rightarrow \text { uniqueness } \\
&\left\langle D_{X} Y, Z\right\rangle= \frac{1}{2}(X \cdot\langle Y, Z\rangle+Y \cdot\langle X, Z\rangle-Z \cdot\langle X, Y\rangle \\
&-\langle Y,[X, Z]\rangle-\langle X,[Y, Z]\rangle+\langle Z,[X, Y]\rangle)
\end{align*}
$$

- uniquely characterizes $\mathcal{D}_{X} Y$ in terms of g and smooth structure of M.
- not quite a formula for $\mathcal{D}_{X} Y$ (derivatives of Z appear on right hand side).

Find a formula for $\mathcal{D}_{X} Y$
Insert $X=\frac{\partial}{\partial x^{i}}, Y=\frac{\partial}{\partial x^{j}}, Z=\frac{\partial}{\partial x^{k}},\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]=0$. Recall $g_{i j}=\left\langle\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right\rangle$

$$
\langle\underbrace{\mathcal{D} \frac{\partial}{\partial x^{i}}}_{\Gamma_{i j}^{m} \frac{\partial}{\partial x^{m}}} \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\rangle=\frac{1}{2}\left(\frac{\partial g_{j k}}{\partial x^{i}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right)
$$

Recall

$$
\left(\mathcal{D}_{X} Y\right)^{k}=X^{i} \frac{\partial Y}{\partial x^{i}}+\Gamma_{i j}^{k} X^{i} Y^{j}
$$

where $\Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}}=\mathcal{D} \frac{\partial}{\partial x^{x}} \frac{\partial}{\partial x^{j}}$ defines $\Gamma_{i j}^{k}$.

$$
\begin{aligned}
\mathrm{LHS} & =\left\langle\Gamma_{i j}^{m} \frac{\partial}{\partial x^{m}}, \frac{\partial}{\partial x^{k}}\right\rangle \\
& =\Gamma_{i j}^{m} g_{m k}=\frac{1}{2}\left(\frac{\partial g_{j k}}{\partial x^{i}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right)
\end{aligned}
$$

multiply by $g^{-1}=\left(g^{k l}\right)$
Get:

$$
\Gamma_{i j}^{\ell}=\frac{1}{2} g^{\ell k}\left(\frac{\partial g_{j k}}{\partial x^{i}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{k}}\right)
$$

classic formula for Christoffel symbols $\Gamma_{i j}^{k}$.
Where

$$
\left(\mathcal{D}_{X} Y\right)^{\ell}=X^{i} \frac{\partial Y^{\ell}}{\partial x^{i}}+X^{i} Y^{j} \Gamma_{i j}^{\ell}
$$

Formulas ($\dagger \ddagger$) and (\#) define a differntial operator \mathcal{D}.
It remains to verify (existence part of theorem)

- \mathcal{D} is a connection (previous exercise)
- \mathcal{D} is symmetric (because $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$)
- \mathcal{D} is compatible with g.

Must verify:

$$
X \cdot\langle Y, Z\rangle=\left\langle\mathcal{D}_{X} Y, Z\right\rangle+\left\langle Y, \mathcal{D}_{X} Z\right\rangle
$$

In coordinates:

$$
\begin{aligned}
X^{i} \frac{\partial}{\partial x^{i}}\left(Y^{j} Z^{k} g_{j k}\right) \stackrel{?}{=} & \left(X^{i} \frac{\partial Y^{\ell}}{\partial x^{i}}+X^{i} Y^{j} \Gamma_{i j}^{\ell}\right) g_{\ell k} Z^{k} \\
& +\left(X^{i} \frac{\partial Z^{\ell}}{\partial x^{i}}+X^{i} Z^{k} \Gamma_{i k}^{\ell}\right) g_{\ell j} Y^{j}
\end{aligned}
$$

$$
X^{i}\left(\frac{\partial Y^{j}}{\partial x^{i}} Z^{k} g_{j k}+Y^{j} \frac{\partial Z^{k}}{\partial x^{i}} g_{i k}+Y^{j} Z^{k} \frac{\partial g_{j k}}{\partial x^{i}}\right) \Leftrightarrow \frac{\partial g_{j k}}{\partial x^{i}} \stackrel{?}{=} \Gamma_{i j}^{\ell} g_{\ell k}+\Gamma_{i k}^{\ell} g_{\ell j}
$$

This last statement is true, as seen by substitution.

8.5 Parallel Transport

parallel transport of a vector around a $90-90-90$ triangle in S^{2} creates a 90 rotation.
$E \rightarrow M$ bundle, $\gamma:[a, b] \rightarrow M$ smooth curve. ($E=T M:$ main example).
Definition A (smooth) section of E along γ is a smooth function $V:[a, b] \rightarrow$ $E, V(t) \in E_{\gamma(t)} \forall t \in[a, b]$

Allowed:

- self-intersections
- $\dot{\gamma}=0$

Wish to make sense of " $\mathcal{D}_{\dot{\gamma}} V$ "

$$
\left(\mathcal{D}_{\dot{\gamma}} \tilde{V}\right)^{\alpha}=\underbrace{\dot{\gamma}^{i} \frac{\partial \tilde{V}^{\alpha}}{\partial x^{i}}}_{\frac{d V \alpha}{d t}}+\dot{\gamma}^{i} \tilde{V}^{\beta} \Delta_{i \beta}^{\alpha}, \quad \tilde{V} \in C^{\infty}(E)
$$

$e_{\alpha}(x)$ local frame for E

$$
V(t)=V^{\alpha}(t) e_{\alpha}(\gamma(t))
$$

Notation

$$
\frac{\mathcal{D} V}{d t}:=\left(\frac{d V^{\alpha}(t)}{d t}+\dot{\gamma}^{i}(t) V^{\beta}(t) \Delta_{i \beta}^{\alpha}(\gamma(t))\right) e_{\alpha}(\gamma(t))
$$

" $\mathcal{D}_{\dot{\gamma}} V$ " covariant derivative of V along γ

Clearly

- $\frac{\mathcal{D V}}{d t}$ is a smooth section of E along γ
- $\frac{\mathcal{D}(f V)}{d t}=\frac{d f}{d t} V+f \frac{\mathcal{D V}}{d t}, f=f(t)$
- $\frac{d}{d t}\langle V, W\rangle=\left\langle\frac{\mathcal{D V}}{d t}, W\right\rangle+\left\langle V, \frac{\mathcal{D} W}{d t}\right\rangle$ if \mathcal{D} is compatible with some inner product $\langle\cdot, \cdot\rangle$ on E.
- If V is obtained from an ambient section $\tilde{V} \in C^{\infty}(E \mid U)(U \supseteq \operatorname{Im} \gamma)$ (open) via $V(t)=\tilde{V}(\gamma(t))$ then $\frac{\mathcal{D} V}{d t}(t)=\mathcal{D}_{\dot{\gamma}} \tilde{V}$

Definition A section V along γ is called parallel along γ if $\frac{\mathcal{D} V}{d t}=0 \forall t \in[a, b]$.
Proposition 8.4 Fix $\gamma:[a, b] \rightarrow M, \tilde{V} \in E_{a}$. Then there exists a unique parallel section $V(t)$ along γ such that $V(a)=\tilde{V}$.

Proof In a fixed chart U we may solve the $d \times d$ system of ODES that says $\frac{\mathcal{D} V}{d t}=0, \hat{V}(a)=\tilde{V}$, namely

$$
(*)\left\{\begin{array}{cc}
\frac{d V^{\alpha}(t)}{d t}+\dot{\gamma}^{i}(t) V^{\beta}(t) \Gamma_{i \beta}^{\alpha}=0, & \alpha=1, \ldots, d \\
V^{\alpha}(a)=\hat{V}, & \alpha=1, \ldots, d
\end{array}\right.
$$

for smooth functions $V^{1}(t), \ldots, V^{d}(t) t \in[a, c]$, as long as $\gamma([a, c]) \subseteq U$. Now select $a=t_{0}<t_{1}<\cdots<t_{s}=b$ such that each $\gamma\left(\left[t_{i}, t_{i+1}\right]\right)$ lies in a single chart U_{i}. Existence follow by induction. Uniqueness, smoothness also follow from ODE theory.

Definition Parallel transport is defined along γ from $\gamma(a)$ to $\gamma(b)$ as the map

$$
\begin{aligned}
P_{\gamma}: E_{\gamma(a)} & \rightarrow E_{\gamma(b)} \\
\hat{V}=V(a) & \rightarrow V(b)
\end{aligned}
$$

P_{γ} is linear since the ODE system we solved to find $P_{\gamma}(\hat{V})$ is linear.
Proposition 8.5 If \mathcal{D} is compatible with $\langle\cdot, \cdot\rangle$ then P_{γ} is an isometry from $E_{\gamma(a)}$ to $E_{\gamma(b)}$.

Proof Let $V(t), W(t)$ be parallel along γ. Then

$$
\frac{d}{d t}\langle V, W\rangle=\left\langle\frac{\mathcal{D} V}{d t}, W\right\rangle+\left\langle V, \frac{\mathcal{D} W}{d t}\right\rangle=0+0
$$

So $\langle V(t), W(t)\rangle$ is constant.

Example Let γ be a great circle (transversed at unit speed) on $S^{2} . \mathcal{D}^{S^{2}}$ is the Levi-Civita connection of the induced metric an S^{2}.

Claim $\dot{\gamma}$ is parallel along γ i.e. $\mathcal{D}_{\dot{\gamma}}^{S^{2}} \dot{\gamma}=0$
Lemma 8.6 (Proof will be an exercise) Given (M, g), and $N \subseteq M$ submanifold.

$$
\begin{aligned}
& \underset{\mathcal{D}^{g}}{\downarrow \underset{\text { projection }}{\text { orthogonal }}{ }^{\text {or }}} \underset{\text { to }}{\text { restriction }} h \\
& h_{p}(X, Y):=g_{p}(X, Y), p \in N, X, Y \in T_{p} N \\
& \pi^{T N}(p): T_{p} M \rightarrow T_{p} N
\end{aligned}
$$

orthogonal projection.
Exercise X-I

$$
D_{X}^{\prime} Y:=\pi^{T N}\left(\mathcal{D}_{\tilde{X}}^{g} \tilde{Y}\right)
$$

$\tilde{X}, \tilde{Y} \in C^{\infty}(T M)$ extend $X, Y \in C^{\infty}(T N) . \mathcal{D}^{\prime}$ is a connection on $T N$. $(\tilde{X}|N=X, \tilde{Y}| N=Y)$

$$
\mathcal{D}_{\tilde{X}}^{M} \tilde{Y}=\underbrace{\mathcal{D}_{X}^{N} Y}_{\text {tangental part }}+\text { normal part }
$$

Proof of Claim Setup:

$$
\begin{gathered}
e_{1} \perp e_{2} \in \mathbb{R}^{3},\left|e_{1}\right|=\left|e_{2}\right|=1 \\
\gamma(t)=\cos t e_{1}+\sin t e_{2} \\
\dot{\gamma}=\frac{d \gamma}{d t}=-\sin t e_{1}+\cos t e_{2} \\
\mathcal{D}_{\dot{\gamma}}^{\mathbb{R}^{3}} \dot{\gamma}=\frac{d^{2} \gamma}{d t^{2}}=-\cos t e_{1}-\sin t e_{2}=-\gamma
\end{gathered}
$$

Calculate:

$$
\begin{aligned}
\mathcal{D}_{\dot{\gamma}}^{S^{2}} \dot{\gamma} & =\pi^{T S^{2}}\left(\mathcal{D}_{\dot{\gamma}}^{\mathbb{R}^{3}} \dot{\gamma}\right) \\
& =\pi^{T S^{2}}(-\gamma) \\
& =0
\end{aligned}
$$

Observe: a continuous vector field $V(t)$ is parallel along γ iff $|V(t)|^{2}$ is constant, $\langle V(t), \dot{\gamma}(t)\rangle$ is constant.

Example $S^{2} \subseteq \mathbb{R}^{3}$ If β traverses a $90-90$-90 trianlge in S^{2}, then

$$
P_{\beta}: T_{p} M \rightarrow T_{p} M
$$

is rotation by 90 .
Definition If γ is a closed curve in $M, \gamma(a)=\gamma(b)=p, \mathcal{D}$ cannon $E \rightarrow M$, the linear map $P_{\gamma}: E_{p} \rightarrow E_{p}$ is called the holonomy map.

9 Geodesics, Exponential Map

A geodesic is a curve with zero acceleration this is equivalent to a locally length-minimizing curve. Define the acceleration (with respect to \mathcal{D}) as

$$
\ddot{\gamma}:=\frac{\mathcal{D} \dot{\gamma}}{d t}={ }^{\prime \prime} \mathcal{D}_{\dot{\gamma}} \dot{\gamma}^{\prime \prime}
$$

(a vector field along γ))
Definition γ is a geodesic if $\ddot{\gamma}(t)=0, t \in[a, b]$. "Motion of a free particle in a Riemannian manifold".

Example A great circle of unit speed in S^{n} is a geodesic

Remarks

- $\frac{d}{d t}|\dot{\gamma}|^{2}=2\langle\ddot{\gamma}, \dot{\gamma}\rangle=0$ so $|\dot{\gamma}|$ is constant (constant speed)
- Let $\gamma(t)$ be a geodesic $\Rightarrow \beta(t):=\gamma(c t)$ is a geodesic. $\dot{\beta}=c \dot{\gamma}, \ddot{\beta}=c^{2} \ddot{\gamma}$

ODE for geodesics

Coordinates x^{1}, \ldots, x^{n} on $U \subseteq M$. Write

$$
\begin{aligned}
\gamma(t) & =\left(\gamma^{1}(t), \ldots, \gamma^{n}(t)\right) \\
\dot{\gamma}^{i}(t) & =\frac{d \gamma^{i}}{d t}(t) \\
\ddot{\gamma}^{i}(t) & =\left(\frac{\mathcal{D} \dot{\gamma}}{d t}\right)^{i}(t) \\
& =\frac{d \dot{\gamma}^{i}}{d t}+\dot{\gamma}^{j} \dot{\gamma}^{k} \Gamma_{j k}^{i}(\gamma(t))
\end{aligned}
$$

so γ is a geodesic iff

$$
\begin{equation*}
\frac{d^{2} \gamma^{i}}{d t^{2}}+\frac{d \gamma^{j}}{d t} \frac{d \gamma^{k}}{d t} \Gamma_{j k}^{i}(\gamma(t))=0, i=1, \ldots, n \tag{1}
\end{equation*}
$$

$n \times n$ system of nonlinear ODEs.(linear in 2nd order derivatives quadratic in 1st oder, fully nonlinear in γ itself.)
Consider the initial conditions

$$
\left\{\begin{array}{c}
\gamma(0)=p \tag{2}\\
\dot{\gamma}(0)=X
\end{array}\right.
$$

$p \in M, X \in T_{p} M$
Theorem 9.1 (Short-term existence for geodesics) Forall $p \in M$ and all $X \in T_{p} M$ there is a unique solution $\gamma=\gamma_{p, X}:[0, \varepsilon) \rightarrow M$ of (1) and (2) for some $\varepsilon>0$.

Proof later

Definition The exponential map by

$$
\exp _{p}:\left\{\text { subset of } T_{p} M\right\} \rightarrow M
$$

by

$$
\exp _{p}(X):=\gamma_{p, X}(1)
$$

whenever this exists.

Lemma 9.2 (Homogeneity)

i. $\gamma_{p, s X}(t)=\gamma_{p, X}(s t)$
ii. $t \mapsto \exp _{p}(t X)$ is a geodesic.

Proof

i. $t \mapsto \gamma_{p, X}(s t)$ is a geodesic by the above remark, with $\left.\frac{d}{d t}\right|_{0} \gamma_{p, X}(s t)=$ $\left.s \frac{d}{d t}\right|_{0} \gamma_{p, X}(t)=s X$ so $t \mapsto \gamma_{p, X}(s t)$ and $t \mapsto \gamma_{p, s X}(t)$ have the same initial point, and the same initial velocity so by uniqueness of geodesics they are the same
ii.

$$
\begin{aligned}
\exp _{p}(t X) & =\gamma_{p, t X}(1) \\
& \stackrel{1}{=} \gamma_{p, X}(t)
\end{aligned}
$$

which is a geodesic.

9.1 Geodesic Flow

Rewrite (1),(2) (equations and initial conditions for geodesics) as a $2 n \times 2 n$ 1 st order ODE system for $\left(\gamma^{1}(t), \ldots, \gamma^{n}(t), Y^{1}(t), \ldots, Y^{n}(t)\right) \in T M$ where M has the coordinates $\left(x^{1}, \ldots, x^{n}, X^{1}, \ldots, X^{n}\right)$ and $Y^{i}(t)$ shall end up being $\frac{d \gamma^{i}}{d t}(t)$.
Get:

$$
\left\{\begin{array}{cl}
\frac{d \gamma^{i}}{d t}=Y^{i}(t), & i=1, \ldots, n \\
\frac{d Y^{i}}{d t}= & -Y^{p}(t) Y^{q}(t) \Gamma_{p q}^{i}(\gamma(t)), \\
& i=1, \ldots, n \\
\gamma(0)=p, Y(0)=X
\end{array}\right.
$$

Rewrite as

$$
\begin{align*}
\frac{d \tilde{\gamma}}{d t} & =G(\tilde{\gamma}) \tag{1"}\\
\tilde{\gamma}(0) & =(p, X) \tag{2"}
\end{align*}
$$

where

$$
\tilde{\gamma}(t)=(\gamma(t), Y(t)) Y(t)=Y^{i}(t)\left(\frac{\partial}{\partial x^{i}}\right)_{\gamma(t)} \in T_{\gamma(t)} M
$$

is the lifting of the path $\gamma(t)$ via the vector $Y(t)$ to a curve in $T M$ where now

$$
G\left(x^{1}, \ldots, x^{n}, Z^{1}, \ldots, Z^{n}\right):=\left(Z^{1}, \ldots, Z^{n},-Z^{p} Z^{q} \Gamma_{p q}^{1}, \ldots,-Z^{p} Z^{q} \Gamma_{p q}^{n}(x)\right)
$$

is a smooth vector field on $T M$. A solution curve $\tilde{\gamma}(t)$ of $(1 "),(2 ")$ yields a pair $\gamma(t), Y(t)$ solving ($\left.1^{\prime}\right),\left(2^{\prime}\right)$ and hence a geodesic $\gamma(t)$ (we call it $\gamma_{p, X}(t)$) solving (1),(2). This proves Short Term Existence Theorem for geodesics (as it was stated).

Local flow of G

By ODE theory:
Proposition 9.3 Fix $p \in M$. Then there exists a open set $U \subseteq M$ with $p \in U, \varepsilon>0, \delta>0$ and $W \subseteq T M$ open of the form

$$
W:=\{(x, Z)|x \in U,|Z|<\varepsilon\}
$$

and a smooth map

$$
\begin{array}{r}
\phi: W \times[-\delta, \delta] \rightarrow T M \\
\quad(x, Z) \in W t \in[\delta, \delta]
\end{array}
$$

that is the flow for (1"),(2"), i.e.

$$
\begin{aligned}
\phi(x, Z, 0) & =(x, Z) \\
\frac{\partial \phi}{\partial t}(x, Z, t) & =G(\phi(x, Z, t)) \\
\phi(p, X, t)=\left(\gamma_{p, X}(t), Y_{p, X}(t)\right) &
\end{aligned}
$$

Smoothness of exp and existence in a neighborhood of 0 in $T_{p} M$

$$
\gamma_{x, Z}(t)=\pi(\phi(x, Z, t)), \pi: T M \rightarrow M
$$

We have

$$
\begin{aligned}
\exp _{x}(Z) & =\gamma_{x, Z}(1) \\
& =\gamma_{x, Z / \delta}(\delta) \\
& =\pi(\phi(x, Z / \delta, \delta))\left|\frac{Z}{\delta}\right|<\varepsilon
\end{aligned}
$$

Thus $\exp _{x}(Z)$ is defined for $x \in U,|Z|<\varepsilon \delta$ and is smooth in both variables. Set $B_{r}^{T_{p} M_{x}}(0):=\left\{X \in T_{p} M,|X|<r\right\}$

Lemma $9.4 \exp _{p}: B_{r}^{T_{p} M}(0) \rightarrow M$ is defined and smooth for sufficiently small $r>0$.

Theorem 9.5 For each $p \in M \exists \varepsilon>0$ such that $\exp _{p}: B_{\varepsilon}^{T_{p} M}(0) \rightarrow M$ is a diffeomorphism onto its (open) image. In fact,

$$
\left(d \exp _{p}\right)_{0}: \underbrace{T_{0} T_{p} M}_{T_{p} M} \rightarrow T_{p} M
$$

is the identity.
Proof of Theorem By Inverse Function Theorem, it suffices to prove the latter statement. The path

$$
t \mapsto t X \text { in } T_{p} M
$$

goes to the path

$$
t \mapsto \gamma(t):=\exp _{p}(t X) \text { in } M
$$

which is a geodesic in M with $\gamma(0)=p, \dot{\gamma}(0)=X$.

Differentiate:

$$
\begin{aligned}
X & =\dot{\gamma}(0) \\
& =\frac{d}{d t} \exp _{p}(t X) \\
& =\left(d \exp _{p}\right)_{0}\left(\left.\frac{d t}{d t}\right|_{0}(t X)\right) \\
& =\left(d \exp _{p}\right)_{0}(X)
\end{aligned}
$$

Exponential Coordinates

- geodesic normal coordinates
- geodesic polar coordinates

Geodesic Normal Coordinates

Let x^{1}, \ldots, x^{n} be orthonormal coordinates on the inner product space $\left(T_{p} M, g(p)\right)$. Transfer these coordinates to M via $\exp _{p}^{-1}$ to obtain geodesic normal coordinates near p :

$$
\begin{aligned}
& g(X, Y)=g_{i j}(x) X^{i} Y^{j} \\
& \delta(X, Y)=\delta_{i j} X^{i} Y^{j}=X^{i} Y^{i}
\end{aligned}
$$

Compare

$$
g=\left(g_{i j}(x)\right), x \in U
$$

(expressed in exponential normal coordinates) to $\delta=\left(\delta_{i j}\right)$ (the back ground flat metric coming from x^{1}, \ldots, x^{n}.)

Theorem 9.6 In geodesic normal coordinates at p,

$$
g_{i j}(0)=\delta_{i j}, \frac{\partial g_{i j}}{\partial x^{k}}(0)=0, \Gamma_{i j}^{k}(0)=0 .
$$

So $g_{i j}(x)=\delta_{i j}+\mathcal{O}\left(|x|^{2}\right)^{21}$ for $x \in U$ near p. "Metric looks Euclidean up to 1st order".

[^13]
Consequence

A Riemannian metric has no first order invariants to distinguish it from flat space (Euclidean space).

Proof

i. $g_{i j}(p)=\left\langle\left(\frac{\partial}{\partial x^{i}}\right)_{p},\left(\frac{\partial}{\partial x^{j}}\right)_{p}\right\rangle=\delta_{i j}$ since we chose orthonormal coordinates x^{1}, \ldots, x^{n} on $T_{p} M$.
ii. Fix $X=X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p} \in T_{p} M$. Consider the geodesic

$$
\gamma(t)=\exp _{p}(t X)
$$

with $\dot{\gamma}(0)=X$. In geodesic normal coordinates, $\gamma(t)$ is given by

$$
\begin{aligned}
\gamma(t) & =\left(t X^{1}, \ldots, t X^{n}\right) \\
\dot{\gamma}(t) & =\left(X^{1}, \ldots, X^{n}\right) \quad\left(=X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{\gamma(t)} \in T_{\gamma(t)} M\right)
\end{aligned}
$$

i.e. $\dot{\gamma}(t)$ agrees along γ with the constant coefficent vector field

$$
\begin{gathered}
\tilde{X}(q):=X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{q}, q \in U \\
\tilde{X}(\gamma(t))=\dot{\gamma}(t) .
\end{gathered}
$$

Since γ is a geodesic,

$$
0=\ddot{\gamma}(t)=\mathcal{D}_{\dot{\gamma}} \dot{\gamma}(t)=\left(\mathcal{D}_{\tilde{X}} \tilde{X}\right)(\gamma(t))
$$

At $t=0$:

$$
0=\mathcal{D}_{\tilde{X}} \tilde{X}(0)^{k}=\underbrace{X^{i} \frac{\partial X^{k}}{\partial x^{i}}}_{=0}+X^{i} X^{j} \Gamma_{i j}^{k}(0)
$$

i.e.

$$
\Gamma_{i j}^{k}(0) X^{i} X^{j}=0, \forall k .
$$

Since this holds $\forall X$ and $\Gamma_{i j}^{k}$ is symmetric, polarization yields

$$
\Gamma_{i j}^{k}(0)=0 \forall i, j, k
$$

iii. Compute on U :

$$
\begin{aligned}
\frac{\partial g_{j k}}{\partial x^{i}} & =\frac{\partial}{\partial x^{i}}\left\langle\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right\rangle \\
& =\left\langle\mathcal{D} \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right\rangle+\left\langle\frac{\partial}{\partial x^{j}}, \mathcal{D}_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}\right\rangle \\
& =\left\langle\Gamma_{i j}^{\ell} \frac{\partial}{\partial x^{\ell}}, \frac{\partial}{\partial x^{k}}\right\rangle+\left\langle\frac{\partial}{\partial x^{j}}, \Gamma_{i k}^{\ell} \frac{\partial}{\partial x^{\ell}}\right\rangle \\
& =0 \quad \text { at } x=0 \text { by }(i i)
\end{aligned}
$$

Remark on polarization Let $A(X, Y)$ be symmetric, then

$$
A(X, Y)=\frac{1}{2}(A(X+Y, X+Y)-A(X, X)-A(Y, Y))
$$

Exercise (Lee)
Show: if two connections on $T M$ (not necessarily torsion free!) have the same symmetric part, then they have the same geodesics.

Corollary 9.7 Any vector X in $T_{p} M$ can be extended to $\tilde{X} \in C^{\infty}\left(T_{p} U\right), p \in$ U such that \tilde{X} is parallel at p, i.e.

$$
\mathcal{D}_{Y} \tilde{X}(p)=0 \forall Y
$$

Geodesic Polar Coordinates

Place polar coordinates on $T_{p} M$ and transfer them to $U \subseteq M$ via $\exp _{p}^{-1}$. Let $S^{n-1}:=$ unit sphere in $T_{p} M$ (identified with standard unit sphere in \mathbb{R}^{n}). Define

$$
\begin{aligned}
{[0, \infty) \times S^{n-1} } & \rightarrow T_{p} M \\
(r, \omega) & \mapsto r \omega
\end{aligned}
$$

Obtain coordinates $r, \omega^{1}, \ldots, \omega^{n-1}$ and coordinate vector fields $\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{1}}, \ldots, \frac{\partial}{\partial w^{n-1}}$ on $U \backslash\{p\} \subseteq M$. Write $S(r)=\{r\} \times S^{n-1}$.

Lemma 9.8 In $U \backslash\{p\}$, with respect to g :
i. $\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right\rangle=1$
ii. $\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}\right\rangle=0, a=1, \ldots, n-1$

Radial geodesics $t \mapsto t \omega$ are othognoal to coordinate spheres $S(r)$.
iii. $\left\langle\frac{\partial}{\partial \omega^{a}}, \frac{\partial}{\partial \omega^{b}}\right\rangle=\mathcal{O}\left(r^{2}\right)$

Proof

i. Fix $\omega \in S^{n-1}$. Then $\gamma(t):=\exp _{p}(t \omega), t \in \mathbb{R}$ is a geodesic with coordinate expression

$$
t \mapsto\left(t, \omega^{1}, \ldots, \omega^{n-1}\right)(t \neq 0)
$$

Thus

$$
\dot{\gamma}(t)=(1,0, \ldots, 0)=\left(\frac{\partial}{\partial r}\right)_{\gamma(t)}(t \neq 0)
$$

so

$$
\begin{aligned}
\left|\frac{\partial}{\partial r}\right|_{\gamma(t)} & \stackrel{t \neq 0}{=}|\dot{\gamma}|_{\gamma(t)} \\
& =\text { const }
\end{aligned}
$$

since γ is a geodesic. What is this constant?
Remember: $\left|\frac{\partial}{\partial r}\right|_{\delta}=1$ (pre-DG fact) so

$$
\begin{aligned}
\left|\frac{\partial}{\partial r}\right|_{g} & =\left|\frac{\partial}{\partial r}\right|_{\delta}\left(1+\mathcal{O}\left(|x|^{2}\right)\right) \\
& =1+\mathcal{O}\left(|x|^{2}\right)
\end{aligned}
$$

($r=|x|,|x|$ means $|x|_{\delta}$) so the constant is 1.
ii. Fix $a \in\{1, \ldots, n-1\}$ To show: $\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}\right\rangle=0$ on $U \backslash\{p\}$.

Observe:

$$
\mathcal{D}_{\frac{\partial}{\partial r}} \frac{\partial}{\partial \omega^{a}}-\mathcal{D}_{\frac{\partial}{\partial \omega^{a}}} \frac{\partial}{\partial r}=\left[\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}\right]=0 \text { on } U \backslash\{p\}
$$

$r(\gamma(t))=t, \frac{\partial}{\partial r}=\frac{d}{d t}$. Now consider $\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}$ as vector fields along $\gamma(t)=$ $\exp _{p}(t \omega),\left(\dot{\gamma}=\frac{\partial}{\partial r}\right)$. Compute

$$
\begin{aligned}
\frac{d}{d t}\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}\right\rangle_{\gamma(t)} & =\overbrace{\left\langle\mathcal{D}_{\frac{\partial}{}}^{\partial r} \frac{\partial}{\partial r}\right.}^{=\ddot{\gamma}=0}, \frac{\partial}{\partial \omega^{a}}\rangle+\left\langle\frac{\partial}{\partial r}, \mathcal{D}_{\frac{\partial}{\partial r}} \frac{\partial}{\partial \omega^{a}}\right\rangle \\
& =0+\left\langle\frac{\partial}{\partial r}, \mathcal{D} \frac{\partial}{\partial \omega^{a}} \frac{\partial}{\partial r}\right\rangle \\
& =\frac{1}{2} \frac{\partial}{\partial \omega^{a}} \cdot \underbrace{\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial r}\right\rangle}_{\equiv 1}=0
\end{aligned}
$$

so $\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}\right\rangle=$ const along γ. What is this constant?

$$
\begin{aligned}
\left|\left\langle\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}}\right\rangle\right| & \leq\left|\frac{\partial}{\partial r}\right|_{g}\left|\frac{\partial}{\partial \omega^{a}}\right|_{g} \text { Cauchy-Schwarz } \\
& =1 \cdot \mathcal{O}(r)
\end{aligned}
$$

so the constant is zero.
iii. Note $\left\langle\frac{\partial}{\partial \omega^{a}}, \frac{\partial}{\partial \omega^{\omega}}\right\rangle_{\delta}=r^{2} h_{a b}^{\circ}(w)$ (standard metric on S^{n-1}). Since $g_{i j}=$ $\delta_{i j}+\varepsilon_{i j}, \varepsilon_{i j}=\mathcal{O}\left(r^{2}\right)$, where $\left|\varepsilon_{i j}(r, \omega)\right| \leq C r^{2}$

$$
\left\langle\frac{\partial}{\partial \omega^{a}}, \frac{\partial}{\partial \omega^{b}}\right\rangle_{g}=r^{2} h_{a b}^{\circ}(\omega)+\mathcal{O}\left(r^{2}\right)=\mathcal{O}\left(r^{2}\right)
$$

Corollary 9.9 (Gauss's Lemma) In geodesic polar coordinates, g has the form

$$
g=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & r^{2} h_{i j}(r, \omega) & \\
0 & & &
\end{array}\right) \begin{gathered}
r \\
\omega^{1} \\
\vdots \\
\omega^{n-1}
\end{gathered}
$$

where for each $r>0, h_{i j}(r, \cdot)$ is a metric on S^{n-1} with

$$
h_{i j}(r, \omega)=h_{i j}^{\circ}(\omega)+\mathcal{O}\left(r^{2}\right)
$$

as $r \rightarrow 0$.
Proof A slight refinement of the above.

9.2 Length-minimizing curves

$$
\begin{gathered}
L(\gamma):=\int_{a}^{b}|\dot{\gamma}(t)|_{g} d t \\
\gamma:[a, b] \rightarrow M .
\end{gathered}
$$

The curve γ is length-minimizing if

$$
L(\gamma) \leq L(\beta)
$$

for any smooth curve β with the same endpoints (resp. strictly lengthminimizing if equality implies $\beta=\gamma$).

Theorem 9.10 (Local Length-minimizing Property) Let γ be geodesic Then for each $a \in \operatorname{dom}(\gamma)$ and each b sufficiently close to $a(b>a) \gamma \mid[a, b]$ is length-minimizing.

Example $\alpha=\gamma \mid[a, b] . \alpha$ is length-minimizing iff $L(\alpha) \leq \pi$ (strictly lengthminimizing iff $L(\alpha)<\pi$)

Proof Without loss of generality $a=0$. Set $p=\gamma(0)$. Select $\varepsilon>0$ such that $\exp _{p}: B_{\varepsilon}^{T_{p} M}(0) \stackrel{\cong}{\rightrightarrows} U \subseteq M$ is a diffeomorphism. Fix $b<\varepsilon, q:=\gamma(b)$. Use geodesic normal coordinates on U. In these coordinates, $\gamma(t), 0 \leq t \leq b$ is the ray $t \mapsto\left(t X^{1}, \ldots t X^{n}\right)$ where $X:=\dot{\gamma}(0)$. Let β by any curve connectiong $p=\gamma(0)$ to $q=\gamma(b)$.
$L(\gamma \mid[0, b])=b$ To show: $L(\beta) \geq b$. Without loss of generality replace β by the initial segment $\beta \mid[0, e]$ such that

$$
\beta(e) \in S(b), \beta([0, e]) \subseteq\{r(x) \leq b\}
$$

Show: $L(\beta \mid[0, e]) \geq b$. Write

$$
\begin{aligned}
\beta(u) & =\left(r(u), \omega^{1}(u), \ldots, \omega^{n-1}(u)\right), 0 \leq u \leq e \\
\dot{\beta}(u) & =\left(\frac{d r}{d u}, \frac{d \omega^{1}}{d u}, \ldots, \frac{d \omega^{n-1}}{d u}\right) \\
& =\underbrace{\frac{d r}{d u} \frac{\partial}{\partial r}}_{\text {radial part }}+\underbrace{\sum_{a=1}^{n-1} \frac{d \omega^{a}}{d u} \frac{\partial}{\partial \omega^{a}}}_{\text {tangental part }} \\
& =\dot{\beta}(u)^{R}+\dot{\beta}(u)^{T}
\end{aligned}
$$

so

$$
\begin{aligned}
|\dot{\beta}(u)|^{2} & =\left|\dot{\beta}(u)^{R}\right|^{2}+\left|\dot{\beta}(u)^{T}\right|^{2} \\
|\dot{\beta}(u)| & \geq\left|\frac{d r}{d u}\right|\left|\frac{\partial}{\partial r}\right|=\left|\frac{d r}{d u}\right|
\end{aligned}
$$

so

$$
\begin{aligned}
L(\beta \mid[0, e]) & =\int_{0}^{e}|\dot{\beta}(u)| d u \\
& \geq \int_{0}^{e}\left|\frac{d r}{d u}\right| d u \\
& \geq r(e)-r(0) \\
& =b-0=b
\end{aligned}
$$

Furthermore: equality occurs iff $\dot{\beta}$ is a nonnegative multiple of $\frac{\partial}{\partial r}$ for all $u \in[0, e]$. But then, $\beta=\gamma[0, b]!\gamma$ is a strict minimizer, $b<\varepsilon!$
Recall $d(p, q):=\inf \{L(\beta) \mid \beta$ joins p to $q\}$
Definition If $\exp _{p}: B_{\varepsilon}^{T_{p} M}(0) \xrightarrow{\cong} U \subseteq M$ is a diffeomorphism, we call U a normal neighborhood of p.

Corollary $9.11 p, q \in M, r<\varepsilon$ normal coordinates about p.

$$
\begin{aligned}
& d(p, q)=r(q) \quad \text { if } q \in \exp _{p}\left(B_{\varepsilon}^{T_{p} M}(0)\right) \\
& d(q, p) \geq \quad \varepsilon \quad \text { if } q \notin \exp _{p}\left(B_{\varepsilon}^{T_{p} M}(0)\right)
\end{aligned}
$$

9.3 Metric Space Structure

(induced by g)
$(M, g) \leadsto d(q, p)$.
Proposition 9.12 (M connected) (M, d) is a metric space. (M not connected: extended metric space: $d=\infty$ allowed.)

Proof

- Triangle inequality: $d(x, y)+d(y, z) \geq d(x, z)$
- $\operatorname{symmetry:~} d(p, q)=d(q, p)$
- positivity: if $p \neq q$ then $d(p, q)>0$.

Proof $p \neq q$, pick ε so $q \notin \exp _{p}\left(B_{\varepsilon}^{T_{p} M}(0)\right) d(q, p) \geq \varepsilon$.

Definition

$$
B_{\sigma}(p)\left(=B_{\sigma}^{g}(p)=B_{\sigma}^{M}(p)\right):=\{q \in M \mid d(p, q)<\sigma\}
$$

geodesic ball of radius σ about p.

Example (need not be a topological ball) By the Corollary(9.11):

$$
B_{\varepsilon}(p)=\exp _{p}\left(B_{\varepsilon}^{T_{p} M}(0)\right)
$$

(provided $\exp _{p} \mid B_{\varepsilon}^{T_{p} M}(0)$ is a diffeomorphism onto it's image.)
This implies
Proposition 9.13 The metric space topology generated by $d(\cdot, \cdot)$ coincides with the topology induced by the differntial structure.

Proof Both topologes are generated (by taking arbitrary unions) by small balls $B_{\sigma}(p), \sigma<\varepsilon(p)$.

Theorem 9.14 (Geodesically Convex Balls) For $p \in M$, there is $\sigma=$ $\sigma(p)>0$ such that every pair of points $p_{1}, p_{2} \in B_{\sigma}(p)$ can be joined by a (unique) minimizing geodesic γ, and γ lies in $B_{\sigma}(p)$.

Completeness: Hopf-Rinow Theorem

Questions:

- When can geodesics be extended indefinitely
- When can $p, q \in M$ be joined by a minimizing geodesic?

Theorem 9.15 (Hopf-Rinow) (M, g) The following are equivalent:
i. (M, d) is metrically complete (cauchy sequences converge).
ii. (M, g) is geodesically complete (each geodesic can be extended indefinitely)
We call M complete.
Example Any compact manifold is complete.
Example $\mathbb{R}^{2} \backslash\{0\}$. Metric completion: \mathbb{R}^{2}.
$\widetilde{\mathbb{R}^{2} \backslash\{0\}}$ metric completion $\widetilde{\mathbb{R}^{2} \backslash\{0\}} \cup\{z\}$
Corollary 9.16 (of Proof) M connected, complete \Rightarrow every pair p, q can be joined by a minimum geodesic. $\Leftrightarrow \exp _{p}$ is surjective for all p, i.e. there are no places you can't see from p.

Example Hyperbolic space is complete.
Proposition 9.17 If a curve $\gamma \subseteq M^{2}$ is the fixed-point of a nontrivial isometry, then that curve is a geodesic.

10 Testing for Flatness

(Lee chap 7) (Motivation for Riemannian curvature tensor.)
How can we tell when 2 Riemannian manifolds are locally isometric? Answer: Invariants.

10.1 Special case

How can we tell when a Riemannian manifold is flat (= locally isometric to Euclidean space)?

Observation

If M is flat, then near each point there is a frame $e_{1}(x), \ldots, e_{n}(x)$ consisting of parallel vector fields.

$$
\begin{aligned}
\left(\mathbb{R}^{n}, \delta\right) \subseteq V & \stackrel{\text { isom. } \phi}{\leftrightarrows} U \subseteq\left(M^{n}, g\right) \\
\frac{\partial}{\partial x^{i}} & \mapsto
\end{aligned} \phi^{*}\left(\frac{\partial}{\partial x^{i}}\right) .
$$

Theorem 10.1 No neighborhood of a point in S^{2} possesses a parallel vector field. Thus: No neighborhood af any point in S^{2} is isometric to an open set in \mathbb{R}^{2}.

Lemma 10.2 The holonomy about a circle of latitude $\gamma=\partial B_{\theta}^{S^{2}}(N)$ is a nontrivial rotation

$$
H \gamma: T_{p} S^{2} \rightarrow T_{p} S^{2}
$$

Proof sketch (Do Carmo) Let C be the cone tangent to S^{2} along γ. Since S^{2} and C have the same tangent planes along γ, we have for any vector field $X(t) \in T_{\gamma(t)} S^{2}$ along γ

$$
\mathcal{D}_{\dot{\gamma}}^{S^{2}} X=\pi^{\perp}\left(\mathcal{D}_{\dot{\gamma}}^{\mathbb{R}^{3}} X\right)=\mathcal{D}_{\dot{\gamma}}^{C} X
$$

So the holonomy about γ is the same, whether we regard γ as a curve in S^{2} or in C. But C can be cut and rolled out flat and the holonomy computed easily.

Exercise Find the holonomy about any simple closed curve in S^{2}.

$$
\begin{gathered}
\mathbb{C} \longrightarrow \underbrace{E}_{V} \\
\left(\mathcal{D}_{X} V\right)^{\alpha}=X^{i} \frac{\partial V^{\alpha}}{\partial x^{i}}+i \underbrace{\omega(X)}_{\Delta} V^{\alpha} \\
V \in C^{\infty}(E) \quad \omega(X)=a(x) X^{1}(x)+b(x) X^{2}(x) \\
H_{\gamma}: E_{p} \rightarrow E_{p} \cong \mathbb{C} \cong \mathbb{R}^{2} \\
\hat{V} \mapsto e^{i \int_{\Omega}\left(a_{x^{2}}\left(x^{1}, x^{2}\right)-b_{x^{1}}\left(x^{1}, x^{2}\right)\right) d x^{1} d x^{2} \hat{V}} \\
a_{x^{2}}-b_{x^{1}}=\operatorname{curl}(a, b)(\equiv \operatorname{rot}(a, b))
\end{gathered}
$$

10.2 Try to construct a parallel vector field (locally)

$\left(M^{2}, g\right)$ given, $p \in M$ fixed. x^{1}, x^{2} local coords near p. Fix $Z \in T_{p} M$. Extend Z parallel along x^{1}-axis $t \mapsto(t, 0)$. Then extend vertically along each curve $t \mapsto\left(x^{1}, t\right)\left(x^{1} \in \mathbb{R}\right.$ fixed $)$. Get:

$$
\begin{cases}\mathcal{D} \frac{\partial}{\partial x^{2}} Z=0 & \text { all } x^{1}, x^{2} \\ \mathcal{D} \frac{\partial}{\partial x^{1}} Z=0 & \text { all } x^{1}, x^{2}=0 .\end{cases}
$$

If $\mathcal{D} \frac{\partial}{\partial x^{1}} Z=0$ for all x^{1}, x^{2} then Z would be parallel:

$$
\mathcal{D}_{X} Z=X^{1} \mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z+X^{2} \mathcal{D}_{\frac{\partial}{\partial x^{2}}} Z
$$

Too see what $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z$ is like for $x^{2} \neq 0$, consider how it varies along curve $t \mapsto\left(x^{1}, t\right)$. Measured by

$$
\mathcal{D}_{\frac{\partial}{\partial x^{2}}} \mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z
$$

Now if we were so lucky and the operators $\mathcal{D}_{\frac{\partial}{\partial x^{2}}} \mathcal{D}_{\frac{\partial}{\partial x^{1}}}$ commuted on Z, then

$$
\mathcal{D}_{\frac{\partial}{\partial x^{2}}} \mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z=\mathcal{D}_{\frac{\partial}{\partial x^{1}}} \underbrace{\mathcal{D}_{\frac{\partial}{\partial x^{2}}}}_{0} Z=0 \forall x^{1}, x^{2}
$$

Then $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z$ would be parallel along $t \mapsto\left(x^{1}, t\right)$. But $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z=0$ at $\left(x^{1}, 0\right)$. So $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Z$ would be $0 \forall x^{1}, x^{2}$.

So the question of constructing parallel vector fields comes down to: Do directional derivatives of vector fields commute?
In \mathbb{R}^{n}, this is true: $\mathcal{D}^{\delta}=\mathcal{D}^{0}=$ coordinate connections.

$$
\begin{aligned}
& \mathcal{D}_{\frac{\partial}{\partial x^{1}}}^{0} \mathcal{D}_{\frac{\partial}{\partial x^{2}}}^{0}\left(Z^{i}(x) \frac{\partial}{\partial x^{i}}\right)=\mathcal{D}_{\frac{\partial}{\partial x^{1}}}\left(\frac{\partial Z^{i}}{\partial x^{2}}(x) \frac{\partial}{\partial x^{i}}\right) \\
&=\frac{\partial^{2} Z^{i}}{\partial x^{1} \partial x^{2}}(x) \frac{\partial}{\partial x^{i}} \\
&=\mathcal{D}_{\frac{\partial}{\partial x^{2}}} \mathcal{D}_{\frac{\partial}{\partial x^{1}}}^{0} Z \\
& \mathcal{D}_{X} \mathcal{D}_{Y} Z \stackrel{?}{=} \mathcal{D}_{Y} \mathcal{D}_{X} Z
\end{aligned}
$$

Even in \mathbb{R}^{n}, it's not so simple.

$$
\begin{aligned}
\mathcal{D}_{X}^{0} \mathcal{D}_{Y}^{0} Z & =X^{i} \mathcal{D}_{\frac{\partial}{\partial x^{i}}}^{0}\left(Y^{j} \mathcal{D}_{\frac{\partial}{\partial x^{j}}} Z\right) \\
& =X^{i} Y^{j} \mathcal{D}_{\frac{\partial}{\partial x^{i}}}^{0} \mathcal{D}_{\frac{\partial}{\partial x^{j}}}^{0} Z+X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \mathcal{D}_{\frac{\partial}{\partial x^{j}}}^{0} Z
\end{aligned}
$$

Antisymmetrizing, we get

$$
\begin{aligned}
\mathcal{D}_{X}^{0} \mathcal{D}_{Y}^{0} Z-\mathcal{D}_{Y}^{0} \mathcal{D}_{X}^{0} Z & =O+[X, Y]^{j} \mathcal{D}_{\frac{\partial}{\partial x j}} Z \\
& =\mathcal{D}_{[X, Y]}^{0} Z
\end{aligned}
$$

According:
Proposition 10.3 In a flat manifold

$$
\mathcal{D}_{X} \mathcal{D}_{Y} Z-\mathcal{D}_{Y} \mathcal{D}_{X} Z-\mathcal{D}_{[X, Y]} Z=0
$$

Proof \mathcal{D} and $[\cdot, \cdot]$ are both invariant under isometries.

10.3 Riemann Curvature

Definition Let $X, Y, Z, W \in C^{\infty}(T M)$.
i. The Riemann curvature operator of (M, g) is defined as

$$
\mathcal{R}(X, Y) Z:=-\mathcal{D}_{X} \mathcal{D}_{Y} Z+\mathcal{D}_{Y} \mathcal{D}_{X} Z+\mathcal{D}_{[X, Y]} Z
$$

ii. The Riemannian curvature tensor is defined by

$$
\begin{gathered}
\mathcal{R}_{m}(X, Y, Z, W):=\langle\mathcal{R}(X, Y) Z, W\rangle \\
\mathcal{R}(\cdot, \cdot) \cdot: C^{\infty}(T M) \times C^{\infty}(T M) \times C^{\infty}(T M) \rightarrow C^{\infty}(T M)
\end{gathered}
$$

$\mathcal{R}_{m} \equiv 0$ iff M is flat, (iff later).
\mathcal{R}_{m} measures how far M is from being Euclidean.

10.4 Tensors (over \mathbb{R})

V, W vector spaces with bases $e_{1}, \ldots e_{m}$ and $d_{1}, \ldots, d_{n} . V \otimes W$ vector space $m n=\operatorname{dim}$ basis $e_{i} \otimes d_{j} i=1, \ldots, m, j=1, \ldots, n$.
$\binom{k}{0}$ tensor over V is a k-linear map

$$
T: \underbrace{V \times \cdots \times V}_{k} \rightarrow \mathbb{R}
$$

or equivalently an element of $\underbrace{V^{*} \otimes \cdots \otimes V^{*}}_{k}$. Typical element: $T=T_{i_{1} \ldots i_{m}} e_{i_{1}}^{*} \otimes$ $\cdots \otimes e_{i_{m}}^{*}, e_{1}^{*}, \ldots, e_{m}^{*}$ dual basis (to $\left.e_{1}, \ldots, e_{m}\right)$ of $V^{*}, e_{i}^{*}(X)=X^{i} X_{\ell}=X_{\ell}^{p} e_{p}$

$$
\begin{aligned}
T\left(X_{1}, \ldots, X_{m}\right) & =T_{i_{1} \ldots i_{m}}\left(e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{m}}^{*}\right)\left(X_{1}, \ldots, X_{m}\right) \\
& =T_{i_{1} \ldots i_{m}} e_{i_{1}}^{*}\left(X_{1}\right) \cdots e_{i_{m}}^{*}\left(X_{m}\right) \\
& =T_{i_{1} \ldots i_{m}} X_{1}^{i_{1}} \cdots X_{m}^{i_{m}} .
\end{aligned}
$$

A $\binom{k}{\ell}$ tensor over V is a k-linear map

$$
\underbrace{V \times \cdots \times V}_{k} \rightarrow \underbrace{V \otimes \cdots \otimes V}_{\ell}
$$

or equivalently, an element of $\underbrace{V^{*} \otimes \cdots \otimes V^{*}}_{k} \otimes \underbrace{V \otimes \cdots \otimes V}_{\ell}$. Given smooth vector bundles $E, F \rightarrow M$, we can form smooth vector bundles $E^{*}, E \otimes F$ over M with fibers

$$
\begin{gathered}
\left(E^{*}\right)_{p}:=\left(E_{p}\right)^{*},(E \otimes F)_{p}:=E_{p} \otimes F_{p} \\
T^{*} M=(T M)^{*}, T_{p}^{*} M=\left(T_{p} M\right)^{*} .
\end{gathered}
$$

Then a $\binom{k}{\ell}$ tensor field T on M is a section

$$
T \in C^{\infty}(\underbrace{T^{*} M \otimes \cdots \otimes T^{*} M}_{k} \otimes \underbrace{T M \otimes \cdots \otimes T M}_{\ell})
$$

Exercise

i. $\binom{0}{1}$ tensor fields are vector fields
ii. $\binom{1}{0}$ tensor fields are dual vector fields, or 1 -forms
iii. g (Riemannian metric) is a $\binom{2}{0}$ tensor field.
$\mathcal{D}_{X} Y$ vector field in $C^{\infty}(T M)$

$$
\begin{aligned}
\mathcal{D} Y= & \left(\mathcal{D} Y(p): T_{p} M \rightarrow T_{p} M\right) \\
& \in C^{\infty}(\operatorname{Lin}(T M ; T M)) \\
& \in C^{\infty}\left(T^{*} M \otimes T M\right)
\end{aligned}
$$

so if Y is a vector field, then $\mathcal{D} Y$ is a $\binom{1}{1}$ tensor field.

$$
Z=T(X, Y):=\mathcal{D}_{X}^{1} Y-\mathcal{D}_{X}^{2} Y \in C^{\infty}(T M)
$$

$T(X, Y)(p)$ depends only on $X(p), Y(p)$ (bilinearly). $T \in C^{\infty}\left(T^{*} M \otimes T^{*} M \otimes\right.$ $T M)$. So T (the difference between two connections) is a $\binom{2}{1}$ tensor.
$\mathcal{R}(\cdot, \cdot): C^{\infty}(T M) \times C^{\infty}(T M) \times C^{\infty}(T M) \rightarrow C^{\infty}(T M)$

$$
\begin{aligned}
\mathcal{R}(X, Y) Z & :=-\mathcal{D}_{X} \mathcal{D}_{Y} Z+\mathcal{D}_{Y} \mathcal{D}_{X} Z+\mathcal{D}_{[X, Y]} Z \\
\mathcal{R}_{m}(X, Y, Z, W) & :=\langle\mathcal{R}(X, Y) Z, W\rangle
\end{aligned}
$$

Proposition $10.4(\mathcal{R}(X, Y) Z)(p)$ depends only on $X(p), Y(p), Z(p)$ (and not on their derivatives.)
$T M, E$ vector bundles over M
Definition A k-linear map (k-linear over $\mathbb{R}!$)

$$
T: C^{\infty}(T M) \times \cdots \times C^{\infty}(T M) \rightarrow C^{\infty}(E)
$$

is called tensorial (k-linear over $C^{\infty}(M)!$)

$$
T\left(f_{1} X_{1}, \ldots, f_{k} X_{k}\right)=f_{1} \cdots f_{k} T\left(X_{1}, \ldots, X_{k}\right) \forall f_{1}, \ldots, f_{k} \in C^{\infty}(M)
$$

Criterion for being a tensor field

If a k-linear map (over \mathbb{R})

$$
T: \underbrace{C^{\infty}(T M) \times \cdots \times C^{\infty}(T M)}_{k} \rightarrow C^{\infty}(E)
$$

is in fact k-linear over $C^{\infty}(M)$, i.e.

$$
T\left(f_{1} X_{1}, \ldots, f_{k} X_{k}\right)=f_{1} \cdots f_{k} T\left(X_{1}, \ldots, X_{k}\right) \forall f_{1}, \ldots, f_{k} \in C^{\infty}(M)
$$

(i.e. T is tensorial), then T is given by a tensor field, i.e. $T\left(X_{1}, \ldots, X_{k}\right)(p)$ depends only on $X_{1}(p), \ldots, X_{k}(p)$ and in fact there are k-linear maps

$$
\tilde{T}(p): T_{p} M \times \cdots \times T_{p} M \rightarrow E_{p}
$$

such that

$$
T\left(X_{1}, \ldots, X_{n}\right)(p)=(\tilde{T}(p))\left(X_{1}(p), \ldots, X_{k}(p)\right)
$$

Accordingly, the map

$$
\tilde{T}: p \mapsto T(p)
$$

is a section $\tilde{T} \in C^{\infty}\left(T^{*} M \otimes \cdots \otimes T^{*} M \otimes E\right)$. We drop ${ }^{\sim}$ and identify T with \tilde{T}.

Proof Let $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$ be a coordinate fram for $T M$ defined over some open $U \ni p$.
Fix a cutoff function ϕ for p in U i.e. $\phi \in C^{\infty}(M), \operatorname{spt} \phi \subset \subset U, \phi \equiv 1$ near p.

$$
X_{i}=X_{i}^{j} \frac{\partial}{\partial x^{j}} \text { on } U \text { only! }
$$

Compute

$$
\begin{aligned}
T\left(X_{1}, \ldots, X_{k}\right)(p) & =\underbrace{\phi^{2 k}(p)}_{1} T\left(X_{1}, \ldots, X_{k}\right)(p) \\
& =\left(\phi^{2 k} T\left(X_{1}, \ldots, X_{k}\right)\right)(p) \\
& =T\left(\phi^{2} X_{1}, \ldots, \phi^{2} X_{k}\right)(p) \\
& =\left(\left(\phi X_{1}^{j_{1}}\right) \cdots\left(\phi X_{k}^{j k}\right) T\left(\phi \frac{\partial}{\partial x^{j_{1}}}, \ldots, \phi \frac{\partial}{\partial x^{j_{k}}}\right)(p)\right. \\
& =X_{1}^{j_{1}}(p) \cdots X_{k}^{j_{k}}(p) T\left(\phi \frac{\partial}{\partial x^{j_{1}}}, \ldots, \phi \frac{\partial}{\partial x^{j_{k}}}\right)(p)
\end{aligned}
$$

depends only on $X_{1}(p), \ldots, X_{k}(p)$, and indeed, k-linear.

Remark

- $\phi \frac{\partial}{\partial x^{j}} \in C^{\infty}(T M)$ meaning

$$
\phi \frac{\partial}{\partial x^{j}}=\left\{\begin{array}{cc}
\phi \frac{\partial}{\partial x^{j}} & \text { on } U \\
0 & \text { on } M \backslash \operatorname{spt} \phi \text { (open) }
\end{array}\right.
$$

- $\phi X_{i}^{j} \in C^{\infty}(M)$

$$
\begin{gathered}
X, Y, Z, W \in C^{\infty}(T M) \\
\mathcal{R}(\cdot, \cdot) \cdot C^{\infty}(T M) \times C^{\infty}(T M) \times C^{\infty}(T M) \rightarrow C^{\infty}(T M) \\
\mathcal{R}(X, Y) Z:=-\mathcal{D}_{X} \mathcal{D}_{Y} Z+\mathcal{D}_{Y} \mathcal{D}_{X} Z+\mathcal{D}_{[X, Y]} Z \\
\mathcal{R}_{m}(X, Y, Z, W):=\langle\mathcal{R}(X, Y) Z, W\rangle
\end{gathered}
$$

Proposition 10.5

$$
\begin{aligned}
\mathcal{R}(\cdot, \cdot) \cdot & \in C^{\infty}\left(T^{*} M \otimes T^{*} M \otimes T^{*} M \otimes T M\right) \\
\mathcal{R}_{m} & \in C^{\infty}\left(T^{*} M \otimes T^{*} M \otimes T^{*} M \otimes T^{*} M\right)
\end{aligned}
$$

Proof If suffices to check $\mathcal{R}(f X, g Y) h Z=f g h \mathcal{R}(X, Y) Z$ for $f, g, h \in C^{\infty}(M)$ (Tensoriality Criterion).
Do h :

$$
\begin{aligned}
& \mathcal{R}(X, Y)(h Z) \stackrel{?}{=} h \mathcal{R}(X, Y) Z \\
& \mathcal{D}_{X} \mathcal{D}_{Y}(h Z)= \mathcal{D}_{X}\left((Y h) Z+h \mathcal{D}_{Y} Z\right) \\
&=(X(Y h)) Z+(Y h) \mathcal{D}_{X} Z+(X h) \mathcal{D}_{Y} Z+h \mathcal{D}_{X} \mathcal{D}_{Y} Z \\
& \mathcal{D}_{X} \mathcal{D}_{Y}(h Z)= \operatorname{similar} \ldots \\
& \mathcal{D}_{[X, Y]}(h Z)=([X, Y] h) Z+h \mathcal{D}_{[X, Y]} Z \\
& \mathcal{R}(X, Y)(h Z)=-h \mathcal{D}_{X} \mathcal{D}_{Y} Z+h \mathcal{D}_{Y} \mathcal{D}_{X} Z+h \mathcal{D}_{[X, Y]} Z \\
&-(X Y h) Z+(Y X h) Z+[X, Y] h Z \\
&= h \mathcal{R}(X, Y) Z
\end{aligned}
$$

Do f, g : similar but shorter

Definition Define components of the curvature tensor in a coordinate neighborhood by

$$
\begin{gathered}
\mathcal{R}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}=\mathcal{R}_{i j k}^{\ell} \frac{\partial}{\partial x^{\ell}} \\
\mathcal{R}_{i j k l}:=\mathcal{R}_{m}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}}\right)=\left\langle\mathcal{R}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}}\right\rangle
\end{gathered}
$$

Then we have

$$
\begin{aligned}
\mathcal{R}(X, Y) Z & =X^{i} Y^{j} Z^{k} \mathcal{R}_{i j k}^{\ell} \frac{\partial}{\partial x^{\ell}} \\
\mathcal{R}_{m}(X, Y, Z, W) & =X^{i} Y^{j} Z^{k} W^{\ell} \mathcal{R}_{i j k \ell}
\end{aligned}
$$

Note $\mathcal{R}_{i j k l}=g_{p l} \mathcal{R}_{i j k}^{p}$. \mathcal{R} given by at most n^{4} functions.
Invariance under isometries $\phi:(M, g) \rightarrow(N, h)$ isometry

$$
\mathcal{R}_{m}^{g}(X, Y, Z, W)(p)=\mathcal{R}_{m}^{h}\left(\phi_{*} X, \phi_{*} Y, \phi_{*} Z, \phi_{*} W\right)(\phi(p))
$$

Diffeomorphism invariance

$$
\begin{aligned}
\phi^{*}(f) & =f \circ \phi \\
\phi_{*}(f) & =f \circ \phi^{-1} \\
\phi_{*}\left(\mathcal{R}_{m}^{g}(X, Y, Z, W)\right) & =\mathcal{R}_{m}^{\phi_{*}(g)}\left(\phi_{*} X, \phi_{*} Y, \phi_{*} Z, \phi_{*} W\right)
\end{aligned}
$$

C^{∞} functions on \mathbb{R} with compact support

$$
f(x):=\left\{\begin{array}{cc}
e^{-\frac{1}{x}} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

f is C^{∞}
Claim $f^{(k)}(\eta) \rightarrow 0$ as $\eta \rightarrow \infty \forall k$

$$
\begin{aligned}
f^{(1)} & =\frac{1}{x^{2}} e^{-\frac{1}{x}} \quad f^{(k)}=a_{k}(x) e^{-\frac{1}{x}} \\
f^{(2)} & =\left(-\frac{2}{x^{3}}+\frac{1}{x^{4}}\right) e^{-\frac{1}{x}} \quad\left|a_{k}(x)\right| \leq x^{-2 k}(0 \leq x \leq 1)
\end{aligned}
$$

Proposition 10.6

- $\mathcal{R}_{i j k}^{\ell}=-\frac{\partial}{\partial x^{i}} \Gamma_{j k}^{\ell}+\frac{\partial}{\partial x^{j}} \Gamma_{i k}^{\ell}-\Gamma_{i p}^{\ell} \Gamma_{j k}^{p}+\Gamma_{j p}^{\ell} \Gamma_{i k}^{p}$
- $\mathcal{R}_{i j k l}=g_{\ell m} \mathcal{R}_{i j k}^{m}$

Proof

i.

$$
\begin{aligned}
\mathcal{R}_{i j k}^{\ell} \frac{\partial}{\partial x^{\ell}}= & \mathcal{R}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}} \\
= & -\mathcal{D}_{\frac{\partial}{\partial x^{i}}} \mathcal{D}_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{k}}+\mathcal{D}_{\frac{\partial}{\partial x^{j}}} \mathcal{D}_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}} \\
& +\mathcal{D}_{\left[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right]} \frac{\partial}{\partial x^{k}} \\
= & -\mathcal{D}_{\frac{\partial}{\partial x^{i}}}\left(\Gamma_{j k}^{\ell} \frac{\partial}{\partial x^{\ell}}\right)+\mathcal{D}_{\frac{\partial}{\partial x^{j}}}\left(\Gamma_{i k}^{\ell} \frac{\partial}{\partial x^{\ell}}\right) \\
= & \left(-\frac{\partial}{\partial x^{i}} \Gamma_{j k}^{\ell}\right) \frac{\partial}{\partial x^{\ell}}-\Gamma_{j k}^{\ell} \mathcal{D} \frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{\ell}}+\left(\frac{\partial}{\partial x^{j}} \Gamma_{i k}^{\ell}\right) \frac{\partial}{\partial x^{\ell}}+\Gamma_{i k}^{\ell} \mathcal{D} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{\ell}} \\
= & -\frac{\partial}{\partial x^{i}} \Gamma_{j k}^{\ell} \frac{\partial}{\partial x^{\ell}}-\Gamma_{j k}^{p} \Gamma_{i p}^{\ell} \frac{\partial}{\partial x^{\ell}}+\frac{\partial}{\partial x^{j}} \Gamma_{i k}^{\ell} \frac{\partial}{\partial x^{\ell}}+\Gamma_{i k}^{p} \Gamma_{j p}^{\ell} \frac{\partial}{\partial x^{\ell}}
\end{aligned}
$$

The proposition shows:

$$
g_{i j} \xrightarrow{\text { deriv }} \mathcal{D} \xrightarrow{\text { deriv }} \mathcal{R}_{m}
$$

$\mathcal{R}_{m}=$ combinations of various 0 th, 1 st and 2 nd derivatives of components of the metric tensor $g_{i j}(x)$.

Exercise Find a formula for $\mathcal{R}_{i j k \ell}$ in terms of $g_{i j}, \partial g_{i j}, \partial^{2} g_{i j}$ that shows: $\mathcal{R}_{i j k \ell}$ is

- linear in $\frac{\partial^{2} g_{i j}}{\partial x^{k} \partial x^{l}}$
- quadratic in $\frac{\partial g_{i j}}{\partial x^{k}}$
- nonlinear in $g_{i j}$.
(recall: same pattern in ODE for geodesics)

10.4.1 Flat Manifolds

(Lee Chap 7.)
Theorem 10.7 (Riemann) $\mathcal{R}_{m} \equiv 0$ iff M is locally isometric to Euclidean space.

Proof (\Leftarrow) done
(\Rightarrow) Suppose $\mathcal{R}_{m} \equiv 0$ Fix $p \in M .4$ steps:
i. Build a set of parallel, orthonormal ($\mathcal{R}_{m} \equiv 0$) vector fields Y_{1}, \ldots, Y_{n} near p.
ii. Then $\left[Y_{i}, Y_{j}\right]=0 \forall i, j$.
iii. Then M has a coordinate system y^{1}, \ldots, y^{n} near p with $Y^{i}=\frac{\partial}{\partial y^{2}}$.
iv. A coordinate system whose coordinate vector fields are orthonormal is the same as an isometry into \mathbb{R}^{n}.
ii. $\mathcal{D}_{Y_{i}} Y_{j}=0 \forall i, j$ by i. so $\left[Y_{i}, Y_{j}\right]=\mathcal{D}_{Y_{i}} Y_{j}-\mathcal{D}_{Y_{j}} Y_{i}=0$
iii. If
(a) Y_{1}, \ldots, Y_{n} commute
(b) Y_{1}, \ldots, Y_{n} linearly independant at p
\Rightarrow there exists a coordinate system. $\phi=\left(y^{1}, \ldots, y^{n}\right): U \subseteq M \stackrel{\cong}{\rightrightarrows} V \subseteq$ \mathbb{R}^{n} near p such that

$$
\underbrace{Y_{i}}_{\in U \subseteq M}=\phi^{*}(\underbrace{\frac{\partial}{\partial y^{i}}}_{\in \mathbb{R}^{n}})
$$

iv. Then $\left\langle Y_{i}, Y_{j}\right\rangle_{g} \stackrel{(1)}{=} \delta_{i j}=\left\langle\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{j}}\right\rangle_{\delta}$ so ϕ is an isometry.

Follows from:
Subclaim Any $\hat{Y} \in T_{p} M$ can be extended to parallel vector field near p. Why does it follow? Fix p. $\hat{Y}_{1}, \ldots, \hat{Y}_{n} \in T_{p} M$ orthonormal basis. Use subclaim to extend to Y_{1}, \ldots, Y_{n} parallel defined near p. But $X \cdot\left\langle Y_{i}, Y_{j}\right\rangle=$ $\left\langle\mathcal{D}_{X} Y_{i}, Y_{j}\right\rangle+\left\langle Y_{i}, \mathcal{D}_{X} Y_{j}\right\rangle=0$ so $\left\langle Y_{i}, Y_{j}\right\rangle=\delta_{i j}$ is constant near p.

Proof of subclaim Let x^{1}, \ldots, x^{n} be any coordinate system near p.

$$
p=0, U=\left\{x \mid-\varepsilon<x_{i}<\varepsilon\right\}
$$

Fix $\hat{Y} \in T_{p} M$

$$
\begin{gathered}
M_{k}:=\left\{\left(x^{1}, \ldots, x^{k}, 0 \ldots, 0\right) \mid-\varepsilon<x_{1}, \ldots, x_{k}<\varepsilon\right\} \cong \mathbb{R}^{k} \\
\{0\}=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{n}=U
\end{gathered}
$$

Extend \hat{Y} from M_{0} to M_{1} by parallel transport along $\gamma: t \mapsto(t, 0, \ldots, 0) \in$ M_{1}. Get:

$$
\left\{\begin{array}{l}
Y: M_{1} \rightarrow T M_{1} \\
\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Y=0 \text { on } M_{1}
\end{array}\right.
$$

Extend from M_{1} to M_{2}

$$
\begin{gathered}
x=\left(x^{1}, 0, \ldots, 0\right) \in M_{1} \\
\gamma_{x}: t \mapsto\left(x^{1}, t, 0, \ldots, 0\right) \in M_{2}
\end{gathered}
$$

Extend Y along γ_{x} by parallel translation. Get:

$$
\left\{\begin{array}{l}
Y: M_{2} \rightarrow T M \\
\mathcal{D} \frac{\partial}{\partial x^{2}} Y=0 \text { on } M_{2} \\
\mathcal{D} \frac{\partial}{\partial x^{1}} Y=0 \text { on } M_{1}
\end{array}\right)
$$

$Y\left(x_{1}, x_{2}, 0, \ldots, 0\right)$ is smooth in x^{1}, x^{2} by smooth dependence of solutions of ODEs on intial conditions (and using the fact that $\left(x_{1}, 0, \ldots, 0\right)$ is smooth). Want: $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Y=0$ on M_{2}. By defintion of curvature

$$
\begin{aligned}
\mathcal{D}_{\frac{\partial}{\partial x^{2}}} \mathcal{D}_{\frac{\partial}{\partial x^{1}}} Y & =\mathcal{D}_{\frac{\partial}{\partial x^{1}}} \mathcal{D}_{\frac{\partial}{\partial x^{2}}} Y+\mathcal{D}_{\left[\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}\right]} Y-\mathcal{R}\left(\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}\right) Y \\
& =\mathcal{D} \frac{\partial}{\partial x^{1}} \underbrace{\mathcal{D}_{\frac{\partial}{\partial x^{2}}}}_{=0} \\
& =0 \text { on } M_{2}
\end{aligned}
$$

So $\mathcal{D}_{\frac{\partial}{\partial x^{1}}}^{\partial} Y$ is parallel along γ_{x}. But $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Y=0$ at $\gamma_{x}(0)=\left(x^{1}, 0, \ldots, 0\right)$ so $\mathcal{D}_{\frac{\partial}{\partial x^{1}}} \frac{{ }^{2}}{\partial x^{1}}=0$ on γ_{x} i.e. on M_{2}.
Proceed by induction.
Extend Y from M_{k} to M_{k+1} Given:

$$
\left(H_{k}\right)\left\{\begin{array}{l}
Y: M_{k} \\
\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Y=\cdots=T M \\
\mathcal{D}_{\frac{\partial}{\partial x^{k}}} Y=0 \text { on } M_{k}
\end{array}\right.
$$

Want:

$$
\left(H_{k+1}\right)\left\{\begin{array}{r}
Y: M_{k+1} \quad \rightarrow \quad T M \\
\mathcal{D}_{\frac{\partial}{\partial x^{1}}} Y=\cdots=\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}}=0 \text { on } M_{k+1}
\end{array}\right.
$$

Using parallel transport along curves

$$
\begin{aligned}
& \gamma_{x}: t \mapsto \\
& \left(x=\left(x^{1}, \ldots, x^{k}, t, 0, \ldots, 0\right)\right.
\end{aligned} \in M_{k+1}
$$

get

$$
\begin{gathered}
Y: M_{k+1} \rightarrow T M \\
\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}} Y=0 \text { on } M_{k+1}
\end{gathered}
$$

Using $\mathcal{R}_{m} \equiv 0$ as before, we get

$$
\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}} \mathcal{D}_{\frac{\partial}{\partial x^{i}}} Y=\mathcal{D}_{\frac{\partial}{\partial x^{i}}} \underbrace{\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}} Y}_{=0}=0
$$

on M_{k+1}, so as (before)

$$
\mathcal{D}_{\frac{\partial}{\partial x^{i}}} Y=0 \text { on } M_{k+1} \forall i
$$

10.5 Symmetries of Curvature

i.

$$
\begin{aligned}
\mathcal{R}_{m}(X, Y, Z, W) & \stackrel{(a)}{=}-\mathcal{R}_{m}(Y, X, Z, W) \\
& \stackrel{(b)}{=}-\mathcal{R}_{m}(X, Y, W, Z)
\end{aligned}
$$

ii. $\mathcal{R}_{m}(X, Y, Z, W)=\mathcal{R}_{m}(Z, W, X, Y)$

$$
\text { iii. } 0=\mathcal{R}_{m}(X, Y, Z, W)+\mathcal{R}_{m}(Y, Z, X, W)+\mathcal{R}_{m}(Z, X, Y, W) \text { (Bianchi I) }
$$

Proof

i. (a) $\mathcal{R}(X, Y) Z=-\mathcal{D}_{X} \mathcal{D}_{Y} Z+\mathcal{D}_{Y} \mathcal{D}_{X} Z+\mathcal{D}_{[X, Y]} Z$
(b) Differentiate $\langle Z, W\rangle$ twice:

$$
\begin{aligned}
X \cdot Y \cdot\langle Z, W\rangle= & X \cdot\left(\left\langle\mathcal{D}_{Y} Z, W\right\rangle+\left\langle Z, \mathcal{D}_{Y} W\right\rangle\right) \\
= & \left\langle\mathcal{D}_{X} \mathcal{D}_{Y} Z, W\right\rangle+\left\langle\mathcal{D}_{Y} Z, \mathcal{D}_{X} W\right\rangle+\left\langle\mathcal{D}_{X} Z, \mathcal{D}_{Y} W\right\rangle \\
& +\left\langle Z, \mathcal{D}_{X} \mathcal{D}_{Y} W\right\rangle
\end{aligned}
$$

Antisymmetrize in X, Y :

$$
\begin{aligned}
{[X, Y] \cdot\langle Z, W\rangle=} & \left\langle\mathcal{D}_{X} \mathcal{D}_{Y} Z-\mathcal{D}_{Y} \mathcal{D}_{X} Z, W\right\rangle \\
& +\left\langle Z, \mathcal{D}_{X} \mathcal{D}_{Y} W-\mathcal{D}_{Y} \mathcal{D}_{X} W\right\rangle \\
{[X, Y] \cdot\langle Z, W\rangle=} & \left\langle\mathcal{D}_{[X, Y]} Z, W\right\rangle+\left\langle Z, \mathcal{D}_{[X, Y]} W\right\rangle
\end{aligned}
$$

Rearrange:

$$
\langle\mathcal{R}(X, Y) Z, W\rangle+\langle Z, \mathcal{R}(X, Y) W\rangle=0
$$

iii. (Bianchi I) $0=\mathcal{R}_{m}(X, Y, Z, W)+\mathcal{R}_{m}(Y, Z, X, W)+\mathcal{R}_{m}(Z, X, Y, W)$.

$$
\begin{aligned}
\mathcal{R}(X, Y) Z & =-\mathcal{D}_{X} \mathcal{D}_{Y} Z+\mathcal{D}_{Y} \mathcal{D}_{X} Z+\mathcal{D}_{[X, Y]} Z \\
\mathcal{R}(Y, Z) X & =-\mathcal{D}_{Y} \mathcal{D}_{Z} X+\mathcal{D}_{Z} \mathcal{D}_{Y} X+\mathcal{D}_{[Y, Z]} X \\
\mathcal{R}(Z, X) Y & =-\mathcal{D}_{Z} \mathcal{D}_{X} Y+\mathcal{D}_{X} \mathcal{D}_{Z} Y+\mathcal{D}_{[Z, X]} Y \\
\text { Sum } & =-\mathcal{D}_{X}[Y, Z]-\mathcal{D}_{Y}[Z, X]-\mathcal{D}_{Z}[X, Y]+\mathcal{D}_{[X, Y]} Z+\mathcal{D}_{[Y, Z]} X+\mathcal{D}_{[Z, X]} Y \\
& =-[X,[Y, Z]]-[Y,[Z, X]]-[Z,[X, Y]]=0 \text { Jacobi identity }
\end{aligned}
$$

ii. combine i. and iii. cleverly. Exercise

In components:
i. $\mathcal{R}_{i j k \ell}=-\mathcal{R}_{j i k \ell}=-\mathcal{R}_{i j \ell k}$
ii. $\mathcal{R}_{i j k \ell}=\mathcal{R}_{k \ell i j}$
iii. $\mathcal{R}_{i j k \ell}+\mathcal{R}_{j k i \ell}+\mathcal{R}_{k i j \ell}=0$

Elie Carton called Differential Geometry "the debauch of indices". Gromov: "The Riemannian curvature tensor remains a nasty, mysterios bundle of multilinear algebra."

Exercise What is the dimension of the space of potential curvature tensors at a point?

Example

$n=1 \mathcal{R}_{1111}=-\mathcal{R}_{1111} \Rightarrow \mathcal{R}_{1111} \equiv 0$ no curvature.
$n=2 \quad 0=\mathcal{R}_{11 i j}=\mathcal{R}_{22 i j}=\mathcal{R}_{i j 11}=\mathcal{R}_{i j 22} \mathcal{R}_{1212}=-\mathcal{R}_{2112}=-\mathcal{R}_{1221}=\mathcal{R}_{2121}$ The Riemannian curvature tensor of a $2-$ manifold reduces to a single scalar. What is that scalar?
i. $\left(M^{2}, g\right) \kappa(p):=\mathcal{R}_{m}\left(e_{1}, e_{2}, e_{1}, e_{2}\right), e_{1}, e_{2}$ orthonormal basis of $T_{p} M$.

Exercise Prove $\kappa(p)$ is independent of choice of e_{1}, e_{2}.
Theorem 10.8 (Theorema Egregium (Gauss)) Suppose $\left(M^{2}, g\right)$ is isometrically embedded in \mathbb{R}^{3}. Then

$$
\kappa(p)=k_{1} \cdot k_{2}
$$

product of principal curvatures of M^{2} inside \mathbb{R}^{3}.
$\left(M^{n}, g\right), p \in M, \sigma \subset T_{p} M$ 2-plane
Definition Sectinal curvature of M at p along σ.

$$
\kappa(p, \sigma):=\mathcal{R}_{m}\left(e_{1}, e_{2}, e_{1}, e_{2}\right)
$$

e_{1}, e_{2} orthonormal basis of σ. (Exercise: independence of e_{1}, e_{2})

Fact

$$
\begin{aligned}
\kappa(p, \sigma) \equiv 1 & \text { on } S^{n} \\
\kappa(p, \sigma) \equiv-1 & \text { in } \mathbb{H}^{n}
\end{aligned}
$$

Theorem 10.9 If (M, g) has $\kappa(p, \sigma) \geq \frac{1}{r^{2}}>0 \forall p, \sigma$ then M is compact and $\operatorname{diam}(M):=\max _{p, q \in M} d(p, q) \leq \pi r \kappa \geq \frac{1}{r^{2}}>0 \Rightarrow M$ is compact.

Index

Symbols E
1-parameter subgroup46
A
adjoint action 47
atlas 21
B
bundle isomorphism 83
C
chart of a manifold 18
Christoffel symbols 92
codimension 61
compact containment 53
complete flow 54
complete manifold 107
complete vector field 57
connection 85
affine 85
coefficients 86
compatible 89
coordinate 87
symmetric 90
torsion-free 90
continuous function 22
covariant derivative operator 85
covariant derivative along a curve. 93
cuttoff function 113 13
Ddifferentiable Manifold22
differentiable manifold 17
dimension 18
embedding 38
exponential map 97
extended metric space 106
G
geodesic 96
geodesic ball 106
Geodesically Convex Balls 107
Graphical Image Theorem 40
H
Hausdorff 21
holonomy map 96
homeomorphism 20
Hopf-Rinow Theorem 107
I
Implicit Function Theorem 43
integral curve 52
L
Levi-Civita Connection 90
Levi-Civita Theorem 91
Lie algebra 51
Lie bracket 49, 51
lie group 44
smooth action 46
ocal flow 53
local frame 84
Local Immersion Theorem 37
Local Submersion Theorem 42
M
minimal length 104
local property 105
strictly 104
N
normal neighborhood 106
O
open sets on a manifold 20
P
parallel transport 94
precompact 53
pullback of a vector field 62
pushforward of a vector field 61
Q
quaternions 45
R
Riemann curvature operator 110
Riemannian curvature tensor 110

S

second countable 40
section 84
0 -section 84
along a curve 93
parallel 87, 94
sectional curvature 120
smoothly comatible charts 18
subbundle 84
T
tensorial 112
tensors over vector spaces 111
topological manifold 17
torison scalar 8
torsion vector 8
translation
left. 47
right 47
W
Whitney Theorem 41

[^0]: ${ }^{2}$ This means: $f: M \rightarrow f(M)$ is a homeomorphism (where $f(M)$ has the subspace topology coming form N).

[^1]: ${ }^{3}$ See Spivak I, 207-217

[^2]: ${ }^{4}$ See Spivak I Chap. 5.

[^3]: ${ }^{5}$ See Lang reference in Spivak I chap 5. Alternately see Rivieère's differential geometry problem last year.

[^4]: ${ }^{6}$ They were already used subtly in the first line above, by subtracting $Y(p)$ from $Y\left(\phi_{t}(p)\right)$

[^5]: ${ }^{7}$ all points look the same
 ${ }^{8}$ all directions look the same

[^6]: ${ }^{9}$ Do Carmo p-46 prob 7, Lee p. 46 prob $3-10,11,12$

[^7]: ${ }^{10}$ Differential Topology

[^8]: ${ }^{11}$ principal stretches

[^9]: ${ }^{12}$ will be defined later

[^10]: ${ }^{13}$ as a real manifold
 ${ }^{14}$ check: this is equivalent to: f is a diffeomorphism and $L \mid E_{p}$ is a linear isomorphism $\forall p$.
 ${ }^{17}$ Trivial bundle, $p \in S^{3},(x, y, z) \in \mathbb{R}^{3}$

[^11]: ${ }^{18}$ rank n
 ${ }^{19}$ trivial bundle over M with fiber $\mathbb{R}^{q}(\operatorname{rank} q)$.

[^12]: ${ }^{20} n d^{2}$ functions on U

[^13]: ${ }^{21}|x|=|x|_{\delta}=\sqrt{x^{i} x^{i}}, \mathcal{O}$ is some $\varepsilon_{i j}(x)$ such that $\left|\varepsilon_{i j}(x)\right| \leq c|x|^{2}$

