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1 Introduction: curves and surfaces

Riemannian Geometry is a subset of Differential Geometry
A Riemannian manifold is a smooth manifold endowed with a notion of
(infinitesimal) arclength → Riemannian metric: g = gij(x)dxidxj

Rn
p

q

Figure 1: A Riemannian manifold is endowed with a notion of infinitesimal acr-
length, thus a shortest path (a geodesic) can be defined between two points on the
manifold.

Curvature

extrinsic curvature Mk ⊂ Rn intrinsic curvature
how M curves inside Rn how M curves ”inside itself”

R

Figure 2: The radius of curvature is the radius of the circle which most closly
approximates the curve at a given point.

Doing calculus on the manifold

Dif, DiDjX
k 6= DjDiX

k, X a vector field
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Derivatives can’t be commuted arbitrarily

DiDjX
k = DjDiX

k +R k
ij` X

`

where R is the Riemannian curvature tensor.

1.1 Curves in Space

Basic notation:
Rn, x = (x1, . . . , xn)

〈·, ·〉 = 〈·, ·〉Rn

|x|Rn := 〈x, x〉
1
2
Rn

A regular curve is a smooth (= infinitely differentiable = C∞) function

γ : [a, b]→ Rn,

such that dγ
dt
6= 0∀t

dγ
dt

γ(t)

Im(γ)

Rn

Figure 3: A regular curve and its velocity vector (derivative).

Example of a non regular curve:

t 7→ (t2, t3) ∈ R2

Figure 4: A curve whose derivative vanishes at 0 and is thus not regular.
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Arclength

s(t) :=

∫ t

to

∣∣∣∣dγdt
∣∣∣∣ dt

Reparameterize by arclength, get

γ = γ(s),

∣∣∣∣dγds
∣∣∣∣ = 1

Unit Tangent Vector

τ τ

τ
γ

κ

κ

κ

κ

κκ
κ

Figure 5: A curve parametrized by arclength always has a tangent vector of unit
length.

τ(s) :=
dγ

ds
=

dγ/dt

|dγ/dt|

Definition the curvature vector κ of γ at s is

κ(s) :=
dτ

ds
=
d2γ

ds2
∈ Rn

Proposition 1.1 κ ⊥ τ

Proof
〈τ, τ〉 = 1

0 =
d

ds
〈τ, τ〉 = 2〈dτ

ds
, τ〉 = 2〈κ, τ〉

2

Exercise: Show for γ(t) (not necessarily parametrized by arclength)

κ =
1

|γt|2

(
γtt −

〈
γtt,

γt
|γt|

〉
γt
|γt|

)
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Curves in R2

κ reduces to a number k. Define k by κ = kN (curvature as a scalar)

R

κ

N θ

x̂

τ

Figure 6: For kurves in the plane curvature reduces to a number k.

We can show:

k =
1

R
R := radius of curvature, i.e. radius of osculating circle

=
dθ

ds
θ := angle between τ and x-axis

=
uxx

(1 + u2
x)

3/2
If we write γ as y = u(x)

y

u(x)=y

x

Figure 7: The curve γ defined as a graph y = u(x).

Theorem 1.2 k(s) determines γ up to a rigid motion of R2 (to make the
starting point γ(0) and starting direction γs(0) coincide, see figure 8).

Curves in R3

If κ 6= 0∀t we call γ an ordinary curve and define

N := κ
|κ| normal (⊥ τ)

k := |κ| curvature scalar (note k > 0)

B := τ ×N binormal

7



congruent

Figure 8: Congruent lines which differ only by rigid motion.

p

τ

N

κ

B

Figure 9: In 3 dimensions κ can move more freely, so a skalar is no longer enough
to describe it.

(τ,N,B) orthonormal basis along γ, called a moving frame

Definition
Torsion vector :

λ := 〈dN
ds

,B〉B ∈ R3

torsion scalar :

` := 〈dN
ds

,B〉 ∈ R

λ is the measure of that portion of the change of N that occurs within the
2-dimensional normal plane spanned by N,B (That is captured by κ and not
that part due to the turning of the normal plane itself.

k(t) is a ”2nd derivative of γ” and ` is a ”3rd derivative”
Exercise

i. Compute k, ` at t = 0 for t→ (t, at2, bt3)

ii. If the torsion ` ≡ 0, show γ lies in a plane.
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B

N

Normal plane

dN
ds

Figure 10: Torsion

iii. If k and ` are constant along γ, prove γ is a helix.

iv. * Prove theorem 1.3.

Theorem 1.3 Any given smooth functions k(s) > 0, and `(s) of arclength
determine γ in R3 uniquely, up to a rigid motion (isometry) of R3

staircase

spiral

Figure 11: A curve of constant torsion and curvature is a helix (spiral staircase).

Some Global Theorems

local (infinitesimal) ←→ global
curvature measures local geometry integral quantities

topology

γ is called simple (or embedded) if γ has no self intersections

γ is called closed if γ : [a, b]→ Rn, γ(a) = γ(b)

9



Figure 12: A curve with self intersections, which is therefore not simple.

Theorem 1.4 γ closed curve in R2. Then:

i.
∫
γ
kds = 2πn ∃n ∈ Z

ii. If γ is simple, then n = ±1

Proof i. ∫
γ

k ds =

∫ b

a

k ds =

∫ b

a

dθ

ds
ds = θ(b)− θ(a) ∈ 2πZ

θ is well defined on R, with

θ(s) = θ(s+ b− a) + 2πn ∃n

2

Theorem 1.5 γ closed curve in R3. Then

i. ∫
γ

|κ| ds ≥ 2π

ii. (Milnor) If γ is knotted then∫
γ

|κ| ds ≥ 4π

This yields a relation between global integrals and global topology.

1.2 The Geometry of Surfaces in R3

TpM is the tangent space of vectors tangent to M at p and N ≡ N(p) is a
unit normal to M at p

10



knotted

Figure 13: A knotted curve wich cannot be deformed to the standard circle without
developing self intersections.

unknotted

Figure 14: an unknotted curve which can be deformed to standard circle without
developing self-intersections

1.2.1 (Extrinsic) Curvature

κ is the curvature vector of γ

κ = kN ∃k ∈ R

Compute k: Choose orthonormal coordinates in R3 such that

p = (0, 0, 0)

TpM = xy-plane (i.e. M is tangent to the xy-plane at p)

N = (0, 0, 1) (i.e. N points in the positive z-direction)

Note Then M is the graph (locally) of some function z = f(x, y) such that

f(0, 0) = 0,
∂f

∂x

∣∣∣∣
0,0

=
∂f

∂y

∣∣∣∣
0,0

= 0

P is spanned by N, v where v is some unit vector in the xy-plane, v =
(v1, v2, 0).

Claim The curvature of γ is

k =
(
v1 v2

)( ∂2f
∂x2 (p) ∂2f

∂x∂y
(p)

∂2f
∂x∂y

(p) ∂2f
∂y2 (p)

)(
v1

v2

)
= vTD2f(p)v

with D2f(p) being the Hessian of f at p
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Proof Give P orthogonal coordinates (u, z). In these coordinates, γ is then
given by

z = g(u) := f(uv1, uv2)

g(0) = gu(0) = 0

k(0) =
guu

(1 + g2
u)

3/2

∣∣∣∣
0

= guu(0)

Use chain rule on g = f ◦ (u 7→ (uv1, uv2)).

2

The bilinear form (D2f)p is called the second fundamental form or extrinsic
curvature tensor of M at p. Written:

A(p)(or II(p)) : TpM × TpM → R

Warning The Hessian formula for A(p) is valid only when

∂f

∂x

∣∣∣∣
0,0

=
∂f

∂y

∣∣∣∣
0,0

= 0

Exercise

Suppose M is given as a graph z = f(x, y). Find a formula for A(p) with
respect to the coordinates on TpM given by x, y.

Find an analogous formula for the case of a parametrized surface

φ : R2 ⊃ U → V ⊆M ⊆ R3

U, V open, φ smooth with injective differential.

We can rotate the xy-plane so that A(p) becomes diagonal:

A(p) =

(
k1 0
0 k2

)
k1 and k2 really capture the geometry of the surface

Definition k1, k2: principal curvatures of M at p

H := k1 + k2 : mean curvature of M at p

K := k1k2 = detA : Gauss curvature of M at p

12



Examples

Sphere of radius R has

k1 = k2 =
1

R
K = 1

R2

H = 2
R

Cylinder of radius R has eigenvectors e1, e2, where e1 points along the cylin-
ders’ axis and e2 is tangent to the circle that goes around the cylinder, and
eigenvalues k1 = 0, k2 = 1

R

H =
1

R
, K = 0 · 1

R
= 0

Catenoid C:
It is the rotation of curve γ : y = coshx around the x-axis. Let e1 be tangent
to γ and e2 tangent to a circle of rotation.
The eigenspaces of A are preserved by the reflections RQ across planes Q ⊇ x-
axis. Thus the eigenvectors of A must be e1, e2 (since these are the only
directions preserved by RQ). So evidently k1 > 0 > k2 if N is outward.
Compute k1 = A(e1, e1) = curvature of γ, the graph of g(x) = cosh x

k1 =
gxx

(1 + g2
x)

3/2
=

coshx

cosh3 x
=

1

cosh2 x

Exercise Compute that k2 = − 1
cosh2 x

. Then

H =
1

cosh2 x
− 1

cosh2 x
= 0

We call a surface of equal and opposite curvatures minimal surface

Exercise (Helicoid)
Let L1 be a vertical line and let L2 be a line normal to L1 Move L2 upward
at constant speed while rotating slowly about the point of intersection with
L1.
Prove H = 0, compute K

13



1.2.2 Intrinsic Geometry

Let M ⊆ R3.
γ : [a, b]→M

γ(a) = p, γ(b) = q

Length:

L(γ) :=

∫ b

a

〈γ̇(t), γ̇(t)〉1/2R3 dt

Intrinsic distance in M

dM(p, q) := inf {L(γ)| γ(a) = p, γ(b) = q}

(M,dM) metric space (please verify)

Geodesic:

a curve that locally minimizes length (and therefore: realizes distance)

Example Sphere: an arc of a great circle minimizes length if it has length
less than πR, but is a geodesic even if it is longer.

Riemannian metric of M

Restrict 〈·, ·〉R3 to TpM :

〈X, Y 〉M,p := 〈X, Y 〉R3 Y,X ∈ TpM

Write g(p) ≡ 〈·, ·〉M,p : TpM × TpM → R, a positive definite symmetric
bilinear form that determines L(·) and dM(·, ·)

Definition A property of M is intrinsic if it depends only on g.

Isometries

A bijection φ : M → N is called an isometry if it preserves the metric, i.e.

dM(p, q) = dN(p̃, q̃) , where φ(p) = p̃, φ(q) = q̃,

or

gM(p)(X, Y ) = gN(p̃)(X̃, Ỹ ) , where φ takes X to X̃ and Y to Ỹ .

(infinitesimal version)

14



Definition A property (quantity, tensor, structure, etc) is called intrinsic if
it is preserved by isometries.

Example The rolling map from the flat plane to the cylinder is a local
isometry (i.e. each point has a neighborhood U such that φ|U : U → φ(U)
is an isometry.

We see from the example that

k1, k2 are not intrinsic

H(:= k1 + k2) is not intrinsic

Example Cone: Also locally isometric to the plane.

Definition A developable surface is a surface in R3 that is local isometric
to a plane.

Example ping-pong ball (hemisphere): it can be deformed in space in such
a way that it remains isometric to the original hemisphere (the material does
not stretch!).

Exercise Show that the catenoid and helicoid are locally isometric!

A local theorem

Theorem 1.6 ( Theorema Egregium) K (the Gauss curvature) is intrinsic!

There is an intrinsic characterization of K:

A(r) = πr2 − π

12
Kr4 + . . .

where A(r) is the area of disk of intrinsic radius r about p.

Example In S2, A(r) = 2π(1 − cos r). The area is slightly smaller than
expected when K is positive.

Global Theorems

Recall topological classification of closed (compact without boundary), ori-
entable (abstract) surfaces:

15



Euler chracteristic χ

Theorem 1.7 Let M be a closed surface. The Euler characteristic

χ(M) := # faces︸︷︷︸
2-simplices

−#edges︸ ︷︷ ︸
1-simplices

+#vertices︸ ︷︷ ︸
0-simplices

is independent of the choice of triangulation.

Definition n-simplex:= {x ∈ Rn |x1, . . . , xn ≥ 0, x1 + · · ·+ xn ≤ 1}

Theorem 1.8 (Gauss-Bonnet Theorem)
Let (M, g) be a compact surface without boundary with Riemannian metric
g. Then ∫

M

K dA︸ ︷︷ ︸
curvature integral quantitive, geometric

= 2πχ(M)︸ ︷︷ ︸
topological invariant, qualitative

∈ 2πZ

Theorem 1.9 (Uniformization Theorem)
M compact surface without boundary. Then M possesses a metric g of con-
stant Gauss curvature:

K ≡


1 iff χ > 0 S2

0 iff χ = 0 T 2

−1 iff χ < 0 surfaces with 2 or more holes

Higher dimensions (preview)

(Mn, g) Riemannian manifold
gp: inner product on each TpM
How to define curvature without reference to extrinsic geometry?
Fact:
Given p ∈ M,X ∈ TpM there always exists a geodesic (locally length mini-
mizing curve) with initial velocity dγ

dt
(0) = X.

Fix p ∈M .
Fix a 2-space P ⊆ TpM . Let Q be the surface swept out by the geodesics γX
with initial velocity X, where X ranges over unit vectors in P .
Define: K(P ) = Kp(P ) := Gauss curvature of Q at p (called sectional cur-
vature in planardirection P )

Kp : {2-planes in TpM} → R.

Clearly Kp is intrinsic.

16



Theorem 1.10 Cartan’s Theorem: If K is constant then M is locally iso-
metric to either

Sn : K ≡ c > 0

Rn : K ≡ 0

Hn : K ≡ −c < 0,

where Hn is hyperbolic space.

Theorem 1.11 (Hadamard’s Theorem) If K ≤ −c < 0 (and complete)
then the universal cover of M is topologically equivalent to Rn.

Note If M is compact it follows that π1(M) is infinite.

Note • Negative curvature makes geodesics spread out.

• Positive Curvature makes them come together (as in Sn, where they
meet on the other side.)

Theorem 1.12 (Bonnet-Myers Theorem) If K ≥ β > 0, then M is compact
with

dM(p, q) ≤ π√
β
∀p, q ∈M

This inequality is exact on S2. Let p, q be antipodal points. We have

K = 1
R2 =: β

d(q, p) = πR =
π√
β

Note It follows that the universal cover M is also compact, so |π1(M)| <∞.

2 Differentiable Manifolds

• A topological manifold is a Hausdorff topological space such that each
point has a neighborhood that is locally homeomorphic to Rn

• A differentiable manifold is chatacterized by the additional condition
that the overlap maps are smooth.

17



Definition let M be a set. A chart for M is a pair (U, ψ), U ⊆M,ψ : U →
Rn injective, ψ(U) open in Rn.

ψ(p) = (x1(p), . . . , xn(p)) (coordinate functions on U)

We call ψ−1 : ψ(U) ⊆ Rn −→ U ⊆M a parametrization of U

ψ−1(x1, . . . xn) = p

We cover M with charts:
M = ∪α∈AUα

and examine their behaviour on an overlap

W := Uα ∩ Uβ.

Definition We call (Uα, ψα) and (Uβ, ψβ) (smoothly) compatible if ψα(W ), ψβ(W )
are open in Rn and the overlap (or transition) map

ψβ ◦ (ψ−1
α |ψα(W )) : ψα(W )→ ψβ(W )

and its inverse are infinitely differentiable.

Definition A differentiable manifold of dimension n is given by a set M
equipped with a collection of charts (Uα, ψα)α∈A such that

i. ∪α∈AUα = M

ii. each pair of charts is smoothly compatible

iii. the induced topology of M is Hausdorff

Motivation for ii.
Let f : M → R.

Then in coordinates:

f ◦ ψ−1
α smooth⇔ f ◦ ψ−1

β smooth

f ◦ ψ−1
α︸ ︷︷ ︸

on Rn

= (f ◦ ψ−1
β )︸ ︷︷ ︸

on Rn

◦ (ψβ ◦ ψ−1
α )︸ ︷︷ ︸

Rn→Rn

Example

• Rn

18



• any open set M := U ⊆ Rn
just one chart

idU : M ⊇ U → U ⊆ Rn

• graph of a smooth function

f : V ⊆ Rn → R (V open)

just one chart: projection from the graph to V via (z, f(z)) 7→ z.

• any set M ⊆ Rn that can be written locally as a graph

• e.g.
Sn := ∂B1 ⊆ Rn+1

needs 2(n+ 1) charts (of graph projection type)

• Möbius strip:
M := (0, 3)× (0, 1)/ ∼

equivalence relation: (x, y) ∼ (x+ 2, y − 1), 0 < x < 1, 0 < y < 1.

The natural projection is

π : (0, 3)× (0, 1) → M

(x, y) → [(x, y)] := equivalence class of (x, y)

2 charts:

ψ−1
1 := π|(0, 2)× (0, 1) → M

ψ−1
2 := π|(1, 3)× (0, 1) → M

• G(n, k) := {all k-dimensional subspaces of Rn} This is called the (real)
Grassmannian of k-planes in Rn.
Exercise What’s its dimension?

RP n :=
{

all lines through the origin in Rn+1
}

= G(n+ 1, 1)

Exercise Find charts for RP n

• configuration space of all 3-4-5 triangles in R2

• configuration space of all (equilateral) 1-1-1 triangles

• Even the space of {a-a-a triangles in R2 : a ≥ 0} is a manifold. Exer-
cise: What manifold is this?

19



2.1 Topology of M

How to define a notion of open sets in M? We transfer them from Rn via
charts. This results in a local test, as follows.

Definition W ⊆M is open (in M) if ∀α ∈ A,ψα(W ∩ Uα) is open in Rn.

Let T := {open sets S in M}

Proposition 2.1 (Exercise) T has the following properties:

i.
V,W ∈ T ⇒ V ∩W ∈ T

ii.
Wβ ∈ T ∀β ∈ B ⇒ ∪β∈BWβ ∈ T

iii.
∅,M ∈ T

A collection of subsets of a set M that satisfies (1)-(3) is called a topology on
M , and (M, T ) is called a topological space.

Example The collection of open sets in a metric space (X, d) always satisfies
(1)-(3). It is called the topology induced by the metric d.

In our case, M has no metric. T is called the topology induced by the charts.
Using a topology one can express

• continuity

• convergence, topological boundaries

• paths

• connectedness

• simple connectedness, number of holes

Definition A map f : (X, T )→ (Y,S) between topological spaces is called a
homeomorphism (or a topological equivalence, or bicontinuous) if f is bijective
and preserves open sets:

U ∈ T ⇔ f(U) ∈ S.

20



Exercise Show that Uα is open in M , and each chart

ψα : M ⊇ Uα → ψα(Uα) ⊆ Rn

is a homeomorphism.

The topology on Uα is defined by TUα := {W ∩ Uα|W ∈ T )} Verify: TUα
is a topology on Uα. It is called the subspace topology induced by T on Uα.

Definition (X, T ) is Hausdorff if any two points x, y ∈ X, x 6= y can be
separated by open sets, i.e. ∃U, V in T so that x ∈ U, y ∈ V, U ∩ V = ∅.

Observation: A metric space is Hausdorff.

Example
T := {∅, {a, b}, {b}}

(b converges to a but a doesn’t converge to b)

Why Hausdorff?

Consider the example.
(x, 1) ∼ (x, 2), x 6= 0

M := R× {1} ∪ R× {2}/ ∼
The 2 points at the origin cannot be separated by open sets! This space
fulfills conditions (1)-(2) of definition of a smooth manifold (check!) but fails
to be Hausdorff. This is highly undesirable: For example, M could never be
given a metric.

2.1.1 Maximal Atlas

Suppose we have an atlas

A = (Uα, ψα)α∈A

There may be many other charts (U, φ) that are compatible with each chart
in A. Let

Ā := {all charts (U, φ) compatible with each chart in A}

Easy to verify : These charts are also compatible with each other. Thus Ā is
an atlas. Ā is the (unique) maximal atlas containing A.
We call Ā the differentiable structure (or smooth structure) induced by A.
We also observe that TĀ = TA
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Definition A differentiable manifold (smooth manifold, C∞ manifold) is a
pair (M,A) where A is a maximal atlas (satisfies (1)-(3)).

Remark (Freedman/Donaldson 1980’s)
Starting in n = 4, there are topological manifolds that cannot be given a
smooth structure.

Smooth functions from M → N

Mn, Nm smooth manifolds,
φ : M → N

a function.

Definition

i. φ is smooth if φ is smooth near each p ∈M .

ii. φ is smooth near p if there exist charts ψ, χ

p ∈ U ψ→ Rn

φ(p) ∈ V χ→ Rm

such that φ(U) ⊆ V

and
χ ◦ φ ◦ ψ−1|ψ(U) : ψ(U)→ Rm

is infinitely differentiable on U .

Remark Using the chain rule, it follows that φ is smooth in all charts.

Definition A function f : (X, T )→ (Y,S) is continuous provided

V ∈ S ⇒ f−1(V ) ∈ T

Proposition 2.2 A smooth map between differentiable manifolds is contin-
uous with respect to the topologies induced by the smooth structures.
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3 Tangents, differentials of maps

Tangent vectors

Here’re two alternative ways of defining tangent vectors:

i. Identify together vectors in charts to equivalence classes via the equiv-
alence relation (X,α, p) ∼ (X̃, β, p) where

X̃ i =
n∑
j=1

∂ (ψβ ◦ ψ−1
a )

i

∂xj
Xj, i = 1, . . . , n.

ii. A tangent vector is a directional derivative operator coming from dif-
ferentiation along some smooth curve.

3.1 Tangent vector as directional derivative operator

C∞(M) := {infinitely differentiable functions M → R}

Motivation

Let X ∈ Rn be a vector based at p ∈ Rn. X yields a linear operator
C∞(Rn)→ R as follows: pick curve γ, γ(0) = p, γ̇(0) = X, e.g. t 7→ p+ tX,
then define

X : C∞(Rn) → R

f 7→ d

dt

∣∣∣∣
0

f(γ(t)).

Compute

X · f =
n∑
j=1

∂f

∂xj
(p)

dγj

dt
(0)

=
n∑
j=1

∂f

∂xj
(p) Xj

On a manifold, we have the curves γ but not yet X.

Definition Let p ∈M . A tangent vector to M at p is a linear function

X : C∞(M)→ R, f 7→ X · f
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that arises as the directional derivative along some smooth curve starting at
p, i.e.

∃γ : (−ε, ε)→M smooth, γ(0) = p

such that

X · f =
d

dt

∣∣∣∣
t=0

f(γ(t)) ∀f ∈ C∞(M).

(One says that X is the velocity vector of γ at t = 0)

Definition

TpM := {(p,X)| X is a tangent vector to M at p}

tangent space of M at p. Informally, we often use X to stand for the pair
(X, p).

Expression in coordinates

i. Coordinate vectors
Let p ∈M, ψ : U ⊆M → Rn a chart near p, p̃ := ψ(p). f̃ := f ◦ ψ−1.
Consider the coordinate curve

β̃i : t 7→ p̃+ tei in Rn,

βi := ψ−1 ◦ β̃i in M.

Define (
∂

∂xi

)
p

≡
(
∂

∂xi

)
p,ψ

∈ TpM

by (
∂

∂xi

)
p

· f :=
d

dt

∣∣∣∣
t=0

f(βi(t)).

Compute (
∂

∂xi

)
p

· f =
d

dt

∣∣∣∣
0

f ◦ βi

=
d

dt

∣∣∣∣
0

f̃ ◦ β̃i

=
d

dt

∣∣∣∣
0

f̃(p̃+ tei)

=
∂f̃

∂xi
(p̃)
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Get
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p
∈ TpM, linearly independent in the vector space

Hom(C∞(M),R).

ii. Claim Any tangent vector X in TpM is a linear combination of the(
∂
∂xi

)
p
’s.

Proof For some curve γ with γ(0) = p :

X · f =
d

dt

∣∣∣∣
0

f(γ(t))

=
d

dt

∣∣∣∣
0

(f ◦ ψ−1)︸ ︷︷ ︸
f̃(x1,...,xn)

◦ (ψ ◦ γ)︸ ︷︷ ︸
γ̃(t)

=
n∑
j=1

∂f̃

∂xj
(p̃)

dγ̃j

dt
(0)

with γ̃(t) = (γ̃1(t), . . . , γ̃n(t))

=

(
n∑
j=1

dγ̃j

dt
(0)

(
∂

∂xj

)
p

)
· f

so

X =
n∑
j=1

dγ̃j

dt
(0)

(
∂

∂xj

)
p

Thus: TpM is an n-dimensional vectorspace with basis
(

∂
∂x1

)
p
, . . .

(
∂
∂xn

)
p

2

iii. Consider the following possible alternative definition of a tangent vec-
tor: A tangent vector to M at p is a linear functional

X : C∞(M)→ R

that satisfies the Leibniz rule:

X · (fg) = (X · f)g(p) + f(p)X · g

Exercise Prove this for n = 1, and find out if it’s true for general n.
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3.2 Differential of a map

Let φ : Mn → Nm be smooth, p ∈M .

Definition Define dφ(p) ≡ dφp : TpM → Tφ(p)N as follows: Let X ∈ TpM ,
choose a path α such that X = velocity vector of α at t = 0, i.e.

X · f =
d

dt

∣∣∣∣
0

f(α(t)) ∀f ∈ C∞(M),

Let β = φ ◦ α. Define (Y ≡)dφ(p)(X) := velocity vector of β at t = 0 i.e.

Y · g :=
d

dt

∣∣∣∣
0

g(β(t)) ∀g ∈ C∞(N).

Since β(0) = φ(α(0)) = φ(p), we get Y ∈ Tφ(p)N .

Observe:

Y · g =
d

dt

∣∣∣∣
0

g(φ(α(t)))

=
d

dt

∣∣∣∣
0

(g ◦ φ)(α(t))

= X · (g ◦ φ)

which shows that Y depends only on X and not on the choice of α. This
also shows that dφ(p) is linear. (We could have taken Y · g := X(g ◦ φ) to
be the definition of dφp(X))

In coordinates

Let X ∈ TpM, Y := dφ(p)(X) ∈ TqM, q := φ(p).
Write

X = X i

(
∂

∂xi

)
p

, Y = Y j

(
∂

∂yj

)
q︸ ︷︷ ︸Pm

j=1

Einstein summation convention: paired indices, one upper, one lower, are
summed over appropriately.
We want to express

Y j =? ·X i.

26



Set φ̃ := χ ◦ φ ◦ ψ−1, g̃ := g ◦ χ−1

Compute:

Y · g = X · (g ◦ φ)

= X i

(
∂

∂xi

)
p

· (g ◦ φ)

= X i

(
∂

∂xi

)
p

·

(g ◦ χ−1)︸ ︷︷ ︸
g̃

◦ (χ ◦ φ ◦ ψ−1)︸ ︷︷ ︸
φ̃

◦ψ


= X i

(
∂

∂xi

)
p

g̃ ◦ φ̃ ◦ ψ

= X i∂(g̃ ◦ φ̃)

∂xi
(p̃) 1

= X i ∂g̃

∂yj
(q̃)

∂yj

∂xi
(p̃) (chain rule)

=

(
X i∂y

j

∂xi
(p̃)

(
∂

∂yj

)
q

)
· g

i.e.

Y = X i∂y
j

∂xi
(p̃)

(
∂

∂yj

)
q

i.e.

Y = Y j

(
∂

∂yj

)
q

,

where

Y j︸︷︷︸
m

=
∂yj

∂xi
(p̃)︸ ︷︷ ︸

m×n

X i︸︷︷︸
n

Shows: dφ(p) is given in coords by the matrix

∂yj

∂xi

(
≡ ∂φ̃j

∂xi

)

Proposition 3.1 (Chain rule)

1previously showed:
(

∂
∂xi · f = ∂f̃

∂xi (p̃), f̃ = f ◦ ψ−1
)
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If

M
f // N

g // P

TpM
dfp // Tf(p)N

dgf(p)// Tg(f(p))P

then:
d(g ◦ f)p = dgf(p) ◦ dfp.

Proof Transfer the chain rule

Rm → Rn → Rp

to M,N,P via charts.

2

Products

Let Mm, Nn : be smooth manifolds with atlases

A = (Uα, ψα)α∈A
B = (Vβ, χβ)β∈B

where

ψα : Uα → Rm

χβ : Vβ → Rn.

Give M ×N the charts

ψα × χβ : Uα × Vβ → Rm × Rn,
(p, q) 7→ (ψα(p), χβ(q))

and the atlas

A× B := {(Uα × Vβ, ψα × χβ) |α ∈ A, β ∈ B }

Canonical projections:

πM : M ×N →M

(p, q) 7→ p

πN : M ×N → N

(p, q) 7→ q
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Proposition 3.2 (Exercise)
Show (M ×N,A× B) yields a manifold, and πM , πN are smooth.

Example Rp × Rq is the same as Rp+q

S1 × S1 = T 2 (2-Torus)

T n := S1 × · · · × S1 (n-torus)

Example Ξ := {space of right handed 3-4-5 triangles in R2}
Project T ∈ Ξ to p(T ) ∈ R2 (the sharpest vertex) and to Θ(T ) ∈ S1 (the
angle that the length 4 side, directed away from p(T ), makes with the positive
x-axis). Then the bijection (p,Θ) : Ξ→ R2 × S1 shows Ξ = R2 × S1.

Tangent bundle

M smooth. Define

i.

TpM := {(p,X)| X ∈ Hom (C∞(M),R) is a tangentvector to M at p}

so 0p 6= 0q when p 6= q. (p,X) ≡ X (abuse of notation)

ii.
TM :=

⋃
p∈M

TpM = {(p,X) : p ∈M, X ∈ TpM }

TpM is called the fiber at p.

iii.

π : TM →M

(p,X) 7→ p

(canonical projection)

Proposition 3.3 TM has the structure of a 2n-dimensional manifold.

Let (U, ψ) be a chart for M

p ∈ U ⊆M
ψ7→ ψ(p) =

(
x1(p), . . . , xn(p)

)
∈ Rn

X i

(
∂

∂xi

)
p

= X ∈ TpM
dψ(p)→

(
X1, . . . , Xn

)
∈ Rn. (check this!)

29



Define a chart for TM as follows:
Set

U := TU = π−1(U) = ∪p∈U TpM ⊆ TM

Define

Ψ : U → ψ(U)× Rn by

(p,X) 7→
(
x1(p)), . . . , xn(p)), X1, . . . , Xn

)
=

x1, . . . , xn︸ ︷︷ ︸
coords of p

, X1, . . . , Xn︸ ︷︷ ︸
coords of X within TpX


The associated parametrization has a some what simpler form:

Ψ−1 :
(
x1, . . . , xn, X1, . . . , Xn

)
7→

ψ−1(x1, . . . , xn)︸ ︷︷ ︸
p

,
∑

X i

(
∂

∂xi

)
p


Exercise The charts (U,Ψ) are compatible and give TM the structure of a
2n-manifold. π : TM →M smooth. TM is locally a product ψ(U)× Rn

Example S1

Coordinates:

R → S1

θ 7→ [θ] := θ + 2πk, k ∈ Z

TS1

∼= preserves smooth structure

��

3
(

[θ], a
(
∂
∂θ

)
[θ]

)
��

[θ] ∈ S1, a ∈ R

S1 × R 3 ([θ], a)

TS1 ' S1 × R cylinder, a product, of the base S1 with R.

TS2 � S2 × R2

TS3 ∼= S3 × R3

TS4 � S4 × R4

...
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Definition A smooth vector field on M is a smooth function X : M → TM
such that X(p) ∈ TpM ∀p ∈M .

In coordinates p
ψ→ (x1, . . . , xn)

X(x1, . . . xn) = (x1, . . . , xn, X1(x1, . . . , xn), . . . , Xn(x1, . . . , xn))
abuse
= (X1(x1, . . . , xn), . . . , Xn(x1, . . . , xn))

Evidently, X is a smooth vector field⇔ componentsX1(x1, . . . , xn), . . . , Xn(x1, . . . , xn)
of X are smooth.
Semi intrinsically, we write

X(p) =
n∑
i=1

X i
(
x1, . . . , xn

)︸ ︷︷ ︸
C∞

(
∂

∂xi

)
p

Question: How many pointwise linearly independant vector fields can we
find on Sn? Specifically, we require ∀p ∈ Sn, e1(p), . . . ek(p) are linearly
independent in TpS

n.

Theorem 3.4 There is no nowhere-vanishing vector field on S2.

Theorem 3.5 (F.Adams) Gives a peculiar formula for the maximum num-
ber of pointwise linear independent vectorfields on Sn. (See Greenberg &
Harper.)

TS1 ∼= S1 × R S1 1

S2 0

TS3 ∼= S3 × R3 S3 3

S4 0

S5 6= 0, 5

S6 0

TS7 ∼= S7 × R7 S7 7

4 Submanifolds, diffeomorphisms, immersions

and submersions

Reference: Guillemin and Pollack Chap 1, pp 1-27
Let M be a smooth manifold, N ⊆M a subset.
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Definition N is a (smooth) k-dimensional submanifold of M if ∀x ∈ N ,
∃U 3 x open and a chart ψ : U → Rn such that

ψ(N ∩ U) = (Rk × {0}) ∩ ψ(U).

Atlas for N :

AN :=
{

(V, χ)| V := N ∩ U χ := ψ|N ∩ U : N ∩ U → Rk, (U, ψ) as above
}

.

Examples

• open subset of a manifold

• Sn in Rn+1

• Sn−1 in Sn

• (prove later) classical groups O(n), U(n), Sp(n), . . . are submanifolds of
Mn×n ∼= Rn2

• open upper hemisphere of Sn, in Rn+1

Proposition 4.1

• (N,AN) is a smooth k-manifold.

• The inclusion map of N in M i ≡ iN⊆M :

N → M

p 7→ p

is smooth.

• It’s differntial

dip : TpN → TpM

is an injection ∀p, modelled on the linear inclusion Rk ⊆ Rn.

• The subspace topology on N coincides with the chart topology. For
any N ⊆ (M, TM) (not necessarily a submanifold), we define TN :=
{U ∩N |U ∈ TM}. called the subspace topology induced on N from
(M, TM)

Proposition 4.2 TN is a topology on N
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Big Questions:

i. When is the image of a smooth map a submanifold?

ii. When is the zero-set of a smooth map a submanifold?

4.1 Immersions, submersions, diffeomorphisms

Let
f : Mn → Nm

dfp : TpM → Tf(p)N.

be smooth, and consider

Definition

i. f is an immersion if dfp is injective ∀p ∈M

ii. f is a submersion if dfp is surjective ∀p ∈M

iii. f is a diffeomorphism if f is bijective and f−1 is also smooth. (NB:
then f−1 ◦ f = idM , (df

−1)f(p) ◦ dfp = idTpM , so dfp is an isomorphism)

Correspondingly, we have

i. Local immersion theorem (Blatter II p.106)

ii. Local submersion theorem (≡ Implicit function theorem) (Blatter II
p.99)

iii. Inverse function theorem (Blatter II p.88)

The first two are dual and both are proved from iii.

Diffeomorphisms

(M,A)
f

--
(N,B)

f−1

mm

f diffeomorphism ⇔ f−1 diffeomorphism.

Write: M
diff∼= N

It means: M and N “look the same” from a differentiable viewpoint.
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Advanced Fact (Taubes/Donaldson 80’s)

Starting in n = 4, a topological manifold can have 0,1 or ≥ 2 distinct (i.e.
non-diffeomorphic) differentiable structures.

Example (Milnor 50’s) The topological manifold S7 has 28 distinct differ-
entiable structures.
Standard one: S7 := {x ∈ R8| |x| = 1}

Theorem 4.3 (Inverse function theorem) Let f : M → N be smooth.
If dfp : TpM → Tf(p)N is an isomorphism, then f is a diffeomorphism near p,
that is, ∃U 3 p, V 3 f(p) open such that f |U : U → V is a diffeomorphism.

Proof Transfer the usual Inverse Function Theorem from Rn to M,N via
charts.

2

Definition Let f : M → N

i. f is a local diffeomorphism if every p ∈ M has a neighborhood U 3 p
such that f(U) is open in N and f |U : U → f(U) is a diffeomorphism.

ii. f is a (smooth) covering map if every q ∈ N has a neighborhood V 3 q
such that f−1(V ) = ∪δ∈∆Uδ, where the Uδ are open disjoint sets in M ,
and f |Uδ : Uδ → V is a diffeomorphism for each δ.

Clear:

Covering map
⇒
: local diffeomorphism

Exercise Prove that the number of preimage points f−1(q) is constant on
each connected component of N , if f is a covering map.

Example

Sn
π→ RP n

p 7→ π(p) := line through p and 0

π is a covering map (where we give RP n a suitable smooth structure). Each
L ∈ RP n has two preimage points p,−p in Sn.
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Let Γ be a group of diffeomorphisms from M to M , i.e.

idM ∈ Γ, g ∈ Γ ⇒ g−1 ∈ Γ
g, h ∈ Γ ⇒ g ◦ h ∈ Γ

Definition Γ acts freely and properly discontinuously onM if ∀p ∈M ∃Uopen 3
p such that

g 6= h ∈ Γ⇒ g(U) ∩ h(U) = ∅.

Example
Z2
∼= {idsn , g}

where g(x) := −x, g2 = idM . Then Z2 acts freely and properly discontinuous
on Sn.

Definition Let Γ be a group and M a manifold. Γ acts smoothly on M if
there is a homomorphism of Γ to the group of diffeomorphisms (≡ Diff(M))
of M.

Example Zn acts freely and properly discontinuously on Rn by translation.

Notation
ρ : Γ → Diff(M) group action

g 7→ ρ(g)
ρ(g)(x) ≡ g(x)

Definition We call Γ · x := {g(x)|g ∈ Γ} the orbit of x under action of Γ.

M decomposes into a disjoint union of orbits. Specifically one can easily see:

i. for all x, y ∈M , either Γ · x = Γ · y or Γ · x ∩ Γ · y = ∅

ii. M = ∪x∈MΓ · x

Each orbit is an equivalence class for the relation

x ∼ y ⇔ y = g(x) ∃g ∈ Γ.

We obtain:
π : M → M/Γ

x 7→ Γ · x

M/Γ := {set of orbits}
= {Γ · x|x ∈M}
= M/ ∼
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Theorem 4.4 (Exercise)
If Γ acts freely and properly discontinuously on M , then π : M → M/Γ
induces a smooth structure on M/Γ such that π is a covering map.

Warning Not every covering map comes from an appropriate group action!

Exercise Find an example.

Definition A subset A of a topological space X is discrete if for each x ∈
A ∃U open such that A ∩ U = {x}.

Exercise G Lie group (a manifold such that the group operations are smooth),
Γ discrete subgroup (not necessarily normal!) and G/Γ coset space of Γ in G

• SL(2,R)/SL(2,Z) =? (3-manifold)

• S3/{±1} ∼= RP 3, S3/Z` (some 3-manifold)

Z` :=
{
e2πik/`|k = 0, . . . , `− 1

}
Exercise

Find all the manifolds (up to diffeomorphism) of the form R2/Γ, Γ acts freely
and properly discontinuously on R2 by isometries (translations, rotations,
refections and slide reflections).

* Same problem for R3.

4.2 Immersions

An immersion is a function such that

f : Mk → Nn smooth
df(p) : TpM → Tf(p)N is an injection.

(⇒ k ≤ n)

Example The inclusion map i : M → N, x 7→ x of any submanifold M of
N is an immersion.

Example (curves) A regular curve (γ̇(t) 6= 0)

R 3 t 7→ γ(t) ∈ R2

is an immersion.
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Example (Canonical linear immersion)

i : Rk → Rn

(x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0)

Theorem 4.5 (Local Immersion Theorem) Let f : M → N be smooth,
p ∈M be fixed. Suppose

dfp : TpM → Tf(p)N

is injective. Then there exist local coordinates (x1, . . . , xk) about p, (y1, . . . , yn)
about f(p) such that in these coordinates, f has the form

(x1, . . . , xk) 7→ (x1, . . . xk, 0, . . . , 0) = (y1, . . . , yn)

near p.
This says “f is smoothly equivalent to i”. This means that any immersion
can be straightend, out at least locally.
Proof later.

Corollary 4.6 If dfp is injective at p then dfp will be injective for all q near
p.
So {p ∈M |dfp injective} is open. “That is ,injectivity of the differential of
f is an open condition on points of M”.

Corollary 4.7 The image under an immersion of a sufficiently small open
set of M is a submanifold of N .

Question:

When is the image of a smooth map a submanifold of the target manifold?

Theorem 4.8 If f : M → N is an injective immersion and a homeomor-
phism onto it’s image2, then f(M) is a smooth submanifold of N and f is a
diffeomorhism from M to f(M).

Proof

2This means: f : M → f(M) is a homeomorphism (where f(M) has the subspace
topology coming form N).
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i. Fix q ∈ f(M), p := f−1(q) (unique, f : M → f(M) bijective). By the
Local Immersion Theorem, ∃Uopen 3 p, Wopen 3 q such that

f |U : U → W

is the cannonical linear immersion

i : Rk → Rk × Rn−k

in coordinate systems (x1, . . . , xk) on U and (y1, . . . , yn) on W . Thus
f(U) is a submanifold of N and f |U is a diffeomorphism from U to
f(U). Since f is a homeomorphism from M to f(M) and U is open in
M , f(U) is open in f(M), i.e.

f(U) = V ∩ f(M)

for some V open in N .

This tells us: f(U) is cleanly separated via V from the rest of f(M).

In fact, we have that f(M) ∩ V is a submanifold of N .(Recall that in
the coordinates y1, . . . , yn on N near q, f(M) maps to an open set in
Rk)
Since such a V can be found about any point q of f(M), it follows that
f(M) is a submanifold of N .

ii. f : M → f(M) is a local diffeomorphism by the above, and f : M →
f(M) is a homeomorphism. So f−1 : f(M) → M exists. Using the
Inverse Function Theorem, f−1 is smooth.

2

Homeomorphism-ness is hard to test directly.

Definition If f : M → N satisfies the conclusions of the previous Theorem
(ie f(M) is a submanifold of N and f : M → f(M) is a diffeomorphism), we
call f an embedding of M in N .

Theorem 4.9 Suppose f : M → N is an injective immersion and M is
compact. Then f is an embedding.
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Proof Must show: f : M → f(M) homeomorphism. Note that f is bijective
and continuous. Thus it suffices to show that f−1 is continuous, i.e. show: if
U open in M then f(U) is open in f(M).

U open in M ⇒ M \ U closed in M

⇒ M \ U compact (since M is compact

⇒ f(M \ U) = f(M) \ f(U) compact

⇒ f(M) \ f(U) closed in f(M)

⇒ f(U) open in f(M).

2

Proof (Local Immersion Theorem)
The theorem is entirely local, so without loss of generality we may assume

f : Rk ⊇ U → V ⊆ Rn, U, V open, p = 0

Without loss of generality (via postcomposition with a linear tronsformation
of Rn) we may assume

dfp = i : Rk → Rn

(x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0)

(canonical linear immersion)

To apply the Inverse Function Theorem we augment Rk to Rn by adding
n− k new variables. We extend f to a new function F by

U × Rn−k → Rk × Rn−k

(x′, x′′) 7→ f(x′) + (0, x′′)

Compute for: (X ′, X ′′) = X ∈ TP (U × Rn−k) = Rk × Rn−k

dFp(X
′, X ′′) = dfp︸︷︷︸

i

(X ′) + (0, X ′′)

= (X ′, 0) + (0, X ′′)

= (X ′, X ′′)

i.e.
dFp = idRn
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As matrices:

dFp =

 dfp︸︷︷︸
x′

0
I︸︷︷︸
x′′

( y′

y′′

)
=

(
I 0
0 I

)
= I

By the Inverse Function Theorem, ∃W open 3 p, F (W ) open 3 F (p, 0) =
f(p) such that

F |W : W → F (W )

is a diffeomorphism. So G := (F |W )−1 is a valid chart for F (W ). So we can
use (x1, . . . , xn) as coordinates on F (W ). Let U1 := W ∩ (U × {0}).
Get: (x1, . . . , xk) coordinates on U ,

(X1, . . . , Xn) coordinates on F (W )
Then in these coordinates f has the form

(x1, . . . xk) 7→ (x1, . . . , xk, 0, . . . , 0).

2

Theorem 4.10 (Graphical Image Theorem) (Restatement of Local Im-
mersion Theorem)
The image of a smooth map whose differential is injective at one point can
be written locally, in the original target varibles (y1, . . . , yn), as the graph of
(n− k) of the variables as a function of remaining k.

Recall that if f : M → N is injective immersion and M compact then f is
an embedding. Let’s try to generalize this to M noncompact.

Definition f : X → Y is proper if K ⊆ Y , K compact ⇒ f−1(K) compact

Theorem 4.11 If f : M → N injective immersion and proper then f is
an embedding.

Proof Exercise.

2

Example R→ T 2 with an irrational slope: injective immersion, not proper.
The image is dense in T 2 so it isn’t an embedding.

Definition We call a topological space (X, T ) second countable if there ex-
ists a countable collection of open sets that generate the topology T via
arbitrary unions, i.e. T has a countable base.
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Example

R
{(

p
q
, r
s

)
|p, q, r, s ∈ Z, q, s 6= 0

}
countable base

Rn products of such intervals: countable base

Theorem 4.12 (Whitney Theorem) Every (paracompact or second count-
able) smooth n-manifold can be embedded smoothly in R2n.

Example
S1 ⊆ R2 embedding
RP 2 ⊆ R4 Veronese embedding
RP 2 → R3 Boy’s immersion

There exist no embedding of RP 2 in R3

4.3 Submersions

Zero Sets

Question f : M → N smooth. When is f−1(q) a submanifold of M?

Example
f : R2 → R

f(x, y) := x3 − y2, f−1(0) is a cone with a cusp (not smooth at (0, 0)

∇f = (3x2, 2y)

Consider

f : M → N smooth

dfp : TpM → Tf(p)N

We require: dfp surjective ∀p ∈M .

Example (Canonical linear projection) Let n ≥ k and define

π : Rn → Rk

(x1, . . . , xn) 7→ (x1, . . . , xk).

Then π is a submersion.
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Example

M ×N
πM

zzuuuuuuuuu
πN

$$HHHHHHHHH

M N

Then πM , πN are submersions.

Example (Exercise) TM
π→M is a submersion.

Theorem 4.13 (Local Submersion Theorem) f : Mn → Nk smooth,
p ∈M , dfp : TpM → Tf(p)N surjective. Then there are coordinates (x1, . . . , xn)
near p, (y1, . . . , yk) near f(p), such that f has the form

(x1, . . . , xn) 7→ (y1, . . . , yk)

Notation:

Rn = Rk × Rn−k 3 (x1, . . . , xk, xk+1, . . . , xn) = (x′, x′′)

π′ : R→ Rk, x 7→ x′

π′′ : Rn → Rn−k, x 7→ x′′

Proof Since the theorem is local, we may work in open sets in Euclidean
space:

f : U ⊆ Rn → V ⊆ Rk

(x1, . . . , xn) (y1, . . . , yk)

U, V open.
Precomposing f with an appropriate linear transformation Rn → Rn, we
may assume

dfp = π′ : Rn → Rk

(x′, x′′) 7→ x′

To apply the Inverse Function Theorem, complete f to a map F as follows:

F : U → V × Rn−k

(x′, x′′) 7→ (f(x′, x′′), π′′(x)︸ ︷︷ ︸
≡x′′

)

Now let X = (X ′, X ′′) ∈ Tp(Rk × Rn−k) = Rk × Rn−k
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Compute

dFp(X
′, X ′′) =

 dfp︸︷︷︸
π′

(X ′, X ′′), dπ′′p︸︷︷︸
π′′

(X ′, X ′′)


= (X ′, X ′′).

So dFp = idRn is an isomorphism.dFp =

 dfp︸︷︷︸
x′

0
I︸︷︷︸
x′′

( y′

y′′

)
=

(
I 0
0 I

)
= I


Thus by the Inverse Function Theorem, ∃U1 ⊆ U open, W ⊆ V ×Rn−k open
such that

U1
F |U1−→ W

is a diffeomorphism. So F |U1 is a valid chart map and we may replace the
coordinates x1, . . . , xn on U1 by the coordinates y1, . . . yn coming form W .
Then U1 has the coordinates (y1, . . . , yn). V ∩(W ∩Rk×{0}) has coordinates
(y1, . . . , yk). In these coordinates, f is represented by

(y1, . . . , yn) 7→ (y1, . . . , yk).

2

Corollary 4.14 dfp surjective at p ⇒ dfp surjective for all q near p (i.e.
surjectivity of df is an open condition in the domain manifold.)

We return to our question:

When is the preimage f−1(q) a submanifold of M?

Corollary 4.15 Let f : Mn → Nk be a submerison. Then f−1(q) is an
(n− k)-dimensional submanifold of M for any q ∈ N .

Note that the Local Submersion Theorem is really the Implicit Function
Theorem in disguise.
We can be more precise in an answer to the above question.

Definition f : M → N smooth

• p ∈M regular point if dfp surjective
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• p ∈M critical point if dfp not surjective

• q ∈ N regular value if every p ∈ f−1(q) is a regualar point

• q ∈ N critical value if some p ∈ f−1(q) is a critical point.

Note that the set of regular points is open and the set of critical points is
closed.

Example (Very standard!)

f : R2 → R
f(x, y) := x2 − y2

Then
df = 2xdx− 2ydy, or more precisly

df(x,y) = 2xdx(x,y) − 2ydy(x,y)

Thus (x, y) critical ⇔ df(x,y) = 0⇔ (x, y) = (0, 0)
All f−1(q) are smooth exept f−1(0).

Corollary 4.16 f : Mn → Nk smooth, q ∈ N regular value, then f−1(q) is
a smooth submanifold of M .

5 Lie Groups: S3and SO(3)

Definition A Lie group is a group that has the structure of a smooth man-
ifold such that the group operations

G×G → G G → G
(a, b) 7→ ab a 7→ a−1

are smooth.

Example

O(n) := {A ∈Mn×n|ATA = 1}
= {A : Rn → Rn|〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ Rn}

SO(n) := O(n) ∩ {detA = 1} (orientation preserving)
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Exercise Prove O(n) is a Lie group by showing that 1 is a regular value of
the function

A ∈Mn×n 7→ ATA ∈Mn×n
symm

Example The group of isometries of any Riemannian manifold is a Lie group
(not easy at this stage).

Example
Isom(Rn) = {x 7→ Ax+ b|A ∈ O(n), b ∈ Rn}

Exercise What is Isom(T 2
square)?

5.1 Quaternions

H := {a+ bi+ cj + dk|a, b, c, d ∈ R}
∼= R4 as a vector space over R

(H,+, ·) is an algebra over R.
Multiplication: 1 is multiplicative unit, and we require

ij = −ji = k, jk = −kj = i, ki = −ik = j

so that

(a+ bi+ cj + dk)(e+ fi+ gj + hk) = ae− bf − cg − dh
+(af + be+ ch− dg)i

+(ag + ce− bh+ df)j

+(de+ ah+ bg − cf)k

Let u = a+ bi+ cj + dk define ū := a− bi− cj − dk
Check: ¯̄u = u, uv = v̄ū.
Set |u|2 := uū = a2 + b2 + c2 + d2 > 0 (usual norm on R4).
Observe:

• ū
|u|2 is the inverse of u 6= 0 so (H \ {0}, ·) is a Lie group.

• |uv|2 = uvuv = uvv̄ū = |v|2|u|2 i.e. |uv| = |u||v|, “|·| is multiplicative”.

• S3 := {u ||u| = 1} is closed under multiplication and inversion, so

(S3, ·) is a Lie group called the group of unit quaternions. Note that

S3 ∼= SU(2) ∼= Sp(1)
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Definition A 1-parameter subgroup of a Lie group G is a homomorphism

(R,+)→ (G, ·)
Example

(R,+) → C ⊆ (H, ·)
θ 7→ eiθ := cos θ + i sin θ.

Then ei(φ+ψ) = eiφ · eiψ, so θ 7→ eiθ is a 1-parameter subgroup of S3. Now set

ejθ := cos θ + j sin θ

ekθ := cos θ + k sin θ

These are also 1-parameter subgroups.
Take u := ai+bj+ck, a2+b2+c2 = 1. Verify u2 = −1 so {a+bu|a, b ∈ R} ∼= C
as an algebra. Then

euθ := cos θ + u sin θ

is also a 1-parameter sub group of S3.

Picture of S3

i 7→ (1, 0, 0)

j 7→ (0, 1, 0)

1 7→ (0, 0, 0)

S3 \ {−1}
∼=→ R3

In stereographic projection, the 1-parameter subgroups become lines through
the origin.
All 1-parameter subgroups are equivalent, i.e. ∃v ∈ S3 such that v(euθ)v−1 =
eiθ (Proof later).

5.2 Smooth actions, left, right, adjoint actions of a Lie
group on itself

Definition G Lie group, M smooth manifold. A smooth action of G on M
is a smooth map

φ : G×M → M

(a, x) 7→ φ(a, x) ≡ φa(x)

such that

φe = idM

φa ◦ φb = φab.
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Consequences

• Each φa is diffeomorphism. To see this, compute

φaφa−1 = φaa−1 = φe = idM

so φa is invertible with (φa)
−1 = φa−1 , so φa is a diffeomorphism.

• φ yields a homomorphism

φ : G → Diff(M)

a 7→ φa.

in agreement with our previous defintion of an action of a group on a
manifold.

Definition
La : G→ G left translation

b 7→ ab

Ra : G→ G right translation
b 7→ ba

a 7→ La and a 7→ Ra−1 are smooth actions of G on itself:

LaLb = Lab, Le = idG
Ra−1Rb−1 = R(ab)−1 = Rb−1a−1 , Re = idG

Note also that LaRb = RbLa.

Definition The adjoint action is defined by

Ada : G→ G
b 7→ aba−1 = LaRa−1b = Ra−1Lab

which is also a smooth action.

Example
R4 ∼= H = {a+ bi+ cj + dk} ⊇ S3

Take u ∈ S3, then
Lu, Ru,Adu : H → H are isometries, since |uv| = |u||v| = |v|.
Set

R3 := {xi+ yj + zk | x, y, z ∈ R}
Note that

T1S
3 ⊥ R · 1

where a ∈ R.

47



Now Adu preserves R · 1, so Adu preserves R3, and

Adu : R3 → R3

is an isometry preserves O. Thus Adu ∈ O(3) and

Ad : S3 → O(3)

is a homomorphism, i.e. AduAdv = Aduv. Now O(3) consits of two connected
components, namely the orientation-preserving orthogonal transformations
(SO(3)), and the orientation-reversing ones. Clearly Ad : S3 → O(3) is con-
tinuous (you may check this by finding a formula for it), and S3 is connected.
Thus Ad(S3) ⊆ SO(3), i.e.

Ad : S3 → SO(3).

Exercise Find a formula for Adu ∈ SO(3) and interpret it geometrically.

Kernel of Ad:

u ∈ ker(Ad)⇔ uvu−1 = v ∀v ∈ R3

⇔ u = a ∈ R · 1 (check)

⇒ u = ±1

ker(Ad) = {±1}
so S3/{±1} ∼= SO(3) (as a group)

Exercise One easily verifies: Ad : S3 → SO(3) is a 2:1 covering map that
takes u and −u to the same point in SO(3). So

SO(3)
diff∼= S3/{±1}

diff∼= RP 3

as smooth manifolds.

Recall the following lemmas, which might help.

Lemma 5.1 A local diffeomorphism M → N with a compact domain M is
a covering map.

Lemma 5.2 A covering map with connected target has a constant preimage
size

#π−1(q), q ∈ N
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6 Lie brackets, flows of vector fields, Lie deriva-

tives

6.1 Vector fields

Notation:
X : M → TM,X(p) ∈ TpM ∀p

Let ψ be a chart ψ : U ⊆M → Rn

X(p) =
n∑
i=1

X i(ψ−1(x1, . . . , xn))

(
∂

∂xi

)
p

Warning Standard abuse of notation:

=
n∑
i=1

X i(x1, . . . , xn)
∂

∂xi

where we identify p with (x1, . . . , xn), i.e. we drop ψ.

C∞(TM) := {C∞vector fields on M}
Γ(TM) := {all vector fields on M}

Also write: C∞(M,TM), C∞(U, TM), where U ⊆M is open.

C∞(M) := {C∞ functions M → R}
C0(M) := {continuous functions M → R}
C1(M) := {continuously differentiable functionsM → R}
Ck(M) := {functions M → R such that all derivatives of orders

0, . . . , k exist and are continuous (in coordinates)}

We say X is Ck ⇔ X i(x1, . . . , xn) are Ck

6.1.1 Lie Brackets

We wish to define [X, Y ], X, Y ∈ C∞(TM).3

3See Spivak I, 207-217
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We have the map

C∞(TM)× C∞(M) → Γ(M) := {functions M → R}
(X, f) 7→ X · f

(X · f)(p) := X(p)︸ ︷︷ ︸
∈TpM

· f︸︷︷︸
∈C∞(M)

∈ R

Proposition 6.1 X · f ∈ C∞(M)

Proof Use a chart

ψ : U → ψ(U) ⊆ Rn

p 7→ (x1, . . . , xn)

Compute

(X · f)( p) = X(p) · f

= X i(p)

(
∂

∂xi

)
p

· f

= X i
(
ψ−1(x1, . . . , xn)

) ∂(f ◦ ψ−1)

∂xi
(x1, . . . , xn)

2

Consider the 2nd order differential operator X · (Y ·f), also written as XY f .

Proposition 6.2 Let X, Y ∈ C∞(TM). Then there exists a unique vector
field Z ∈ C∞(TM) such that

Z · f = (XY − Y X)f, f ∈ C∞(M)

Basic idea: the 2nd order derivatives cancel.

Proof Get an expression for (XY − Y X) f in coordinates. Suppress ψ.
Write

X = X i ∂

∂xi
, Y = Y j ∂

∂xj
.

Compute

XY f =
∑
i

X i ∂

∂xi

(∑
j

Y j ∂f

∂xj

)

=
∑
i,j

X iY j ∂2f

∂xi∂xj
+Xj

(
∂Y i

∂xj

)
∂f

∂xi

Y Xf =
∑
i,j

Y iXj ∂2f

∂xi∂xj
+ Y j ∂X

i

∂xj
∂f

∂xi
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So we get

(XY −XY ) f =
∑
i,j

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
∂f

∂xi
.

Define the smooth vector field Z in the chart U by

Z :=
∑
i

Zi ∂

∂xi
, Zi :=

∑
j

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
Then

Z · f = (XY − Y X)f

This shows Z is well-defined independent of parametrization, smooth and
unique.

2

Definition

[·, ·] : C∞(TM)× C∞(TM) → C∞(TM)

[X, Y ] := XY − Y X

(as differential operator on C∞(M)) is called a Lie bracket .

Proposition 6.3 Let X, Y, Z ∈ C∞(TM), a, b ∈ R, f, g ∈ C∞(M). Then

i. [X, Y ] = −[Y,X] (anticommutative)

ii. [aX + bY, Z] = a[X,Z] + b[Y, Z] (bilinear)

iii. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity)

iv. [fX, gY ] = fg[X, Y ] + f(X · g)Y − g(Y · f)X

Proof Jacobi Identity

[[X, Y ] , Z] = [XY − Y X,Z] = (XY − Y X)Z − Z(XY − Y X)
[[Y, Z] , X] = [Y Z − ZY,X] = (Y Z − ZY )X −X(Y Z − ZY )
[[Z,X] , Y ] = [ZX −XZ, Y ] = (ZX −XZ)Y − Y (ZX −XZ)

sum = 0

2

Definition A vector space V equipped with a bracket [·, ·] : V × V → V
satisfying i, ii, iii is called a Lie algebra.
So C∞(TM) forms a Lie algebra.

51



Example Another famous Lie algebra:
V vector space over a field K

EndK(V ) := HomK(V, V )

[A,B] := AB −BA

(EndK(V ), [·, ·]) is a Lie algebra.

Example Mn×n(R),Mn×n(C).

Relationships between the two kinds of [·, ·] occurs via the Lie Algebra of
(matrix) Lie groups.

6.2 Integral curves and flows of vector fields4

Definition An integral curve of X is a path γ : [a, b]→M such that

γ̇(t) = X(γ(t)), t ∈ [a, b].

In coordinates, this is an n×n first order ODE system. We write and obtain:

γ(t) =
(
x1(t), . . . , xn(t)

)
∈ U ⊆ Rn

dx1

dt
= X1

(
x1(t), . . . , xn(t)

)
...

dxn

dt
= Xn

(
x1(t), . . . , xn(t)

)
, a ≤ t ≤ b.

6.2.1 Existence, Uniquenes and smooth dependence on initial data

.
Consider the ODE system

(∗)
{

dγ(t)
dt

= X(γ(t)) −a < t < b, a, b > 0
γ(0) = p require: γ is C1

Theorem 6.4 (Short-term existence, uniqueness, regularity for γ) Let
X ∈ C∞(TM). Then

i. ∃δ > 0 such that (∗) has a C1 solution defined for −δ < t < δ.
( Existence)

4See Spivak I Chap. 5.

52



ii. Any C1 solution of (∗) is C∞ ( Regularity)

iii. Any two C1 solutions of (∗) on (−a, b), (−c, d), a, b, c, d > 0 agree on
their commmon interval of definition (−a, b) ∩ (−c, d). ( Uniqueness)

Proof

Analysis: Either Inverse Function Theorem on Banach spaces, or a
successive approximation method5.

i.ii. Exercise

2

Remark X ∈ Ck ⇒ Theorem holds but with γ in Ck+1

Dependence on Initial Conditions

Write γx(t) ≡ φ(x, t) ≡ φt(x) (integral curve with initial point γx(0) = x).
The equation (∗) becomes

(∗)′
{

∂φ(x,t)
∂t

= X(φ(x, t)), x ∈ U,−a < t < b
φ(x, 0) = x, x ∈ U.

Theorem 6.5 (Dependence on initial conditions of φ) Let X ∈ C∞(TM), p ∈
M .

i. ∃U 3 p, δ > 0 and a function (C1 in t) φ : U × (−δ, δ)→M that solves
(∗)′.

ii. Any solution of (∗)′ that is C1 in t is C∞ in x and t.

iii. Any two solutions φ : U × (−a, b)→M,ψ : V × (−c, d)→M agree on
the intersection of their domains.

Remark X ∈ Ck ⇒ φ is Ck in (x, t) (recall from above that φ is Ck+1 in t).

New point of view:
φt : U︸︷︷︸

⊆M

→ φt(U)︸ ︷︷ ︸
⊆M

The family (φt)−a<t<b is called a local flow of X.
Notation:
A ⊂⊂ B means A is compact and A ⊆ B, read “A compactly contained in
B”. If A is compact, we say A is precompact .

5See Lang reference in Spivak I chap 5. Alternately see Rivieère’s differential geometry
problem last year.
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Theorem 6.6 (Larger U , smaller δ) For any U ⊂⊂M ∃δ > 0 such that
the local flow is defined on U × (−δ, δ).

Proof By compactness of Ū , we may cover Ū by finitely many open sets
V1, . . . , Vn such that there are flows (solving (∗)′)

φi : Vi × (−δi, δi)→M.

Set δ := min δi > 0. Define

φ : U × (−δ, δ)→M

by:
φ := φi on Vi × (−δ, δ)

(Consistent by uniqueness assertion (iii) in previous Theorem)

2

Theorem 6.7 (Pseudogroup Property) If φt ◦ φs is defined on U for
|s| < S, |t| < T , then φu is defined on U for |u| < S + T and

φt+s = φt ◦ φs on U

If φt : M → M exists for all time t ∈ R, then φt is called a complete flow .
Note that φt injective ⇔ uniqueness of initial value problem for backwards
flow.

Proof Fix |s| < S, |t| < T . Combine the two paths via

α(u) :=

{
γx(u) 0 ≤ u ≤ s

γγx(s)(u− s) s ≤ u ≤ s+ t

Note that

γx(s) = y = γγx(0) ⇒ α is C0

γ̇x(s)
(∗)
= X(y)

(∗)
= γ̇γx(s) ⇒ α is C1

Also α solves (∗). So define (extend) γ via γx(u) := α(u), 0 ≤ u ≤ t+ s.

Remark (Used in above step) If γ(u), a ≤ u ≤ b solves ODE (∗), then so
does the time shifted curve γ(u− k), a+ k ≤ u ≤ b+ k.
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So φu : U →M exists, 0 ≤ u ≤ t+ s and φt ◦ φs = φt+s. Speciffically:

φt ◦ φs(x) = φt(φs(x))

= φt(γx(s))

= γγx(s)(t)

= α(s+ t)

= γx(s+ t)

= φs+t(x).

2

Corollary 6.8 Assume U open and φt exists on U . Then: φt(U) is open
and φt|U : U → φt(U) is a diffeomorphism.

Proof

i. Assume first that φt is complete. Then by previous Theorem:

φ−t ◦ φt = φ−t+t = φ0 = idM .

So φt is invertible with inverse

(φt)
−1 = φ−t : M →M

and φ−t is smooth, so ⇒ φt : M → M is a diffeomorphism and φt(U)
open for any open U ⊆M and φt|U : U → φt(U) is a diffeomorphism.

ii. Next we do the global case (when φt is not complete).

Let U ⊂⊂ M and try for small t. Choose V open such that U ⊂⊂
V ⊂⊂M . Choose δ so small that

φ : U × [0, δ] → V

φ : V × [−δ, 0] →M

are defined. Then
φ−δ ◦ φδ : U →M

is defined, so by above Theorem φ−δ◦φδ = id on U . It follows that φδ|U
is a local diffeomorphism, φδ(U) is open, and φδ|U is a diffeomorphism.

Lemma 6.9 A smooth map

φ : U →M (U open)

with a smooth left inverse ψ : A ⊇ φ(U)→M,A open

ψ ◦ φ = idU

is a diffeomorphism and φ(U) is open.
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iii. Next, let U ⊂⊂ M and let t > 0 be an arbitrary time such that φt
exsists on Ū . Choose V open such that

φ(Ū × [0, t]) ⊂⊂ V ⊂⊂M.

For δ small enough, φδ will be defined on V and φδ : V → φδ(V ) will
be a diffeomorphism. Making δ slightly smaller, we can arrange

t = kδ, φt = φδ ◦ · · · ◦ φδ︸ ︷︷ ︸
k

on U . Thus φt|U is a diffeomorphism onto the open set φt(U).

iv. Now let U ⊆ M be an arbitrary open set and let φt be defined on
U . For ever V ⊂⊂ U , φt(V ) is open and φt|V : V → φt(V ) is a
diffeomorphism. It follows that φt(U) is open and φt|U : U → φt(U) is
a diffeomorphism.

Get in succession:

φδ : V → φδ(V ) diffeomorphism, φδ(V ) open

U ⊆ V, so φδ(U) is open

φδ|U : U → φδ(U) diffeomorphism

φδ(U) ⊆ V, soφδ(φδ(U)) is open

φδ|φδ(U) : φδ(U)→ φ(φδ(U)) diffeomorphism

Thus φ2δ = φδ ◦ φδ : U → φδ ◦ φδ(U) diffeomorphism

Induction ⇒ φt : U → φt(U) diffeomorphic

φt(U) is open.

2

Remark on uniqueness

ẋ(t) = X(x(t)), x(t) ∈ U ⊆ Rn

Sufficient conditions for uniqueness: X is Lipschitz.
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Example Fix 0 < α < 1. Consider{
ẋ = x(t)α, t ≥ 0

x(0) = 0.

Solving, we find a solution

x(t) = ((1− α)t)
1

1−α , t ≥ 0

In fact, we have two solutions

x(t) :=

{
0 t ≤ 0

((1− α)t)
1

1−α , t ≥ 0

y(t) := 0 t ∈ R.

Since 1
1−α > 1, x(t) is C1 in t.

Question How far can we extend the flow?

Definition A vector field is called complete if it possesses a flow φt : M →M
defined for all −∞ < t <∞.

Remark Then t 7→ φt defines a 1-parameter subgroup of Diff(M), or equiv-
alently, a smooth action of R on M .

Example
X(x, y) := (x,−y) on R2

A typical solution traces out a curve: xy = const, and has the form

γ(t) :=
(
C1e

t, C2e
−t) , t ∈ R.

So this X is complete.

Example

ẋ = x2, x(t) ∈M := R, X(x) = x2 ∂

∂x
.

Solution: x(t) = 1
C−t ,−∞ < t < c (or c < t <∞) So this X is incomplete.

Example Clearly
ẏ = 1, y(t) ∈ N := (−∞, 0)

is incomplete
Transform the equation to x = − 1

y
, ẋ = ẏ

y2 = 1
(1/x)2 = x2. It becomes

equivalent to the previous problem, with M = (0,∞). In both cases, the
trajectory runs off the end of the manifold in finite time
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Example

X =
∂

∂x
, U ⊆ R2

Typically incomplete.

Corollary 6.10 (to group property and short-time existence) If φ :
U × [0, T ) → M and φ(U × [0, T )) ⊂⊂ M then φ can be extended to a
solution φ : U × [0, T + δ)→M for some δ > 0.

Proof Pick V such that

φ(U × [0, T )) ⊆ V ⊂⊂M

φt is defined on V for 0 ≤ t < T and δ > 0 such that there is a local flow

φ : V × [0, δ)→M.

Then φs is defined on V for 0 ≤ s < δ. Apply the group property to yield

φs+t = φs ◦ φt = φu, 0 ≤ u < T + δ,

i.e. we can extend φ to

φ : U × [0, T + δ)→M.

2

Significance A trajectory γ(t) can be continued as long as it stays in a
compact set of M . (i.e. if [0, T ) is the maximum time of existence of γ(t),
then γ(t) must leave every compact set of M .)

Corollary 6.11 If M is compact, then every smooth vector field on M is
complete.

Theorem 6.12 If X ∈ C∞(Rn,Rn) has at most linear growth, i.e.

|X(x)| ≤ C1 |x|+ C2, x ∈ Rn,

then X is complete.

Example

ẋ = x, ẋ = x+ 1, ẋ =

{
log x, x ≥ 1
. . . x ≤ 1.
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Proof Let ẋ(t) = X(x(t)), x(t) ∈ Rn, X : Rn → Rn.
It follows:

d

dt
|x(t)| = 〈dx

dt
,
x

|x|
〉

≤
∣∣∣∣dxdt

∣∣∣∣
= |X(x(t))|
≤ C1 |x(t)|+ C2

Compare |x(t)| to the solution of{
da
dt

= C1a+ C2, a(t) ∈ R
a(0) = |x(0)|

2

Lemma 6.13
|x(t)| ≤ a(t), t ≥ 0

Proof Let b(t) := |x(t)| − a(t). Compute

db

dt
=

d|x(t)|
dt

− da

dt
≤ C1|x|+ C2 − (C1a+ C2)

= C1b.

So b(t) solves: {
b(0) = 0
db(t)
dt
≤ C1b(t)

Claim
b(t) ≤ 0 ∀t ≥ 0.

To see this, we argue as follows.
On the open set I ⊆ R where we compute that b(t) > 0, set B(t) := log b(t).
Write I = ∪α(aα, bα), where (aα, bα) ∩ (aβ, bβ) = ∅. dB

dt
≤ C1.

Now B(t)→ −∞ as t→ aα
t inside (aα, bα)

so B(t)− C1t→ −∞ as t→ aα
t

but B(t)− C1t is nonincreasing. This is impossible. Thus I = ∅.

This proves the claim.
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Upshot:

|x(t)| ≤ a(t) =

(
|x(0)|+ C2

C1

)
eC1t − C2

C1

which is finite, as long as 0 ≤ t < T . This shows: x ([0, T )) lies in a compact
subset of Rn for any T <∞. Thus: x(t) can be continued forever (i.e. ∀t).

2

Theorem 6.14 Let X ∈ C∞(TM). Fix p ∈M . If X(p) 6= 0, then there are
coordinates (x1, . . . , xn) near p with X(q) =

(
∂
∂x1

)
q

for all q near p.

Meaning: There are no local invariants of nonzero vector fields (they are all
the same, locally).

Proof Choose coords y1, . . . , yn on a small neighborhood U 3 p such that

X(p) =

(
∂

∂y1

)
p

, p = (0, . . . , 0).

We have
φ : U × (−ε, ε) → M

(y1, . . . , yn, t) 7→ (φ1, . . . , φn).

Now N := U ∩ {y1 = 0} is a submanifold of M passing through p. Define

ψ := φ|N×(−ε,ε) : N × (−ε, ε) → M

(y2, . . . , yn, t) 7→ (ψ1, . . . , ψn)

Concretely. ψi(y2, . . . , yn, t) := φi(0, y2, . . . , yn, t). We wish to apply the
Inverse Function Theorem to ψ at the point

(p, 0) ∈ N × (−ε, ε), ψ(p, 0) = p,

to prove that (y2, . . . , yn, t) can be taken as coordinates on M near p. For
(q, t) ∈ N × (−ε, ε) :

(dψ)(q,t) : T(q,t) (N × (−ε, ε)) = TqN × R→ Tψ(q,t)M

Compute for (q, t) ∈ N × (−ε, ε)::

(dψ)(q,t)

((
∂

∂t

)
(q,t)

)
=

∂ψ

∂t
(q, t)

=
∂φ

∂t
(q, t)

= X (φ(q, t))

= X (ψ(q, t)) .

60



At (p, 0), we have:
ψ(p, 0) = p

dψ(p,0) : TqN × R → TpM
∂
∂y2 , . . . ,

∂
∂yn

, ∂
∂t

∂
∂y1 , . . . ,

∂
∂yn

.

We get (
∂

∂t

)
p,0

7→ X(p) =

(
∂

∂y1

)
p

(by above)

and (
∂

∂yi

)
(p,0)

7→
(
∂

∂yi

)
p

i = 2, . . . , n

since ψ|N × {0} is just the inclusion N → M . Thus (dψ)(p,0) is an isomor-
phism, so by Inverse Function Theorem,

ψ : V × (−δ, δ)→ W ⊆M

is a diffeomorphism for some small p ∈ V ⊆ N, p ∈ W ⊆ M, δ > 0. So we
may take (y2, . . . , yn, t) as coordinates on W . For r := ψ(q, t) ∈ W , we get:(

∂

∂t

)
r

= (dψ)(q,t)

((
∂

∂t

)
q,t

)
= X (ψ(q, t))

= X(r)

2

Definition (Codimension) Let Mn be a manifold, Nk ⊆Mn a submanifold
of M . Then the codimension of N inside M is dimM − dimN = n− k.

6.3 Lie Derivatives

Pushforward and Pullback of Vector fields

f : M → N

Definition (Pushforward) GivenX ∈ C∞(TM) we wish to produce f∗(X) ∈
C∞(TN)
If f is bijective, define the pushforward of X via f by

f∗(X)(q) := dff−1(q)

(
X(f−1(q))

)
∈ Tq(N) ∀q ∈ N.
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Definition (Pullback)

f ∗(X) ∈ C∞(TM)← X ∈ C∞(TN)

If dfp : TpM → Tf(p)N is bijective ∀p ∈M , define the pullback of X via f by

f ∗(X)(p) := (dfp)
−1 (X(f(p)))

Easy case: f is a diffeomorphism ⇒ f∗, f
∗ are both defined.

Proposition 6.15 (Exercise)

i. f∗(X), f ∗(Y ) are smooth if X, Y are smooth

ii. Given

M
f

**

g◦f
33N

g
**
P,

X ∈ C∞(TM), Z ∈ C∞(TP )

We have

g∗f∗X = (g ◦ f)∗(X)

f ∗g∗Z = (g ◦ f)∗(Z)

iii. f a diffeomorphism ⇒ f ∗Y = (f−1)∗Y, f∗X = (f−1)∗X f ∗f∗X =
X, f∗f

∗Y = Y.

Lie Derivative

We wish to define LXY, X, Y ∈ C∞(TM). We wish to differentiate Y in the
direction of X.
Let X, Y ∈ C∞(TM). Let φt be the flow of X. Idea: look forward along the
flow of X to see how Y is changing. We must pull back Y by φt to make the
comparison.
φ∗t (Y ): family of vector fields on M , with starting value

φ∗0(Y ) = id∗M(Y ) = Y (t = 0).

Definition

LXY (p) :=
d

dt

∣∣∣∣
0

φ∗t (Y )(p) = lim
t→0

φ∗t (Y )(p)− Y (p)

t

= lim
t→0

(dφtp)
−1(Y (φt(p)))− Y (p)

t
∈ TpM

The subtraction is permitted because φ∗t (Y )(p) and Y (p) both live in TpM .
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Proposition 6.16 If X, Y ∈ C∞(TM), then the defintion exists, LXY is a
smooth vector field, and

LXY = [X, Y ]. (†)

Proposition 6.17

i. f ∗(LXY ) = Lf∗Xf
∗Y

ii. f ∗[X, Y ] = [f ∗X, f ∗Y ] if dfp is bijective ∀p, i.e f is a local diffeomor-
phism.

We leave ii as an exercise.

Proof of i)
Assume f is any local diffeomorphism, work in a small neighborhood and f
becomes a diffeomorphism.

N X

f∗

��

Y

f∗

��

LXY

f∗

��

φt

f∗

��

flow of X

M

f

OO

X̃ Ỹ L̃XY φ̃t flow of Y (proof below)

To prove: L̃XY = LX̃ Ỹ .

Claim The pullback of a flow of X is a flow of the pullback of X

Proof (of claim)
For simplicity, just do the case where X is complete.

N
φt // N

M

f

OO

φ̃t // M

f

OO

Let φt be the flow of X. Then

φ̃t := f−1 ◦ φt ◦ f := f ∗(φt)

is the flow of f ∗(X)

Note d(f−1)q =
(
(df)f−1(q)

)−1
, where q = f(p).
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Compute

∂

∂t
φ̃t(p) =

∂

∂t
f−1 ◦ φt ◦ f(p)

= d(f−1)φt(f(p))

(
∂

∂t
(φt(f(p)))

)
=

(
dff−1(φt(f(p)))

)−1
(X(φt(f(p))))

=
(
dfφ̃t(p)

)−1

X(f(f−1(φt(f(p)))︸ ︷︷ ︸
φ̃t(p)

)


= f ∗(X)

(
φ̃t(p)

)
= X̃

(
φ̃t(p)

)
.

2

We return to the proof of LX̃ Ỹ = L̃XY . Compute

LX̃ Ỹ =
∂

∂t

∣∣∣∣
0

φ̃∗t (Ỹ )

=
∂

∂t

∣∣∣∣
0

(f−1 ◦ φt ◦ f)∗(f ∗Y )

=
∂

∂t

∣∣∣∣
0

f ∗φ∗t (f
−1)∗f ∗Y

= f ∗
∂

∂t

∣∣∣∣
0

(φ∗tY )

= f ∗(LXY )

=: L̃XY

2

Proof of †. Both sides are well-defined, coordinate free concepts, as shown
by the Lemma. Thus it suffices to prove claim (†) in a chart, U ⊆ Rn. That
is, we prove it for the push forwards of X and Y on V ⊆ M to U ⊆ Rn via
the chart ψ : V → U , then pull back the result to M .
So let X, Y ∈ C∞(U,Rn), U ⊆ Rn open, fix p ∈ U . Let φt be a local flow of
X near p. (defined on p ∈ V ⊂⊂ U,−δ < t < δ).
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Compute:

Z(p) := LXY (p) =
d

dt

∣∣∣∣
0

φ∗t (Y )(p)

=
d

dt

∣∣∣∣
0

(dφt(p))
−1 (Y (φt(p)))

Where
dφt(p) : TpU = Rn → Tφt(p)U = Rn.

2

Lemma 6.18 Let A(t) : V → W be a smooth family of invertible linear
maps. Then

d

dt
A(t)−1 = −A(t)−1 d

dt
A(t) ◦ A(t)−1

Proof Write B(t) := A(t)−1 so differentiate A(t)◦B(t) = I get A′(t)◦B(t)+
A(t) ◦B′(t) = 0. Now solve for B′(t):

B′(t) = −A(t)−1 ◦ A′(t) ◦ A(t)−1.

2

Continue with the computation of LXY , we get:

Z(p) =
d

dt

∣∣∣∣
0

(dφt(p))
−1 (Y (φ0(p))) +

d

dt

∣∣∣∣
0

(dφ0(p))−1 (Y (φt(p)))

= −dφ0(p)−1 d

dt

∣∣∣∣
0

dφt(p)dφ0(p)−1(Y (p)) +
d

dt

∣∣∣∣
0

Y (φt(p))

= − d

dt

∣∣∣∣
0

dφt(p) (Y (p)) +
d

dt

∣∣∣∣
0

Y (φt(p))

We used the fact that d
dt

∣∣
0
f(t, 0) = d

dt

∣∣
0
f(t, t)− d

dt

∣∣
0
f(0, t).

Now we use the coordinates of Rn explicitly6. Write

Z = (Zi) ∈ Rn

dφt(p) =

(
∂φit(p)

∂xj

)
: Rn → Rn

6They were already used subtly in the first line above, by subtracting Y (p) from
Y (φt(p))
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X = (X i), X i(p) =
∂φit(p)

∂t

∣∣∣∣
0

, Y = (Y i).

Compute

Zi = − ∂

∂t

∣∣∣∣
0

∂φit(p)

∂xj
Y j(p) +

∂Y i

∂xj
(p)

∂φjt
∂t

∣∣∣∣∣
0

(p)

= − ∂

∂xj
∂φit(p)

∂t

∣∣∣∣
0

Y j(p) +
∂Y i

∂xj
(p)Xj(p)

= −∂X
i

∂xj
Y j(p) +

∂Y i

∂xj
Xj(p) = [X, Y ]i

So we get the important formula:

(LXY )i = −∂Xi

∂xj
Y j + ∂Y i

∂xj
Xj = [X, Y ]i

i.e. LXY = [X, Y ], as desired.

2

Corollary 6.19
LXY = −LYX.

Interpretation of [X, Y ] via the flows of X and Y

Construction: Fix p. Set

f(s, t) := ψ−s ◦ φ−t ◦ ψs ◦ φt(p)

Where φt is the flow of X and ψs the flow of Y .
Question: How does f(s, t) differ from p?

Theorem 6.20 In any coordinate system

f(s, t) = p+ st[X, Y ](p) +O
(
(|s|+ |t|)3

)
(for s, t small).

This says: the flows commute up to 1st oder, and the (2nd order) discrepancy
is measured by [X, Y ].

Proof Exercise.
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2

Theorem 6.21
[X, Y ] = 0⇔ ψs ◦ φt = φt ◦ ψs

Proof ⇐ by above (differentiation)

⇒ exercise (integration)

2

Definition If [X, Y ] = 0, we say X, Y commute.

Example

• [ ∂
∂xi
, ∂
∂xj

] = 0

• [ ∂
∂x
, x ∂

∂x
+ ∂

∂y
] = [ ∂

∂x
, x ∂

∂x
] + [ ∂

∂x
, ∂
∂y

] = ∂x
∂x

∂
∂x
− x ∂

∂x
∂
∂x

= ∂
∂x

Corollary 6.22 Fix p. If X(p), Y (p) are linearly independent and [X, Y ] =
0 near p, then there are coordinates near p with

X =
∂

∂x1
, Y =

∂

∂x2

Proof of Corollary Take s, t as coordinates, defining

Ψ(s, t) := ψs(φt(p)) (= φt(ψs(p)))

Ψ : R2 ⊇ U 3 (0, 0)→M smooth

We compute

dΨ(s,t)

(
∂

∂s

)
=

∂

∂s
Ψ(s, t)

=
∂

∂s
ψs (φt(p))

= Y (ψs (φt(p)))

= Y (Ψ(s, t))

Similarly here we use, that the flows commute

dΨ(s,t)

(
∂

∂t

)
= X (Ψ(s, t)) .
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Note
dΨ(0,0) : ∂

∂s
7→ Y (p)

∂
∂t
7→ X(p)

}
linearly independant

so dΨ(0,0) is an isomorphism, so Ψ is a diffeomorphism near (0, 0), so s, t are
valid smooth coordinates on a neighborhood of p, and the coordinate vector
field

(
∂
∂s

)
q

(for q = Ψ(s, t) near p) is given by dΨ(s,t)

(
∂
∂s

)
, which is Y (q) as

we have just seen. Similarly,
(
∂
∂t

)
q

= X(q).

2

Interpretations of Jacobi Identity

Recall the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

i. Rewrite the Jacobi identity as

LX [Y, Z] = [Y, LXZ] + [LXY, Z]

A Leibniz rule relating LX to the [·, ·] product. One says: LX is a
derivation for [·, ·].

ii. Rewrite the Jacobi identity as

L[X,Y ]Z = LXLYZ − LYLXZ

i.e.
L[X,Y ] = LX ◦ LY − LY ◦ LX (=: [[LX , LY ]]).

The later bracket operator, [[·, ·]] is the anticommutator defined on any
algebra of endomorphisms. So

L : C∞(TM) → End(C∞(TM))

X 7→ LX

so L is a bracket homomorphism from (C∞(TM), [·, ·]) to (End(C∞(TM)), [[·, ·]])
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7 Riemannian Metrics

Do Carmo Chap 1

Definition Let M be a smooth manifold. A (smooth) Riemannian metric
on M is a choice of inner product

〈·, ·〉p : TpM × TpM → R

on each tangent space, that is smooth in the sense defined below.

• bilinear, symmetric

• positive definite, i.e.

〈X,X〉p > 0, ∀X 6= 0.

Notation: Also write gp or g(p) for 〈·, ·〉p. Write g for the map p 7→ gp. We
call (M, g) a Riemannian manifold.

Coordinate Expression

Let U ⊆M,X = X i ∂
∂xi
, Y = Y j ∂

∂xj
on U .

Write

g(p) (X(p), Y (p)) = g(p)

(
X i(p)

(
∂

∂xi

)
p

, Y j(p)

(
∂

∂xj

)
p

)

= X i(p)Y j(p)g(p)

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
= X i(p)Y j(p)gij(p)

Where

gij(p) := g(p)

((
∂

∂xi

)
p

,

(
∂

∂yj

)
p

)
We say g is C∞ iff gij is C∞, i, j = 1, . . . , n.

Change of variables

Let φ := ψ2 ◦ ψ−1
1 be an overlap map. Say
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dφp : Rn → Rn

∂

∂xi
7→ ∂φj

∂xi
(x)

∂

∂yj

or from another view point
(
∂
∂xi

)
p

= ∂φj

∂xi
(x)
(

∂
∂yj

)
p

in TpM . Then

g′ij(x
1, . . . , xn) = 〈

(
∂
∂xi

)
p
,
(
∂
∂xj

)
p
〉p

= 〈∂φk
∂xi

(x)
(

∂
∂yk

)
p
, ∂φ

`

∂xj
(x)
(

∂
∂y`

)
p
〉p

= ∂φk

∂xi
(x1, . . . , xn)∂φ

`

∂xj
(x1, . . . , xn)gk`(y

1, . . . , yn)

where yi = φi(x1, . . . , xn).

Briefly written: g′ij = ∂φk

∂xi
∂φ`

∂xj
gk` (Change of variables)

Consequence: If g is smooth in one coordinate system, then g is smooth in
all other coordinate systems.
Some things we get from a metric:

|X|p :=
√
〈X,X〉p

• lengths and angles in TpM

• lengths of paths

• distance

• volume

• covariant differentiation

• etc. . .

Prefered identification of (TpM)∗ with TpM .

Example (Poincaré ball model of hyberbolic space)

gij(x) :=
4δij

(1− |x|2euc)
2
, x ∈ Bn

1

where δij is the Euclidean metric

X iδijY
j =

∑
i

X iY i
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Let γ be the path
γ(t) := (0, t) ∈ B2

Compute

γ̇(t) = (0, 1)

|γ̇|2g = 〈γ̇(t), γ̇(t)〉g(γ(t))

=
4δij γ̇

i(t)γ̇j(t)

(1− |γ(t)|2euc)2

=
4|γ̇(t)|2euc

(1− |γ(t)|2euc)2

=
4 · 1

(1− t2)2

|γ̇(t)|g =
2

1− t2

L(γ) =

∫ t=1

t=0

|γ̇(t)| dt =

∫ t=1

t=0

2

1− t2
dt =∞

Then hyperbolicspace is
Hn := (Bn

1 , gij)

Homogeneous7, isotropic8, constant curvature K = −1. It is the only space
with these properties (up to isometry).

Exercise Find an isometry of H2 that takes (0, 0) to (a, 0).

Theorem 7.1 Every smooth manifold that is a union of countably many
coordinate charts can be given a Riemannian metric.

Remark For manifolds, “union of countably many coordinate charts” ⇔
2nd countable.

Let Sym2(V ∗) be the symmetric bilinear forms T on V . Sym2
+(V ∗) :={

T ∈ Sym2(V ∗)| (X,X) > 0 ∀X ∈ TpM
}

.

Proposition 7.2 Sym2
+(V ∗) is a convex cone in the vector space Sym2(V ∗).

7all points look the same
8all directions look the same
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7.1 Pullbacks of Metrics

Suppose f : Mn → (Np, g) is smooth. Define the pullback of g by f , on M
via

f ∗(g)p : TpM × TpM → R, p ∈M,

f ∗(g)(p)(X, Y ) := g(f(p)) (dfp(X), dfp(Y )) , X, Y ∈ TpM.

Remark concerning f ∗(g)

• f ∗(g)ij(x) = ∂fk

∂xi
(x)∂f

`

∂xj
(x)gk`(f(x)) (verify!)

• pullback is always defined (no bijectivity requirements, in contrast to
the case of vectors)

• f ∗(g) is bilinear, symmetric, nonnegative

• f ∗(g) is positive definite ⇔ dfp is injective (so: f immersion ⇒ f ∗(g)
is a Riemannian metric)

• If f is a diffeomorphism then f ∗(g) is a perfect copy of g.

Definition An isometry is a diffeomorphism

f : (M, g)→ (N, h)

such that f ∗(h) = g.

Definition

Isom ((M, g)) := {f : M →M |f ∗(g) = g and f a diffeomorphism}

Example Isom((Sn, round)) ∼= O(n)

Example (Poincaré upper half-plane model of hyperbolic space) Set H :=

{z = x+ iy ∈ C|=z > 0}, ĝij(z) :=
δij
y2 . We obtain a second defintion of

hyperbolic space
H2 := (H, ĝij).

Exercise i. Find an isometry from the upper half-plane model to the
Poincaré disk model:

(H, ĝ)→ (B2
1 , g)
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ii. Show that the orientation preserving isometries of (H, ĝ) are

z 7→ az + b

cz + d
ad− bc > 0, a, b, c, d ∈ R

iii. Show

Isom ((H, g)) ∼= GL+(2,R)/R · 1 ∼= SL(2,R)/ {±1} =: PSL(2,R)

(real) projective special linear group

iv. Show H2 is homogeneous and isotropic, i.e.
homogenous: ∀p, q ∈ H2 ∃ isometry p 7→ q.

isotropic at p: ∀X, Y ∈ TpH2 ∃ isometry fixing p and taking X 7→ Y

Definition An isometric immersion of (M, g) into (N, h) is an immersion
f : M → N such that f ∗(h) = g. We call f ∗(h) the metric induced by the
immersion.

Example Let M ⊆ (N, h), with

i : M → N

x 7→ x

be the inclusion map. Then i∗(h) is the same as the induced metric we
defined weeks ago, namely

〈X, Y 〉Mp := 〈X, Y 〉Np ∀p ∈M, ∀X, Y ∈ TpM

Theorem 7.3 (Nash Embedding Theorem (hard)) (Mn, g) Riemannian
manifold compact (union of countable many charts). Then ∃ isometric em-
bedding

(M, g)
f→ (Rp, δ)

for some large p. (Here δ is the the standard metric on Rp.)

7.2 Metrics on Lie groups

Theorem 7.4 Every Lie group possesses a left-invariant metric, i.e a metric
g such that

L∗a(g) = g ∀a ∈ G
where (recall)

La : G → G

b 7→ ab.
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Proof Let g(e) be any inner product on TeG. Where e ∈ G is the identity
element.
Note:

La : G → G

e 7→ a

(dLa)e : TeG → TaG

Copy g(e) from TeG to TaG via (dLa)e: for X, Y ∈ TaG, set

g(a)(X, Y ) := g(e)
(
(dLa)

−1
e (X), (dLa)

−1
e (Y )

)
It is trivial to verify that g is invariant under left translation by any Lb :
G → G, b ∈ G. One checks that Lb : G → G is an isometry i.e. (dLb)a :
(TaG, g(a))→ (TbaG, g(ba)) is an isometry ∀a ∈ G.

2

Exercise Prove a left-invariant metric on a Lie group is smooth.

Theorem 7.5 Every Lie group has at least one left-invariant metric.

Exercise Show that the metric induced on SO(n) by the standard inclusion

SO(n) ⊆Mn×n(R) = Rn2

is both left and right invariant (=: bi-invariant). Note that Mn×n(R) gets
the metric induced by the inner product

〈A,B〉 :=
∑
i,j

AjiB
j
i

Theorem 7.6 Every compact Lie group has a bi-invariant metric9.

Example We already saw that

La, Ra : S3 → S3

are isometries.

9Do Carmo p-46 prob 7, Lee p.46 prob 3-10,11,12
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7.3 Volume and Intergrals

Given a metric g and some map u : M → R, let us define integration on M∫
u dµ ≡

∫
M

u(x) dµg(x)

3 ways to define it

• volume n-form: a section of C∞(
∧n T ∗M), namely

√
det gijdx

1 ∧ · · · ∧
dxn

- has a sign

- M must be orientable

- requires exterior algebra10 (k-forms)

• Hausdorff measure Hn

- valid in any metric space Hn

- valid for any α ∈ [0,∞)

- requires measure theory

• define in charts ∫
U

f(x1, . . . , xn)
√

det gij(x)dx1 . . . dxn

easiest

Basic Formula in a Chart

Let (U, gij) ⊆ Rn. Define∫
U

f dµg :=

∫
U

f(x)
√
detgij(x)dx1 . . . dxn (††)

Definition

• C0
c (M) := {continuous functions M → R with compact support}

• support of u: supp:= {x|u(x) 6= 0}
10Differential Topology
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Desired properties of integration

Ig : u 7→
∫
M

u dµg

i. Ig : C0
c (M)→ R linear (over R)

ii. Ig positive, i.e. u ≥ 0⇒ Ig(u) ≥ 0.

iii. Ig agrees with the usual integral on flat Rn.

iv. (Change of Variables / Area formula)

If φ : (M, g)
φ→ (N, h) is C1 and bijective then∫
N

u(y)dµh(y) =

∫
M

u(φ(x))|Jφ(x)|g,hdµg(x)

for any u ∈ C0
c . Here |Jφ(x)| is the volume expansion factor (Jacobian

determinant) from (TxM, g(x)) to (Tφ(x), g(x))

Theorem 7.7 There exsits a unique system of maps

u 7→
∫
M

u dµg

with properties (i)-(iv). They are given locally by formula (††).

Remark (for measure theory experts)

Ig
Riesz Rep. Thm←→ Radon measure µg.

Ig is a linear functional satisfying (i), (ii) and
∣∣∫ u dµg∣∣ ≤ C(K)supp|u| for

spt u ⊆ K ⊆M , with K compact.
µg is called the Riemannian volume measure of g.

Definition of the Jacobian determinant Suppose we are given

L : (V, g)→ (W,h) linear

(V, g) and (W,h) being inner product spaces. Define

|JL| ≡ |JL|g,h :=
√

det(LTL)

Where the transpose LT : W → V is characterized by g(v, LTw) = h(Lv,w)

76



Motivation

Suppose L : V → V is linear. Then detL ∈ R is defined (independent of
coordinates and metrics!) Where as if L : V → W ,then detL is not defined.
We note that LTL : V → V is symmetric with respect to the inner product
g, i.e. g(v1, L

TLv2) = g(LTLv1, v2).

Lemma 7.8 (Singular value Decomposition) For any L : (V, g)→ (W,h)
there exists an orthonormal basis v1, . . . , vn of V and orthonormal basis
w1, . . . , wn of W with λ1, . . . , λn ≥ 011 such that Lvi = λiwi.

Proof Diagonalize LTL:

LTLvi := µivi, i = 1, . . . , n

where v1, . . . , vn is an orthonormal basis of V .
Observe:

h(Lvi, Lvj) = g(LTLvi, vj) = g(µivi, vj) = 0

So Lv1, . . . , Lvn is an orthogonal set in W .
Define

wi =

{ Lvi
|Lvi| Lvi 6= 0

any completion to orthonormal basis Lvi = 0

λi := |Lvi| ≥ 0.

Then w1, . . . , wn orthonormal basis with respect to h, and

Lvi = λiwi,

as required.

2

Further: LTwi = λivi, so µi = λ2
i . Thus

|JL|g,h :=
√

det(LTL) =
√
µ1 · · ·µn = λ1 · · ·λn

is seen to be the volume expansion factor of L from g to h.

11principal stretches
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Definition Suppose φ : (M, g)→ (N, h) is C1. Define

|Jφ(x)|g,h := |Jdφ(x)|g(x),h(φ(x)).

In coordinates: on V,W respectively, we have

g = (gij), h = (hkl), L = (Lki ),

and

v ∈ V
L=(Lki )

--
W 3 w

LT
ll

h=(hij)

��
ν ∈ V ∗

g−1=(gij)

OO

W ∗ 3 ω
L∗=(Lki )
oo

h : W → W ∗ is defined by

h(w) := h(w, ·) ∈ W ∗

g−1 : V ∗ → V is characterized by

g(g−1(ν), ·) = ν ∈ V ∗

We find that g−1 = (gij), i.e. the matrix of the inverse of g is the inverse of
the matrix of g. The dual map to L is defined by L∗(ω) := ω ◦ L ∈ L∗. We
have

v 7→ Lv, (Lv)k = Lki v
i

And also

ω 7→ L∗ω

(L∗ω)i = Lki ωk.

To see the symmetry of this, observe

viLki ωk = w(Lv) = (L∗(ω)) (v).

Next, we can verify

LT = g−1 ◦ L∗ ◦ h,
(LT )i` = gijLkjhk`
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Formulae

•

|Jφ(x)| =
√

det(dφ(x)T ◦ dφ(x))

=

√
det(gij(x)

∂φk

∂xj
(x)hk`(φ(x))

∂φ`

∂xi
(x))

• |Jφ|δ,δ = | det( ∂φ
i

∂xj
)| φ(x)=x

= |Jφ|g,g

• |Jid|δ,g =
√

det gij, if φ(x) = x.

• |J(φ ◦ ψ)|g,k = |Jφ|h,k|Jψ|g,h, where (M, g)
ψ→ (N, h)

φ→ (P, k)

Local Formula ∫
U

u dµ :=

∫
U

u(x)
√

det gij(x)︸ ︷︷ ︸
Jid|δ,g

dx1 · · · dxn (‡)

Verify the Area Formula (in a chart)

Given φ : (U, g) → (V, h) , C1 and bijective with coordinates x1, . . . , xn,
y1, . . . , yn respectively. Show

∫
V
u dµh =

∫
U
u ◦ φ|Jφ|g,h dµg.

Compute:

LHS =

∫
V

u
√

dethk` dy
1 · · · dyn

=

∫
U

u ◦ φ
√

dethk` ◦ φ
∣∣∣∣det

(
∂φk

∂xi

)∣∣∣∣ dx1 · · · dxn

(by the usual change of variables formula), where as

RHS =

∫
U

u ◦ φ

√
det

(
gij
∂φk

∂xj
hk` ◦ φ

∂φ`

∂xi

)√
det gij dx

1 · · · dxn

Note By taking φ to be an isometry, this also verifies that our definition (‡)
is independent of the coordinates that we chose on the open set U ⊆ M , as
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follows:

U ⊆ (M,k)
ψ1

ttjjjjjjjjjjjjjjjj
ψ1

**TTTTTTTTTTTTTTTT

Rn ⊇ (V1, g) 3 (x1, . . . , xn)
φ

isometry
// (y1, . . . , yn) ∈ (V2, h) ⊆ Rn

g = (ψ1)∗(k) h = (ψ2)∗(k)

Next step:

extend our defintion of the integral from each chart U to all of M . Say
M = ∪αUα, then we must move from∫

Uα

u dµg ;

∫
M

u dµg

We obtain (as mentioned above)

Theorem 7.9 There exists an integral
∫
M
u dµg that satisfies (i)-(iv)

8 Connections

First we’ll look at connections on vector bundles in general, then we’ll spe-
cialize to the Riemannian or Levi-Civita connection on TM (induced by a
Riemannian metric g)

8.1 Vector Bundles

(Lee Chap 2)
Let M be a smooth manifold. Attach a vector space Ep (disjoint!) to each
point in M . Main example: TM = ∪pTpM .

Definition A vector bundle of rank k over M (base space) is a smooth
manifold E (total space) together with a smooth map π : E →M such that

i. Each fiber Ep := π−1(p) is endowed with the structure of a k-dimensional
vector space.

ii. For every p ∈M,∃U 3 p open and a diffeomorphism

Ψ : π−1(U)→ U × Rk

such that
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iia. The following diagram commutes

E ⊇ π−1(U)

π

��

Ψ // U × Rk

π1

��
M ⊇ U U

This says:
Ψ|Ep : Ep → {p} × Rk

iib. Ψ|Ep : Ep → {p} × Rk is a linear isomorphism.

We call the map Ψ a local trivialization (of E over U). If U has coordinates
(x1, · · ·xn), then Ψ yields coordinates (x1, . . . , xn, V 1, . . . , V k︸ ︷︷ ︸

coords on Rk

) on π−1(U)

Examples

TM

T ∗M := ∪p∈M(TpM)∗ cotangent bundle of M

M × Rk π→M trivial bundle (of rank k)

Simplest nontrivial vector bundle
M = S1, Fiber= R (rank 1) Where

S1 = [0, 2π]/(0 ∼ 2π)

E := [0, 2π]× R/ ∼3 (θ, t),

where (0, t) ∼ (2π,−t)

π([θ, t]) = [θ]

π : E → S1

E is the Möbius band, viewed as a line bundle over S1 We call it the twisted
R-Bundle over S1.

Example
∪p∈MBilin(TpM × TpM → R)

is a vector bundle over M of rank k = n2. A metric is a smooth and positive
section12 of this bundle

12will be defined later
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R2 bundles over S2

R2 // E

��
S2

Give S2 the “charts”
H+ := closed northern hemisphere
H− := closed southern hemisphere
H+ ∩H− = {equator} ∼= S1

To get S2: glue H+ to H− along ∂H+, ∂H− by the map

φ : ∂H+ → ∂H−

eiθ 7→ eiθ

To get E: observe

∂(H+ × R2) = (∂H+)× R2 ∼= S1 × R2

∂(H− × R2) = (∂H−)× R2 ∼= S1 × R2.

Glue H+ × R2 to H− × R2 along their boundaries via

Φ : ∂H+ × R2 → ∂H− × R2

defined by

Φ

(
eiθ,

(
x
y

))
:=

(
φ(eiθ), Aeiθ

(
x
y

))
Where we choose any family of linear maps

Aeiθ : R2 → R2

Aeiθ ∈ GL(2,R)

A : ∂H+ → GL(2,R)

Our special choice: Fix k ∈ Z, define

A : ∂H+ 7→ SO(2) ⊆ GL(2,R)

by

A(eiθ) :=

(
cos kθ sin kθ
− sin kθ cos kθ

)
.

We obtain

Φ

(
eiθ,

(
x
y

))
:=

(
eiθ,

(
cos kθ sin kθ
− sin kθ cos kθ

)(
x
y

))
The result is called the k-twisted R2 bundle over S2
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Question

What is k for the tangent bundle TS2 of the 2-Sphere?

8.1.1 Complex vector bundles

Same definition, exept each Ep is a complex vector space of complex dimen-
sion d. Then dimR = n+ 2d13.

Question

Can you think of a real vector bundle of even rank that cannot be made into
a complex vector bundle?

Definition Let M
f→ N with vector bundles E and F over M and N re-

spectivly. A (linear) bundle map over f is a smooth map

L : E → F

such that

E
L //

π

��

F

π

��
M

f // N

commutes, i.e.L(Ep) ⊆ Ff(p) and

Lp := L|Ep : Ep → Ff(p)

is linear map.

Definition A bundle isomorphism is a (linear) bundle map that is a diffeo-
morphism14

Example In an exerciese, we found a bundle isomorphism

TS3
∼=

//

��

S3 × R3 17

��
S3 S3

i, j, k ∈ C∞(TS3) and i(p), j(p), k(p) form a basis for TpS
3 ∀p

(p, (x, y, z)) 7→ (p, xi(p) + yj(p) + zk(p))

13as a real manifold
14check: this is equivalent to: f is a diffeomorphism and L|Ep is a linear isomorphism
∀p.

17Trivial bundle, p ∈ S3, (x, y, z) ∈ R3
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Definition A subbundle of E is a submanifold F ⊆ E such that Fp :=
F ∩ Ep(= (π|F )−1(p)) is a vector subspace of E (of constant dimension). F
is then (check!) a vector bundle over M in it’s own right.

F

π|F
��

⊆ E

π

��
M M

Example

i. Mn ⊆ Rq submanifold TM18 = ∪{p}×TpM ⊆M×Rq19 is a subbundle
with n ≤ q.

ii.
NM := ∪p∈M{p} ×NpM ⊆M × Rq

subundle (called normal bundle of M in Rq, NpM = (TpM)⊥).

Definition A section of E is a function V : M → E such that V (p) ∈
Ep, p ∈ M . We call V smooth if it is smooth as a map between smooth
manifolds.

Definition The 0-section is the section O(p) := 0 ∈ TpM, p ∈M .
Γ(E): all sections

C∞(E): all smooth sections
Both of the above are vector spaces over R

V,W ∈ C∞(E)⇒ aV + bW ∈ C∞(E)

Definition A local frame for E is a list e1(p), . . . , ed(p), p ∈ U of sections in
C∞(E|U) that form a basis for Ep at each p ∈ U .
A local fram alway yields a local trivialization (and viceversa)

Given a frame over U , we may express any section V locally as a linear
combination:

V (p) = V α(p)eα(p), p ∈ U

Where V α are the component functions
Evidently: V is smooth iff each component function V α is smooth. Thus
v, w ∈ C∞(E)⇒ aV + bW ∈ C∞(E).

18rank n
19trivial bundle over M with fiber Rq (rank q).
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Example

Bilin(TM, TM ;R) := ∪p∈MBilin(TpM × TpM → R)

can be given the structure of a smooth vector bundle over M , and a Rieman-
nian metric is a (smooth, symmetric, positive) section of this bundle.

Example Every smooth section of the twisted R-bundle over S1 has a zero

8.2 Connections on Vector Bundles

Aim: Given X̃ ∈ TpM,V ∈ C∞(E), form

DX̃V ∈ Ep

directional derivative of V in the direction X̃ at p.

[Try:]

• X i ∂V α

∂xi
, X = Xj ∂

∂xj
, V = V αeα.

Does not transform correctly (depends on choice of frame).

• d
dt

∣∣
t=0

V (γ(t))−V (γ(0))
t

where γ is a path in M , γ(0) = p, γ̇(0) = X̃.
Cannot compare vectors in Eγ(t) to Eγ(0) in an intrinsic way.

Upshot To differntiate V in directions X̃, we must declare, or impose a
structure E called a connection

Definition
E →M vector bundle

An (affine) connection or covariant derivative operator , on E is a map

D : C∞(TM) × C∞(E) → C∞(E)
X V 7→ DXV

that satisfies

• DX(aV + bW ) = aDXV + bDXW,a, b ∈ R (linear in V over R)

• DfX+gY V = fDXV + gDY V, f, g ∈ C∞(M) (linear in X over C∞(M))

• DX(fV ) = fDXV + (X · f)V, f ∈ C∞(M) (Leibniz rule)
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Expression in coordinates

X = X i ∂
∂xi
, V = V αeα over U

DXV = DXi ∂

∂xi
(V αeα)

= X iD ∂

∂xi
(V αeα)

= X i
(

( ∂
∂xi
· V α)eα + V αD ∂

∂xi
eα

)
Definition The connection coefficients are defined by(

D ∂

∂xi
eα

)
p

= ∆β
iα(p)eβ(p)20, p ∈ U i = 1, . . . , n, α = 1, . . . , d

∆β
iα = ∆β

iα(p),∆β
iα ∈ C∞(U)

Get:

DXV = X i∂V
α

∂xi
eα +X iV α∆β

iαeβ

or, writing DXV = (DXV )α eα:

(DXV )α = X i ∂V α

∂xi
+X iV β∆α

iβ

i.e. derivative plus correction term.

This shows:

• DXV (p) dependas linearly on the value of V and it’s first derivatives
at p.

• DXV (p) depends linearly only on X(p) and not on any derivatives of
X. We say DXV is tensorial in X or point wise in X.

As a result, we may define

DX̃V, X̃ ∈ TpM,V ∈ C∞(E)

via
DX̃V := DXV (p)

where X ∈ C∞(TM) is any vectorfield such that X(p) = X̃.
This yields a linear map

DV (p) : TpM → Ep

X̃ 7→ DX̃V
(DV (p)) (X̃) ≡ DX̃V

20nd2 functions on U
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DV (p) ∈ Hom(TpM,Ep)

We can form a vector bundle

Hom(TM,E) := ∪p∈MHom(TpM,Ep)

DV := (DV (p))p∈M ∈ C
∞(Hom(TM,E))

More comments on the formula:

(DXV )α = X i∂V
α

∂xi
+X iV β∆α

iβ

X i ∂V α

∂xi
defines the connection

D0
XV := X i ∂V α

∂xi
eα defines a connection (check!) called the coordinate con-

nection induced by the frame e1, . . . , ed, d ≡ rankE.
So D0 has the property: D0

Xeα = 0 ∀X ∈ C∞(TM).

Definition We call a section V ∈ C∞(E) parallel (for D) if DXV = 0 ∀X ∈
C∞(TM).

Example Rn, E = TRn, ei ≡ ∂
∂xi(
D0
XY
)j

= X i∂Y
j

∂xi

(usual directional derivative)
Y parallel iff components are constant

Remark It is rare for a connection to have even one parallel section.

Exercise For any choice of nd2 smooth functions ∆β
iα, p ∈ U , the above

formula yields a connection.

The correction term yields a bilinear map

X̃, Ṽ 7→ X̃ iṼ β∆α
iβ(p)eα(p) ∈ Ep

X̃ ∈ TpM, Ṽ ∈ Ep
to which we give the name

∆(p) : TpM × Ep → Ep

So ∆(p) ∈ Bilin(TpM,Ep;Ep). We form a smooth vector bundle

Bilin(TM,E;E) := ∪p∈MBilin(TpM,Ep;Ep)
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and we recognize that

∆ := (∆(p))p∈M ∈ C
∞(Bilin(TM,E;E))

∆ : M → Bilin(TM,E;E), p 7→ ∆(p)

Define
∆(X, V ) ∈ C∞(E)

∆(X, V )(p) := ∆(p) (X(p), V (p))

∆ : C∞(TM)× C∞(E)→ C∞(E)

So we can write:
DXV = D0

XV + ∆(X, V )

D = D0 + ∆

Theorem 8.1

i. The difference between any two connections on E yields a section of
Bilin(TM,E;E).

ii. Any connection plus any smooth section of Bilin(TM,E;E) yields an-
other connection.

Example

E = S1 × R 3 (θ, t)

��
M = S1

e1(θ) = (θ, 1)

V ∈ C∞(E), V (θ) = V 1e1(θ), ∆1
11 = a(θ)

X =
∂

∂θ
, D ∂

∂θ
V =

∂V 1

∂θ
e1 + a(θ)V 1(θ)e1

Let a(θ) = − 1
10

D ∂
∂θ
V =

∂V 1

∂θ
e1 −

1

10
V 1e1

88



Equation for parallel section:

0 =

(
∂V 1

∂θ
− 1

10
V 1

)
e1

dV 1

dθ
=

1

10
V 1

V 1(θ) = ceθ/10, c = 1

This connection has no (global) parallel section.

D ∂
∂θ
e1 = − 1

10
e1

i.e. e1(θ) is decreasing in length (compared to a parallel section) at rate
− 1

10
e1.

8.3 Inner Products on E and compatible connections

(E, 〈·, ·〉) Euclidean bundle

Suppose we have 〈·, ·〉p : Ep × Ep → R, p ∈ M a smooth family of inner
products on the fibers of E.

Definition D is compatible with 〈·, ·〉 if

X · 〈V,W 〉 = 〈DXV,W 〉+ 〈V,DXW 〉 ∀X ∈ C∞(TM), V,W ∈ C∞(E)

(Leibniz rule) X · |V |2 = 〈DXV, V 〉+ 〈V,DXV 〉

Exercise

i. Prove if D is compatible with 〈·, ·〉, and V is parallel for D, then |V |2
is constant on M if M is connected.

ii. Show the connection

D ∂
∂θ
V =

(
∂V 1

∂θ
− 1

10
V 1

)
e1

is not compatible with any inner product.
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8.4 Riemannian Connections

Also called Levi-Civita Connection of a metric g. M, g ; D = Dg on TM .

Definition A connection D on TM is called torsion-free or symmetric if

DXY −DYX = [X, Y ] ∀X, Y ∈ C∞(TM). (�)

Example

• True for the usual directional derivative in Rn

[X, Y ]j = X i∂Y
j

∂xi
− Y i∂X

j

∂xi

• all coordinate connections on TM are torsion free.

Interpretation of �

The antisymmetric part of DXY is given by something that comes from the
smooth structure alone. [X, Y ].
In particular:

D ∂

∂xi

∂

∂xj
= D ∂

∂xj

∂

∂xi

(since [ ∂
∂xi
, ∂
∂xj

] = 0)

Theorem 8.2 For every (M, g) there exists a unique connection on TM that
is

• symmetric

• compatible with g

In coordinates:

DXY = X i∂Y
j

∂xi
∂

∂xj
+X iY jΓkij

∂

∂xk

where

D ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
(defines Γkij(p).)

Then D is symmetric iff Γkij = Γkji.
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Proof Symmetry in coordinates:(
X i∂Y

k

∂xi
+X iY jΓkij

)
−
(
Y i∂X

j

∂xi
+ Y iXjΓkij

)

= X i∂Y
k

∂xi
− Y i∂X

k

∂xi

X iY jΓkij = Y iXjΓkij ∀X, Y

⇔ Γkij = Γkji

2

Theorem 8.3 (Levi-Civita) Given (M, g), there exists a unique connec-
tion D on TM satisfying

i. D is compatible with g

ii. D is torsion-free

D is called the Levi-Civita or Riemannian connection of g.

Proof of uniqueness

X · 〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉
Y · 〈Z,X〉 = 〈DYZ,X〉+ 〈Z,DYX〉
Z · 〈X;Y 〉 = 〈DZX, Y 〉+ 〈X,DZY 〉

X · 〈Y, Z〉+ Y · 〈Z,X〉 − Z · 〈X, Y 〉
= 〈[Y, Z], X〉+ 〈[X,Z], Y 〉 − 〈[X, Y ], Z〉+ 2〈DxY, Z〉 ⇒ uniqueness

〈DXY, Z〉 =
1

2
(X · 〈Y, Z〉+ Y · 〈X,Z〉 − Z · 〈X, Y 〉 (‡)

−〈Y, [X,Z]〉 − 〈X, [Y, Z]〉+ 〈Z, [X, Y ]〉)

• uniquely characterizes DXY in terms of g and smooth structure of M .

• not quite a formula for DXY (derivatives of Z appear on right hand
side).
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Find a formula for DXY
Insert X = ∂

∂xi
, Y = ∂

∂xj
, Z = ∂

∂xk
, [ ∂

∂xi
, ∂
∂xj

] = 0. Recall gij = 〈 ∂
∂xi
, ∂
∂xj
〉

〈D ∂

∂xi

∂

∂xj︸ ︷︷ ︸
Γmij

∂
∂xm

,
∂

∂xk
〉 =

1

2

(
∂gjk
∂xi

+
∂gik
∂xj
− ∂gij
∂xk

)

Recall

(DXY )k = X i ∂Y

∂xi
+ ΓkijX

iY j

where Γkij
∂
∂xk

= D ∂

∂xi

∂
∂xj

defines Γkij.

LHS = 〈Γmij
∂

∂xm
,
∂

∂xk
〉

= Γmijgmk =
1

2

(
∂gjk
∂xi

+
∂gik
∂xj
− ∂gij
∂xk

)
multiply by g−1=(gkl)
Get:

Γ`ij = 1
2
g`k
(
∂gjk
∂xi

+ ∂gik
∂xj
− ∂gij

∂xk

)
(†‡)

classic formula for Christoffel symbols Γkij.
Where

(DXY )` = X i∂Y
`

∂xi
+X iY jΓ`ij (#)

Formulas (†‡) and (#) define a differntial operator D.
It remains to verify (existence part of theorem)

• D is a connection (previous exercise)

• D is symmetric (because Γkij = Γkji)

• D is compatible with g.

Must verify:
X · 〈Y, Z〉 = 〈DXY, Z〉+ 〈Y,DXZ〉

In coordinates:

X i ∂

∂xi
(
Y jZkgjk

) ?
=

(
X i∂Y

`

∂xi
+X iY jΓ`ij

)
g`kZ

k

+

(
X i∂Z

`

∂xi
+X iZkΓ`ik

)
g`jY

j
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X i

(
∂Y j

∂xi
Zkgjk + Y j ∂Z

k

∂xi
gik + Y jZk ∂gjk

∂xi

)
⇔∂gjk

∂xi
?
= Γ`ijg`k + Γ`ikg`j

This last statement is true, as seen by substitution.

2

8.5 Parallel Transport

parallel transport of a vector around a 90-90-90 triangle in S2 creates a 90
rotation.
E →M bundle, γ : [a, b]→M smooth curve. (E = TM : main example).

Definition A (smooth) section of E along γ is a smooth function V : [a, b]→
E, V (t) ∈ Eγ(t) ∀t ∈ [a, b]

Allowed:

• self-intersections

• γ̇ = 0

Wish to make sense of “Dγ̇V ”

(Dγ̇Ṽ )α = γ̇i
∂Ṽ α

∂xi︸ ︷︷ ︸
dV α

dt

+γ̇iṼ β∆α
iβ, Ṽ ∈ C∞(E)

eα(x) local frame for E

V (t) = V α(t)eα(γ(t))

Notation

DV
dt

:=

(
dV α(t)

dt
+ γ̇i(t)V β(t)∆α

iβ(γ(t))

)
eα(γ(t))

“Dγ̇V ” covariant derivative of V along γ

Clearly

• DV
dt

is a smooth section of E along γ

• D(fV )
dt

= df
dt
V + f DV

dt
, f = f(t)
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• d
dt
〈V,W 〉 = 〈DV

dt
,W 〉 + 〈V, DW

dt
〉 if D is compatible with some inner

product 〈·, ·〉 on E.

• If V is obtained from an ambient section Ṽ ∈ C∞(E|U) (U ⊇ Imγ)
(open) via V (t) = Ṽ (γ(t)) then DV

dt
(t) = Dγ̇Ṽ

Definition A section V along γ is called parallel along γ if DV
dt

= 0 ∀t ∈ [a, b].

Proposition 8.4 Fix γ : [a, b] → M, Ṽ ∈ Ea. Then there exists a unique
parallel section V (t) along γ such that V (a) = Ṽ .

Proof In a fixed chart U we may solve the d× d system of ODES that says
DV
dt

= 0, V̂ (a) = Ṽ , namely

(∗)

{
dV α(t)
dt

+ γ̇i(t)V β(t)Γαiβ = 0, α = 1, . . . , d

V α(a) = V̂ , α = 1, . . . , d

for smooth functions V 1(t), . . . , V d(t) t ∈ [a, c], as long as γ([a, c]) ⊆ U . Now
select a = t0 < t1 < · · · < ts = b such that each γ([ti, ti+1]) lies in a single
chart Ui. Existence follow by induction. Uniqueness, smoothness also follow
from ODE theory.

2

Definition Parallel transport is defined along γ from γ(a) to γ(b) as the
map

Pγ : Eγ(a) → Eγ(b)

V̂ = V (a) → V (b)

Pγ is linear since the ODE system we solved to find Pγ(V̂ ) is linear.

Proposition 8.5 If D is compatible with 〈·, ·〉 then Pγ is an isometry from
Eγ(a) to Eγ(b).

Proof Let V (t),W (t) be parallel along γ. Then

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉 = 0 + 0

So 〈V (t),W (t)〉 is constant.

2
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Example Let γ be a great circle (transversed at unit speed) on S2. DS2
is

the Levi-Civita connection of the induced metric an S2.

Claim γ̇ is parallel along γ i.e. DS2

γ̇ γ̇ = 0

Lemma 8.6 (Proof will be an exercise) Given (M, g), and N ⊆M subman-
ifold.

g restriction

to N
//

��

h
1
2
hour

��
Dg

orthogonal

projection
// Dh = D′

hp(X, Y ) := gp(X, Y ), p ∈ N,X, Y ∈ TpN

πTN(p) : TpM → TpN

orthogonal projection.
Exercise X-I

D′XY := πTN(Dg
X̃
Ỹ )

X̃, Ỹ ∈ C∞(TM) extend X, Y ∈ C∞(TN). D′ is a connection on TN .
(X̃|N = X, Ỹ |N = Y )

DM
X̃
Ỹ = DNXY︸ ︷︷ ︸

tangental part

+normal part

Proof of Claim Setup:

e1 ⊥ e2 ∈ R3, |e1| = |e2| = 1

γ(t) = cos te1 + sin te2

γ̇ =
dγ

dt
= − sin te1 + cos te2

DR3

γ̇ γ̇ =
d2γ

dt2
= − cos te1 − sin te2 = −γ

Calculate:

DS2

γ̇ γ̇ = πTS
2

(DR3

γ̇ γ̇)

= πTS
2

(−γ)

= 0

2
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Observe: a continuous vector field V (t) is parallel along γ iff |V (t)|2 is con-
stant, 〈V (t), γ̇(t)〉 is constant.

Example S2 ⊆ R3 If β traverses a 90-90-90 trianlge in S2, then

Pβ : TpM → TpM

is rotation by 90.

Definition If γ is a closed curve in M , γ(a) = γ(b) = p,D cannon E →M ,
the linear map Pγ : Ep → Ep is called the holonomy map.

9 Geodesics, Exponential Map

A geodesic is a curve with zero acceleration this is equivalent to a locally
length-minimizing curve. Define the acceleration (with respect to D) as

γ̈ :=
Dγ̇
dt

=′′ Dγ̇ γ̇′′

(a vector field along γ))

Definition γ is a geodesic if γ̈(t) = 0, t ∈ [a, b]. “Motion of a free particle
in a Riemannian manifold”.

Example A great circle of unit speed in Sn is a geodesic

Remarks

• d
dt
|γ̇|2 = 2〈γ̈, γ̇〉 = 0 so |γ̇| is constant (constant speed)

• Let γ(t) be a geodesic ⇒ β(t) := γ(ct) is a geodesic. β̇ = cγ̇, β̈ = c2γ̈

ODE for geodesics

Coordinates x1, . . . , xn on U ⊆M . Write

γ(t) = (γ1(t), . . . , γn(t))

γ̇i(t) =
dγi

dt
(t)

γ̈i(t) =

(
Dγ̇
dt

)i
(t)

=
dγ̇i

dt
+ γ̇j γ̇kΓijk(γ(t))
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so γ is a geodesic iff

d2γi

dt2
+
dγj

dt

dγk

dt
Γijk(γ(t)) = 0, i = 1, . . . , n (1)

n×n system of nonlinear ODEs.(linear in 2nd order derivatives quadratic in
1st oder, fully nonlinear in γ itself.)
Consider the initial conditions {

γ(0) = p
γ̇(0) = X

(2)

p ∈M,X ∈ TpM

Theorem 9.1 (Short-term existence for geodesics) Forall p ∈ M and
all X ∈ TpM there is a unique solution γ = γp,X : [0, ε)→M of (1) and (2)
for some ε > 0.

Proof later

2

Definition The exponential map by

expp : {subset of TpM} →M

by
expp(X) := γp,X(1)

whenever this exists.

Lemma 9.2 (Homogeneity)

i. γp,sX(t) = γp,X(st)

ii. t 7→ expp(tX) is a geodesic.

Proof

i. t 7→ γp,X(st) is a geodesic by the above remark, with d
dt

∣∣
0
γp,X(st) =

s d
dt

∣∣
0
γp,X(t) = sX so t 7→ γp,X(st) and t 7→ γp,sX(t) have the same

initial point, and the same initial velocity so by uniqueness of geodesics
they are the same

ii.

expp(tX) = γp,tX(1)
1
= γp,X(t)

which is a geodesic.

2

97



9.1 Geodesic Flow

Rewrite (1),(2) (equations and initial conditions for geodesics) as a 2n× 2n
1st order ODE system for (γ1(t), . . . , γn(t), Y 1(t), . . . , Y n(t)) ∈ TM where
M has the coordinates (x1, . . . , xn, X1, . . . , Xn) and Y i(t) shall end up being
dγi

dt
(t).

Get: {
dγi

dt
= Y i(t), i = 1, . . . , n

dY i

dt
= −Y p(t)Y q(t)Γipq(γ(t)), i = 1, . . . , n

(1’)

γ(0) = p, Y (0) = X (2’)

Rewrite as
dγ̃

dt
= G(γ̃) (1”)

γ̃(0) = (p,X) (2”)

where

γ̃(t) = (γ(t), Y (t)) Y (t) = Y i(t)

(
∂

∂xi

)
γ(t)

∈ Tγ(t)M

is the lifting of the path γ(t) via the vector Y (t) to a curve in TM where
now

G(x1, . . . , xn, Z1, . . . , Zn) := (Z1, . . . , Zn,−ZpZqΓ1
pq, . . . ,−ZpZqΓnpq(x))

is a smooth vector field on TM . A solution curve γ̃(t) of (1”),(2”) yields a
pair γ(t), Y (t) solving (1’),(2’) and hence a geodesic γ(t) (we call it γp,X(t))
solving (1),(2). This proves Short Term Existence Theorem for geodesics (as
it was stated).

Local flow of G

By ODE theory:

Proposition 9.3 Fix p ∈ M . Then there exists a open set U ⊆ M with
p ∈ U, ε > 0, δ > 0 and W ⊆ TM open of the form

W := {(x, Z)|x ∈ U, |Z| < ε}

and a smooth map

φ : W × [−δ, δ]→ TM

(x, Z) ∈ W t ∈ [δ, δ]
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that is the flow for (1”),(2”), i.e.

φ(x, Z, 0) = (x, Z)

∂φ

∂t
(x, Z, t) = G(φ(x, Z, t))

φ(p,X, t) = (γp,X(t), Yp,X(t))

Smoothness of exp and existence in a neighborhood of 0 in TpM

γx,Z(t) = π(φ(x, Z, t)), π : TM →M

We have

expx(Z) = γx,Z(1)

= γx,Z/δ(δ)

= π(φ(x, Z/δ, δ))

∣∣∣∣Zδ
∣∣∣∣ < ε

Thus expx(Z) is defined for x ∈ U , |Z| < εδ and is smooth in both variables.

Set B
TpM
r (0) := {X ∈ TpM, |X| < r}

Lemma 9.4 expp : B
TpM
r (0) → M is defined and smooth for sufficiently

small r > 0.

Theorem 9.5 For each p ∈ M ∃ε > 0 such that expp : B
TpM
ε (0) → M is a

diffeomorphism onto its (open) image. In fact,

(d expp)0 : T0TpM︸ ︷︷ ︸
TpM

→ TpM

is the identity.

Proof of Theorem By Inverse Function Theorem, it suffices to prove the
latter statement. The path

t 7→ tX in TpM

goes to the path
t 7→ γ(t) := expp(tX) in M

which is a geodesic in M with γ(0) = p, γ̇(0) = X.
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Differentiate:

X = γ̇(0)

=
d

dt
expp(tX)

= (d expp)0

(
dt

dt

∣∣∣∣
0

(tX)

)
= (d expp)0(X)

2

Exponential Coordinates

• geodesic normal coordinates

• geodesic polar coordinates

Geodesic Normal Coordinates

Let x1, . . . , xn be orthonormal coordinates on the inner product space (TpM, g(p)).
Transfer these coordinates to M via exp−1

p to obtain geodesic normal coordi-
nates near p:

Rn TpM
x1,...,xn

Isometry
oo

expp

partial
// M

Bε

⊆

OO

B
TpM
ε (0)

⊆

OO

∼=oo
∼=

expp
// U

⊆

OO

x1,...,xn

ll

g(X, Y ) = gij(x)X iY j

δ(X, Y ) = δijX
iY j = X iY i

Compare
g = (gij(x)), x ∈ U

(expressed in exponential normal coordinates) to δ = (δij) (the back ground
flat metric coming from x1, . . . , xn.)

Theorem 9.6 In geodesic normal coordinates at p,

gij(0) = δij,
∂gij
∂xk

(0) = 0,Γkij(0) = 0.

So gij(x) = δij +O(|x|2) 21 for x ∈ U near p. “Metric looks Euclidean up to
1st order”.

21|x| = |x|δ =
√
xixi, O is some εij(x) such that |εij(x)| ≤ c|x|2
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Consequence

A Riemannian metric has no first order invariants to distinguish it from flat
space (Euclidean space).

Proof

i. gij(p) = 〈
(
∂
∂xi

)
p
,
(
∂
∂xj

)
p
〉 = δij since we chose orthonormal coordinates

x1, . . . , xn on TpM .

ii. Fix X = X i
(
∂
∂xi

)
p
∈ TpM . Consider the geodesic

γ(t) = expp(tX)

with γ̇(0) = X. In geodesic normal coordinates, γ(t) is given by

γ(t) = (tX1, . . . , tXn)

γ̇(t) = (X1, . . . , Xn)
(

= X i
(
∂
∂xi

)
γ(t)
∈ Tγ(t)M

)
i.e. γ̇(t) agrees along γ with the constant coefficent vector field

X̃(q) := X i

(
∂

∂xi

)
q

, q ∈ U

X̃(γ(t)) = γ̇(t).

Since γ is a geodesic,

0 = γ̈(t) = Dγ̇ γ̇(t) =
(
DX̃X̃

)
(γ(t))

At t = 0:

0 = DX̃X̃(0)k = X i∂X
k

∂xi︸ ︷︷ ︸
=0

+X iXjΓkij(0)

i.e.
Γkij(0)X iXj = 0, ∀k.

Since this holds ∀X and Γkij is symmetric, polarization yields

Γkij(0) = 0 ∀i, j, k.
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iii. Compute on U :

∂gjk
∂xi

=
∂

∂xi
〈 ∂
∂xj

,
∂

∂xk
〉

= 〈D ∂

∂xi

∂

∂xj
,
∂

∂xk
〉+ 〈 ∂

∂xj
,D ∂

∂xi

∂

∂xk
〉

= 〈Γ`ij
∂

∂x`
,
∂

∂xk
〉+ 〈 ∂

∂xj
,Γ`ik

∂

∂x`
〉

= 0 at x = 0 by(ii)

2

Remark on polarization Let A(X, Y ) be symmetric, then

A(X, Y ) =
1

2
(A(X + Y,X + Y )− A(X,X)− A(Y, Y ))

Exercise (Lee)
Show: if two connections on TM (not necessarily torsion free!) have the
same symmetric part, then they have the same geodesics.

Corollary 9.7 Any vector X in TpM can be extended to X̃ ∈ C∞(TpU), p ∈
U such that X̃ is parallel at p, i.e.

DY X̃(p) = 0 ∀Y.

Geodesic Polar Coordinates

Place polar coordinates on TpM and transfer them to U ⊆M via exp−1
p . Let

Sn−1 := unit sphere in TpM (identified with standard unit sphere in Rn).
Define

[0,∞)× Sn−1 → TpM

(r, ω) 7→ rω

Obtain coordinates r, ω1, . . . , ωn−1 and coordinate vector fields ∂
∂r
, ∂
∂ω1 , . . . ,

∂
∂wn−1

on U \ {p} ⊆M . Write S(r) = {r} × Sn−1.

Lemma 9.8 In U \ {p}, with respect to g:

i. 〈 ∂
∂r
, ∂
∂r
〉 = 1

ii. 〈 ∂
∂r
, ∂
∂ωa
〉 = 0, a = 1, . . . , n− 1

Radial geodesics t 7→ tω are othognoal to coordinate spheres S(r).
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iii. 〈 ∂
∂ωa

, ∂
∂ωb
〉 = O(r2)

Proof

i. Fix ω ∈ Sn−1. Then γ(t) := expp(tω), t ∈ R is a geodesic with coordi-
nate expression

t 7→ (t, ω1, . . . , ωn−1) (t 6= 0)

Thus

γ̇(t) = (1, 0, . . . , 0) =

(
∂

∂r

)
γ(t)

(t 6= 0)

so ∣∣∣∣ ∂∂r
∣∣∣∣
γ(t)

t6=0
= |γ̇|γ(t)

= const

since γ is a geodesic. What is this constant?

Remember:
∣∣ ∂
∂r

∣∣
δ

= 1 (pre-DG fact) so∣∣∣∣ ∂∂r
∣∣∣∣
g

=

∣∣∣∣ ∂∂r
∣∣∣∣
δ

(1 +O(|x|2))

= 1 +O(|x|2)

(r = |x|, |x| means |x|δ) so the constant is 1.

ii. Fix a ∈ {1, . . . , n− 1} To show: 〈 ∂
∂r
, ∂
∂ωa
〉 = 0 on U \ {p}.

Observe:

D ∂
∂r

∂

∂ωa
−D ∂

∂ωa

∂

∂r
= [

∂

∂r
,
∂

∂ωa
] = 0 on U \ {p}

r(γ(t)) = t, ∂
∂r

= d
dt

. Now consider ∂
∂r
, ∂
∂ωa

as vector fields along γ(t) =
expp(tω), (γ̇ = ∂

∂r
). Compute

d

dt
〈 ∂
∂r
,
∂

∂ωa
〉γ(t) = 〈

=γ̈=0︷ ︸︸ ︷
D ∂

∂r

∂

∂r
,
∂

∂ωa
〉+ 〈 ∂

∂r
,D ∂

∂r

∂

∂ωa
〉

= 0 + 〈 ∂
∂r
,D ∂

∂ωa

∂

∂r
〉

=
1

2

∂

∂ωa
· 〈 ∂
∂r
,
∂

∂r
〉︸ ︷︷ ︸

≡1

= 0
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so 〈 ∂
∂r
, ∂
∂ωa
〉 = const along γ. What is this constant?

|〈 ∂
∂r
,
∂

∂ωa
〉| ≤

∣∣∣∣ ∂∂r
∣∣∣∣
g

∣∣∣∣ ∂∂ωa
∣∣∣∣
g

Cauchy-Schwarz

= 1 · O(r)

so the constant is zero.

iii. Note 〈 ∂
∂ωa

, ∂
∂ωb
〉δ = r2h◦ab(w) (standard metric on Sn−1). Since gij =

δij + εij, εij = O(r2), where |εij(r, ω)| ≤ Cr2

〈 ∂
∂ωa

,
∂

∂ωb
〉g = r2h◦ab(ω) +O(r2) = O(r2)

2

Corollary 9.9 (Gauss’s Lemma) In geodesic polar coordinates, g has the
form

g =


1 0 · · · 0
0
... r2hij(r, ω)
0


r
ω1

...
ωn−1

where for each r > 0, hij(r, ·) is a metric on Sn−1 with

hij(r, ω) = h◦ij(ω) +O(r2)

as r → 0.

Proof A slight refinement of the above.

2

9.2 Length-minimizing curves

L(γ) :=

∫ b

a

|γ̇(t)|gdt,

γ : [a, b]→M.

The curve γ is length-minimizing if

L(γ) ≤ L(β)

for any smooth curve β with the same endpoints (resp. strictly length-
minimizing if equality implies β = γ).

104



Theorem 9.10 (Local Length-minimizing Property) Let γ be geodesic
Then for each a ∈ dom(γ) and each b sufficiently close to a (b > a) γ|[a, b]
is length-minimizing.

Example α = γ|[a, b]. α is length-minimizing iff L(α) ≤ π (strictly length-
minimizing iff L(α) < π)

Proof Without loss of generality a = 0. Set p = γ(0). Select ε > 0 such

that expp : B
TpM
ε (0)

∼=→ U ⊆M is a diffeomorphism. Fix b < ε, q := γ(b). Use
geodesic normal coordinates on U . In these coordinates, γ(t), 0 ≤ t ≤ b is
the ray t 7→ (tX1, . . . tXn) where X := γ̇(0). Let β by any curve connectiong
p = γ(0) to q = γ(b).
L(γ|[0, b]) = b To show: L(β) ≥ b. Without loss of generality replace β by
the initial segment β|[0, e] such that

β(e) ∈ S(b), β([0, e]) ⊆ {r(x) ≤ b}

Show: L(β|[0, e]) ≥ b. Write

β(u) =
(
r(u), ω1(u), . . . , ωn−1(u)

)
, 0 ≤ u ≤ e

β̇(u) =

(
dr

du
,
dω1

du
, . . . ,

dωn−1

du

)
=

dr

du

∂

∂r︸ ︷︷ ︸
radial part

+
n−1∑
a=1

dωa

du

∂

∂ωa︸ ︷︷ ︸
tangental part

= β̇(u)R + β̇(u)T

so

|β̇(u)|2 = |β̇(u)R|2 + |β̇(u)T |2

|β̇(u)| ≥ |dr
du
|| ∂
∂r
| = |dr

du
|

so

L(β|[0, e]) =

∫ e

0

|β̇(u)| du

≥
∫ e

0

|dr
du
| du

≥ r(e)− r(0)

= b− 0 = b
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2

Furthermore: equality occurs iff β̇ is a nonnegative multiple of ∂
∂r

for all
u ∈ [0, e]. But then, β = γ[0, b]! γ is a strict minimizer,b < ε!
Recall d(p, q) := inf{L(β)|βjoins p to q}

Definition If expp : B
TpM
ε (0)

∼=→ U ⊆ M is a diffeomorphism, we call U a
normal neighborhood of p.

Corollary 9.11 p, q ∈M , r < ε normal coordinates about p.

d(p, q) = r(q) if q ∈ expp(B
TpM
ε (0))

d(q, p) ≥ ε if q /∈ expp(B
TpM
ε (0))

9.3 Metric Space Structure

(induced by g)
(M, g) ; d(q, p).

Proposition 9.12 (M connected) (M,d) is a metric space. (M not con-
nected: extended metric space: d =∞ allowed.)

Proof

• Triangle inequality:d(x, y) + d(y, z) ≥ d(x, z)

• symmetry: d(p, q) = d(q, p)

• positivity: if p 6= q then d(p, q) > 0.

2

Proof p 6= q, pick ε so q /∈ expp(B
TpM
ε (0)) d(q, p) ≥ ε.

2

Definition

Bσ(p)(= Bg
σ(p) = BM

σ (p)) := {q ∈M |d(p, q) < σ}

geodesic ball of radius σ about p.

106



Example (need not be a topological ball) By the Corollary(9.11):

Bε(p) = expp(B
TpM
ε (0))

(provided expp |B
TpM
ε (0) is a diffeomorphism onto it’s image.)

This implies

Proposition 9.13 The metric space topology generated by d(·, ·) coincides
with the topology induced by the differntial structure.

Proof Both topologes are generated (by taking arbitrary unions) by small
balls Bσ(p), σ < ε(p).

2

Theorem 9.14 (Geodesically Convex Balls) For p ∈ M , there is σ =
σ(p) > 0 such that every pair of points p1, p2 ∈ Bσ(p) can be joined by a
(unique) minimizing geodesic γ, and γ lies in Bσ(p).

Completeness: Hopf-Rinow Theorem

Questions:

• When can geodesics be extended indefinitely

• When can p, q ∈M be joined by a minimizing geodesic?

Theorem 9.15 (Hopf-Rinow) (M, g) The following are equivalent:

i. (M,d) is metrically complete (cauchy sequences converge).

ii. (M, g) is geodesically complete (each geodesic can be extended indefi-
nitely)

We call M complete.

Example Any compact manifold is complete.

Example R2 \ {0}. Metric completion: R2.

R̃2 \ {0} metric completion R̃2 \ {0} ∪ {z}

Corollary 9.16 (of Proof) M connected, complete ⇒ every pair p, q can
be joined by a minimum geodesic. ⇔ expp is surjective for all p, i.e. there
are no places you can’t see from p.

Example Hyperbolic space is complete.

Proposition 9.17 If a curve γ ⊆M2 is the fixed-point of a nontrivial isom-
etry, then that curve is a geodesic.
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10 Testing for Flatness

(Lee chap 7) (Motivation for Riemannian curvature tensor.)
How can we tell when 2 Riemannian manifolds are locally isometric? Answer:
Invariants.

10.1 Special case

How can we tell when a Riemannian manifold is flat (= locally isometric to
Euclidean space)?

Observation

If M is flat, then near each point there is a frame e1(x), . . . , en(x) consisting
of parallel vector fields.

(Rn, δ) ⊆ V
isom. φ←− U ⊆ (Mn, g)

∂

∂xi
7→ φ∗(

∂

∂xi
)

φ∗(DδXY ) = Dφ
∗(δ)
φ∗(X)φ

∗(Y )

Theorem 10.1 No neighborhood of a point in S2 possesses a parallel vector
field. Thus: No neighborhood af any point in S2 is isometric to an open set
in R2.

Lemma 10.2 The holonomy about a circle of latitude γ = ∂BS2

θ (N) is a
nontrivial rotation

Hγ : TpS
2 → TpS

2

Proof sketch (Do Carmo) Let C be the cone tangent to S2 along γ. Since
S2 and C have the same tangent planes along γ, we have for any vector field
X(t) ∈ Tγ(t)S

2 along γ

DS2

γ̇ X = π⊥
(
DR3

γ̇ X
)

= DCγ̇ X

So the holonomy about γ is the same, whether we regard γ as a curve in S2

or in C. But C can be cut and rolled out flat and the holonomy computed
easily.

2
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Exercise Find the holonomy about any simple closed curve in S2.

C // E

��
M2

(DXV )α =X i∂V
α

∂xi
+ i ω(X)︸ ︷︷ ︸

∆

V α

V ∈ C∞(E) ω(X) = a(x)X1(x) + b(x)X2(x)

Hγ : Ep → Ep ∼= C ∼= R2

V̂ 7→ ei
R
Ω(ax2 (x1,x2)−bx1 (x1,x2))dx1dx2

V̂

ax2 − bx1 = curl(a, b)(≡ rot(a, b))

10.2 Try to construct a parallel vector field (locally)

(M2, g) given, p ∈M fixed. x1, x2 local coords near p. Fix Z ∈ TpM . Extend
Z parallel along x1-axis t 7→ (t, 0). Then extend vertically along each curve
t 7→ (x1, t) (x1 ∈ R fixed). Get:{

D ∂
∂x2
Z = 0 all x1, x2

D ∂
∂x1
Z = 0 all x1, x2 = 0.

If D ∂
∂x1
Z = 0 for all x1, x2 then Z would be parallel:

DXZ = X1D ∂
∂x1
Z +X2D ∂

∂x2
Z

Too see what D ∂
∂x1
Z is like for x2 6= 0, consider how it varies along curve

t 7→ (x1, t). Measured by
D ∂

∂x2
D ∂

∂x1
Z

Now if we were so lucky and the operators D ∂
∂x2
,D ∂

∂x1
commuted on Z, then

D ∂
∂x2
D ∂

∂x1
Z = D ∂

∂x1
D ∂

∂x2
Z︸ ︷︷ ︸

0

= 0 ∀x1, x2

Then D ∂
∂x1
Z would be parallel along t 7→ (x1, t). But D ∂

∂x1
Z = 0 at (x1, 0).

So D ∂
∂x1
Z would be 0 ∀x1, x2.
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So the question of constructing parallel vector fields comes down to: Do
directional derivatives of vector fields commute?
In Rn, this is true: Dδ = D0 = coordinate connections.

D0
∂
∂x1
D0

∂
∂x2

(
Zi(x)

∂

∂xi

)
= D ∂

∂x1

(
∂Zi

∂x2
(x)

∂

∂xi

)
=

∂2Zi

∂x1∂x2
(x)

∂

∂xi

= D0
∂
∂x2
D0

∂
∂x1
Z

DXDYZ
?
= DYDXZ

Even in Rn, it’s not so simple.

D0
XD0

YZ = X iD0
∂

∂xi

(
Y jD0

∂

∂xj
Z
)

= X iY jD0
∂

∂xi
D0

∂

∂xj
Z +X i∂Y

j

∂xi
D0

∂

∂xj
Z

Antisymmetrizing, we get

D0
XD0

YZ −D0
YD0

XZ = O + [X, Y ]jD ∂

∂xj
Z

= D0
[X,Y ]Z.

According:

Proposition 10.3 In a flat manifold

DXDYZ −DYDXZ −D[X,Y ]Z = 0. (‡)
Proof D and [·, ·] are both invariant under isometries.

2

10.3 Riemann Curvature

Definition Let X, Y, Z,W ∈ C∞(TM).

i. The Riemann curvature operator of (M, g) is defined as

R(X, Y )Z := −DXDYZ +DYDXZ +D[X,Y ]Z

ii. The Riemannian curvature tensor is defined by

Rm(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉
R(·, ·)· : C∞(TM)× C∞(TM)× C∞(TM)→ C∞(TM)

Rm ≡ 0 iff M is flat, (iff later).

Rm measures how far M is from being Euclidean.
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10.4 Tensors (over R)

V,W vector spaces with bases e1, . . . em and d1, . . . , dn. V ⊗W vector space
mn = dim basis ei ⊗ dj i = 1, . . . ,m, j = 1, . . . , n.(
k
0

)
tensor over V is a k−linear map

T : V × · · · × V︸ ︷︷ ︸
k

→ R

or equivalently an element of V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

. Typical element: T = Ti1...ime
∗
i1
⊗

· · · ⊗ e∗im , e∗1, . . . , e
∗
m dual basis (to e1, . . . , em) of V ∗, e∗i (X) = X i X` = Xp

` ep

T (X1, . . . , Xm) = Ti1...im
(
e∗i1 ⊗ · · · ⊗ e

∗
im

)
(X1, . . . , Xm)

= Ti1...ime
∗
i1

(X1) · · · e∗im(Xm)

= Ti1...imX
i1
1 · · ·X im

m .

A
(
k
`

)
tensor over V is a k−linear map

V × · · · × V︸ ︷︷ ︸
k

→ V ⊗ · · · ⊗ V︸ ︷︷ ︸
`

or equivalently, an element of V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
`

. Given smooth

vector bundles E,F → M , we can form smooth vector bundles E∗, E ⊗ F
over M with fibers

(E∗)p := (Ep)
∗, (E ⊗ F )p := Ep ⊗ Fp

T ∗M = (TM)∗, T ∗pM = (TpM)∗.

Then a
(
k
`

)
tensor field T on M is a section

T ∈ C∞(T ∗M ⊗ · · · ⊗ T ∗M︸ ︷︷ ︸
k

⊗TM ⊗ · · · ⊗ TM︸ ︷︷ ︸
`

)

Exercise

i.
(

0
1

)
tensor fields are vector fields

ii.
(

1
0

)
tensor fields are dual vector fields, or 1-forms

iii. g (Riemannian metric) is a
(

2
0

)
tensor field.
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DXY vector field in C∞(TM)

DY = (DY (p) : TpM → TpM)

∈ C∞ (Lin(TM ;TM))

∈ C∞(T ∗M ⊗ TM)

so if Y is a vector field, then DY is a
(

1
1

)
tensor field.

Z = T (X, Y ) := D1
XY −D2

XY ∈ C∞(TM)

T (X, Y )(p) depends only on X(p), Y (p) (bilinearly). T ∈ C∞(T ∗M⊗T ∗M⊗
TM). So T (the difference between two connections) is a

(
2
1

)
tensor.

R(·, ·) : C∞(TM)× C∞(TM)× C∞(TM)→ C∞(TM)

R(X, Y )Z := −DXDYZ +DYDXZ +D[X,Y ]Z

Rm(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉

Proposition 10.4 (R(X, Y )Z) (p) depends only on X(p), Y (p), Z(p) (and
not on their derivatives.)

TM,E vector bundles over M

Definition A k−linear map (k−linear over R!)

T : C∞(TM)× · · · × C∞(TM)→ C∞(E)

is called tensorial (k−linear over C∞(M)!)

T (f1X1, . . . , fkXk) = f1 · · · fkT (X1, . . . , Xk) ∀f1, . . . , fk ∈ C∞(M)

Criterion for being a tensor field

If a k−linear map (over R)

T : C∞(TM)× · · · × C∞(TM)︸ ︷︷ ︸
k

→ C∞(E)

is in fact k−linear over C∞(M), i.e.

T (f1X1, . . . , fkXk) = f1 · · · fkT (X1, . . . , Xk) ∀f1, . . . , fk ∈ C∞(M)

(i.e. T is tensorial), then T is given by a tensor field, i.e. T (X1, . . . , Xk)(p)
depends only on X1(p), . . . , Xk(p) and in fact there are k−linear maps

T̃ (p) : TpM × · · · × TpM → Ep
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such that
T (X1, . . . , Xn)(p) = (T̃ (p))(X1(p), . . . , Xk(p))

Accordingly, the map
T̃ : p 7→ T (p)

is a section T̃ ∈ C∞(T ∗M ⊗ · · · ⊗ T ∗M ⊗E). We drop ˜ and identify T with
T̃ .

Proof Let ∂
∂x1 , . . . ,

∂
∂xn

be a coordinate fram for TM defined over some open
U 3 p.
Fix a cutoff function φ for p in U i.e. φ ∈ C∞(M), sptφ ⊂⊂ U, φ ≡ 1 near
p.

Xi = Xj
i

∂

∂xj
on U only!

Compute

T (X1, . . . , Xk)(p) = φ2k(p)︸ ︷︷ ︸
1

T (X1, . . . , Xk)(p)

= (φ2kT (X1, . . . , Xk))(p)

= T (φ2X1, . . . , φ
2Xk)(p)

=

(
(φXj1

1 ) · · · (φXjk
k )T (φ

∂

∂xj1
, . . . , φ

∂

∂xjk

)
(p)

= Xj1
1 (p) · · ·Xjk

k (p)T (φ
∂

∂xj1
, . . . , φ

∂

∂xjk
)(p)

depends only on X1(p), . . . , Xk(p), and indeed, k−linear.

2

Remark

• φ ∂
∂xj
∈ C∞(TM) meaning

φ
∂

∂xj
=

{
φ ∂
∂xj

on U
0 on M \ sptφ (open)

• φXj
i ∈ C∞(M)

X, Y, Z,W ∈ C∞(TM)

R(·, ·)· : C∞(TM)× C∞(TM)× C∞(TM)→ C∞(TM)

R(X, Y )Z := −DXDYZ +DYDXZ +D[X,Y ]Z

Rm(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉
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Proposition 10.5

R(·, ·)· ∈ C∞(T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ TM)

Rm ∈ C∞(T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M)

Proof If suffices to checkR(fX, gY )hZ = fghR(X, Y )Z for f, g, h ∈ C∞(M)
(Tensoriality Criterion).
Do h:

R(X, Y )(hZ)
?
=hR(X, Y )Z

DXDY (hZ) =DX ((Y h)Z + hDYZ)

= (X(Y h))Z + (Y h)DXZ + (Xh)DYZ + hDXDYZ
DXDY (hZ) =similar . . .

D[X,Y ](hZ) = ([X, Y ]h)Z + hD[X,Y ]Z

R(X, Y )(hZ) =− hDXDYZ + hDYDXZ + hD[X,Y ]Z

− (XY h)Z + (Y Xh)Z + [X, Y ]hZ

=hR(X, Y )Z

Do f, g: similar but shorter

2

Definition Define components of the curvature tensor in a coordinate neigh-
borhood by

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
= R`

ijk

∂

∂x`

Rijkl := Rm(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂x`
) = 〈R(

∂

∂xi
,
∂

∂xj
)
∂

∂xk
,
∂

∂x`
〉

Then we have

R(X, Y )Z = X iY jZkR`
ijk

∂

∂x`

Rm(X, Y, Z,W ) = X iY jZkW `Rijk`

Note Rijkl = gplRp
ijk. R given by at most n4 functions.

Invariance under isometries φ : (M, g)→ (N, h) isometry

Rg
m(X, Y, Z,W )(p) = Rh

m(φ∗X,φ∗Y, φ∗Z, φ∗W )(φ(p))

Diffeomorphism invariance

φ∗(f) = f ◦ φ
φ∗(f) = f ◦ φ−1

φ∗(Rg
m(X, Y, Z,W )) = Rφ∗(g)

m (φ∗X,φ∗Y, φ∗Z, φ∗W )
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C∞ functions on R with compact support

f(x) :=

{
e−

1
x x > 0

0 x ≤ 0

f is C∞

Claim f (k)(η)→ 0 as η →∞ ∀k

f (1) =
1

x2
e−

1
x f (k) = ak(x)e−

1
x

f (2) = (− 2

x3
+

1

x4
)e−

1
x |ak(x)| ≤ x−2k(0 ≤ x ≤ 1)

Proposition 10.6

• R`
ijk = − ∂

∂xi
Γ`jk + ∂

∂xj
Γ`ik − Γ`ipΓ

p
jk + Γ`jpΓ

p
ik

• Rijkl = g`mRm
ijk

Proof

i.

R`
ijk

∂

∂x`
=R(

∂

∂xi
,
∂

∂xj
)
∂

∂xk

=−D ∂

∂xi
D ∂

∂xj

∂

∂xk
+D ∂

∂xj
D ∂

∂xi

∂

∂xk

+D[ ∂

∂xi
, ∂

∂xj
]

∂

∂xk

=−D ∂

∂xi
(Γ`jk

∂

∂x`
) +D ∂

∂xj
(Γ`ik

∂

∂x`
)

=(− ∂

∂xi
Γ`jk)

∂

∂x`
− Γ`jkD ∂

∂xi

∂

∂x`
+ (

∂

∂xj
Γ`ik)

∂

∂x`
+ Γ`ikD ∂

∂xj

∂

∂x`

=− ∂

∂xi
Γ`jk

∂

∂x`
− ΓpjkΓ

`
ip

∂

∂x`
+

∂

∂xj
Γ`ik

∂

∂x`
+ ΓpikΓ

`
jp

∂

∂x`

2

The proposition shows:

gij
deriv−→ D deriv−→ Rm

Rm = combinations of various 0th, 1st and 2nd derivatives of components of
the metric tensor gij(x).

Exercise Find a formula for Rijk` in terms of gij, ∂gij, ∂
2gij that shows:

Rijk` is
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• linear in
∂2gij
∂xk∂x`

• quadratic in
∂gij
∂xk

• nonlinear in gij.

(recall: same pattern in ODE for geodesics)

10.4.1 Flat Manifolds

(Lee Chap 7.)

Theorem 10.7 (Riemann) Rm ≡ 0 iff M is locally isometric to Euclidean
space.

Proof (⇐) done
(⇒) Suppose Rm ≡ 0 Fix p ∈M . 4 steps:

i. Build a set of parallel, orthonormal (Rm ≡ 0) vector fields Y1, . . . , Yn
near p.

ii. Then [Yi, Yj] = 0 ∀i, j.

iii. Then M has a coordinate system y1, . . . , yn near p with Y i = ∂
∂yi

.

iv. A coordinate system whose coordinate vector fields are orthonormal is
the same as an isometry into Rn.

ii. DYiYj = 0 ∀i, j by i. so [Yi, Yj] = DYiYj −DYjYi = 0

iii. If

(a) Y1, . . . , Yn commute

(b) Y1, . . . , Yn linearly independant at p

⇒ there exists a coordinate system. φ = (y1, . . . , yn) : U ⊆ M
∼=→ V ⊆

Rn near p such that

Yi︸︷︷︸
∈U⊆M

= φ∗(
∂

∂yi︸︷︷︸
∈Rn

)

iv. Then 〈Yi, Yj〉g
(1)
= δij = 〈 ∂

∂yi
, ∂
∂yj
〉δ so φ is an isometry.

2
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Follows from:

Subclaim Any Ŷ ∈ TpM can be extended to parallel vector field near p.

Why does it follow? Fix p. Ŷ1, . . . , Ŷn ∈ TpM orthonormal basis. Use
subclaim to extend to Y1, . . . , Yn parallel defined near p. But X · 〈Yi, Yj〉 =
〈DXYi, Yj〉+ 〈Yi,DXYj〉 = 0 so 〈Yi, Yj〉 = δij is constant near p.

Proof of subclaim Let x1, . . . , xn be any coordinate system near p.

p = 0, U = {x| − ε < xi < ε}

Fix Ŷ ∈ TpM

Mk :=
{

(x1, . . . , xk, 0 . . . , 0)| − ε < x1, . . . , xk < ε
} ∼= Rk

{0} = M0 ⊆M1 ⊆ · · · ⊆Mn = U

Extend Ŷ from M0 to M1 by parallel transport along γ : t 7→ (t, 0, . . . , 0) ∈
M1. Get: {

Y : M1 → TM1

D ∂
∂x1
Y = 0 on M1

Extend from M1 to M2

x = (x1, 0, . . . , 0) ∈M1

γx : t 7→ (x1, t, 0, . . . , 0) ∈M2

Extend Y along γx by parallel translation. Get:
Y : M2 → TM
D ∂

∂x2
Y = 0 on M2

D ∂
∂x1
Y = 0 on M1


Y (x1, x2, 0, . . . , 0) is smooth in x1, x2 by smooth dependence of solutions of
ODEs on intial conditions (and using the fact that (x1, 0, . . . , 0) is smooth).
Want: D ∂

∂x1
Y = 0 on M2. By defintion of curvature

D ∂
∂x2
D ∂

∂x1
Y =D ∂

∂x1
D ∂

∂x2
Y +D[ ∂

∂x1 ,
∂
∂x2 ]Y −R(

∂

∂x1
,
∂

∂x2
)Y

=D ∂
∂x1
,D ∂

∂x2
Y︸ ︷︷ ︸

=0

=0 on M2
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So D ∂
∂x1
Y is parallel along γx. But D ∂

∂x1
Y = 0 at γx(0) = (x1, 0, . . . , 0) so

D ∂
∂x1
Y = 0 on γx i.e. on M2.

Proceed by induction.
Extend Y from Mk to Mk+1 Given:

(Hk)

{
Y : Mk → TM
D ∂

∂x1
Y = · · · = D ∂

∂xk
Y = 0 on Mk

Want:

(Hk+1)

{
Y : Mk+1 → TM
D ∂

∂x1
Y = · · · = D ∂

∂xk+1
= 0 on Mk+1

Using parallel transport along curves

γx : t 7→ (x1, . . . , xk, t, 0, . . . , 0) ∈Mk+1

(x = (x1, . . . , xk, 0, . . . , 0) ∈Mk

get

Y : Mk+1 → TM

D ∂

∂xk+1
Y = 0 on Mk+1

Using Rm ≡ 0 as before, we get

D ∂

∂xk+1
D ∂

∂xi
Y = D ∂

∂xi
D ∂

∂xk+1
Y︸ ︷︷ ︸

=0

= 0

on Mk+1, so as (before)

D ∂

∂xi
Y = 0 on Mk+1 ∀i

2

10.5 Symmetries of Curvature

i.

Rm(X, Y, Z,W )
(a)
= −Rm(Y,X,Z,W )
(b)
= −Rm(X, Y,W,Z)

ii. Rm(X, Y, Z,W ) = Rm(Z,W,X, Y )
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iii. 0 = Rm(X, Y, Z,W ) +Rm(Y, Z,X,W ) +Rm(Z,X, Y,W ) (Bianchi I)

Proof

i. (a) R(X, Y )Z = −DXDYZ +DYDXZ +D[X,Y ]Z

(b) Differentiate 〈Z,W 〉 twice:

X · Y · 〈Z,W 〉 = X · (〈DYZ,W 〉+ 〈Z,DYW 〉)
= 〈DXDYZ,W 〉+ 〈DYZ,DXW 〉+ 〈DXZ,DYW 〉

+〈Z,DXDYW 〉

Antisymmetrize in X, Y :

[X, Y ] · 〈Z,W 〉 = 〈DXDYZ −DYDXZ,W 〉
+〈Z,DXDYW −DYDXW 〉

[X, Y ] · 〈Z,W 〉 = 〈D[X,Y ]Z,W 〉+ 〈Z,D[X,Y ]W 〉

Rearrange:

〈R(X, Y )Z,W 〉+ 〈Z,R(X, Y )W 〉 = 0

iii. (Bianchi I) 0 = Rm(X, Y, Z,W ) +Rm(Y, Z,X,W ) +Rm(Z,X, Y,W ).

R(X, Y )Z = −DXDYZ +DYDXZ +D[X,Y ]Z

R(Y, Z)X = −DYDZX +DZDYX +D[Y,Z]X

R(Z,X)Y = −DZDXY +DXDZY +D[Z,X]Y

Sum = −DX [Y, Z]−DY [Z,X]−DZ [X, Y ] +D[X,Y ]Z +D[Y,Z]X +D[Z,X]Y

= −[X, [Y, Z]]− [Y, [Z,X]]− [Z, [X, Y ]] = 0 Jacobi identity

ii. combine i. and iii. cleverly. Exercise

2

In components:

i. Rijk` = −Rjik` = −Rij`k

ii. Rijk` = Rk`ij

iii. Rijk` +Rjki` +Rkij` = 0
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Elie Carton called Differential Geometry “the debauch of indices”. Gromov:
“The Riemannian curvature tensor remains a nasty, mysterios bundle of mul-
tilinear algebra.”

Exercise What is the dimension of the space of potential curvature tensors
at a point?

Example

n = 1 R1111 = −R1111 ⇒ R1111 ≡ 0 no curvature.

n = 2 0 = R11ij = R22ij = Rij11 = Rij22 R1212 = −R2112 = −R1221 = R2121

The Riemannian curvature tensor of a 2−manifold reduces to a single
scalar. What is that scalar?

i. (M2, g) κ(p) := Rm(e1, e2, e1, e2), e1, e2 orthonormal basis of TpM .

Exercise Prove κ(p) is independent of choice of e1, e2.

Theorem 10.8 (Theorema Egregium (Gauss)) Suppose (M2, g) is iso-
metrically embedded in R3. Then

κ(p) = k1 · k2

product of principal curvatures of M2 inside R3.

(Mn, g), p ∈M,σ ⊂ TpM 2-plane

Definition Sectinal curvature of M at p along σ.

κ(p, σ) := Rm(e1, e2, e1, e2)

e1, e2 orthonormal basis of σ. (Exercise: independence of e1, e2)

Fact

κ(p, σ) ≡ 1 on Sn

κ(p, σ) ≡ −1 in Hn

Theorem 10.9 If (M, g) has κ(p, σ) ≥ 1
r2 > 0 ∀p, σ then M is compact and

diam(M) := maxp,q∈M d(p, q) ≤ πr κ ≥ 1
r2 > 0⇒M is compact.
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