Differential Geometry Lecture held by Prof. Ilmanen

Darko Pilav Simon Wood

Warning: We are sure there are lots of mistakes in these notes. Use at your own risk! Corrections and other feedback would be greatly appreciated and can be sent to mitschriften@vmp.ethz.ch. If you report an error please always state what version (the first number on the Id line below) you found it in. For further information see:

http://vmp.ethz.ch/wiki/index.php/Vorlesungsmitschriften

\$Id\$

Contents

1	Introduction: curves and surfaces	4
	1.1 Curves in Space	5
	1.2 The Geometry of Surfaces in \mathbb{R}^3	10
	1.2.1 (Extrinsic) Curvature \ldots	11
	1.2.2 Intrinsic Geometry	14
2	Differentiable Manifolds	17
	2.1 Topology of M	20
	2.1.1 Maximal Atlas	21
3	Tangents, differentials of maps	23
	3.1 Tangent vector as directional derivative operator	23
	3.2 Differential of a map	26
4	Submanifolds, diffeomorphisms, immersions and submersions	31
	4.1 Immersions, submersions, diffeomorphisms	21 23 23 26 31 33 36 41 44 45 46 49 49 49 49 52 52 61 52
	4.2 Immersions	36
	4.3 Submersions	41
5	Lie Groups: S^3 and SO(3)	44
	5.1 Quaternions \ldots	45
	5.2 Smooth actions, left, right, adjoint actions of a Lie group on	
	itself	46
6	Lie brackets, flows of vector fields, Lie derivatives	49
	6.1 Vector fields \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	49
	6.1.1 Lie Brackets	49
	6.2 Integral curves and flows of vector fields	31 33 36 41 44 45 46 49 49 49 52 52 61
	6.2.1 Existence, Uniquenes and smooth dependence on ini-	-
	$tial data \dots $	52 C1
	6.3 Lie Derivatives	61
7	Riemannian Metrics	69
	7.1 Pullbacks of Metrics	72
	7.2 Metrics on Lie groups	73
	7.3 Volume and Intergrals	75
8	Connections	80
	8.1 Vector Bundles	80
	8.1.1 Complex vector bundles	83

	8.2	Connections on Vector Bundles
	8.3	Inner Products on E and compatible connections 89
	8.4	Riemannian Connections
	8.5	Parallel Transport
9	Geo	desics, Exponential Map 96
	9.1	Geodesic Flow
	9.2	Length-minimizing curves
	9.3	Metric Space Structure
10	Test	ing for Flatness 108
	10.1	Special case
	10.2	Try to construct a parallel vector field (locally) 109
	10.3	Riemann Curvature
	10.4	Tensors (over \mathbb{R})
		10.4.1 Flat Manifolds
	10.5	Symmetries of Curvature

1 Introduction: curves and surfaces

Riemannian Geometry is a subset of Differential Geometry

A Riemannian manifold is a smooth manifold endowed with a notion of (infinitesimal) arclength \rightarrow Riemannian metric: $g = g_{ij}(x)dx^i dx^j$

Figure 1: A Riemannian manifold is endowed with a notion of infinitesimal acrlength, thus a shortest path (a *geodesic*) can be defined between two points on the manifold.

Curvature

extrinsic curvature $M^k \subset \mathbb{R}^n$ intrinsic curvaturehow M curves inside \mathbb{R}^n how M curves "inside itself"

Figure 2: The radius of curvature is the radius of the circle which most closly approximates the curve at a given point.

Doing calculus on the manifold

$$D_i f, \quad D_i D_j X^k \neq D_j D_i X^k, \qquad X \text{ a vector field}$$

Derivatives can't be commuted arbitrarily

$$D_i D_j X^k = D_j D_i X^k + R_{ij\ell}^{\ \ k} X^\ell$$

where R is the Riemannian curvature tensor.

1.1 Curves in Space

Basic notation:

$$\mathbb{R}^{n}, \ x = (x^{1}, \dots, x^{n})$$
$$\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{\mathbb{R}^{n}}$$
$$|x|_{\mathbb{R}^{n}} := \langle x, x \rangle_{\mathbb{R}^{n}}^{\frac{1}{2}}$$

A regular curve is a smooth (= infinitely differentiable = C^{∞}) function

$$\gamma: [a,b] \to \mathbb{R}^n,$$

such that $\frac{d\gamma}{dt} \neq 0 \,\forall t$

Figure 3: A regular curve and its velocity vector (derivative).

Example of a non regular curve:

$$t \mapsto (t^2, t^3) \in \mathbb{R}^2$$

Figure 4: A curve whose derivative vanishes at 0 and is thus not regular.

Arclength

$$s(t) := \int_{t_o}^t \left| \frac{d\gamma}{dt} \right| dt$$

Reparameterize by arclength, get

$$\gamma = \gamma(s), \left| \frac{d\gamma}{ds} \right| = 1$$

Unit Tangent Vector

Figure 5: A curve parametrized by arclength always has a tangent vector of unit length.

$$\tau(s) := \frac{d\gamma}{ds} = \frac{d\gamma/dt}{|d\gamma/dt|}$$

Definition the curvature vector κ of γ at s is

$$\kappa(s) := \frac{d\tau}{ds} = \frac{d^2\gamma}{ds^2} \in \mathbb{R}^n$$

Proposition 1.1 $\kappa \perp \tau$

Proof

$$\langle \tau, \tau \rangle = 1$$
$$0 = \frac{d}{ds} \langle \tau, \tau \rangle = 2 \langle \frac{d\tau}{ds}, \tau \rangle = 2 \langle \kappa, \tau \rangle$$

Exercise: Show for $\gamma(t)$ (not necessarily parametrized by arclength)

$$\kappa = \frac{1}{\left|\gamma_{t}\right|^{2}} \left(\gamma_{tt} - \left\langle\gamma_{tt}, \frac{\gamma_{t}}{\left|\gamma_{t}\right|}\right\rangle \frac{\gamma_{t}}{\left|\gamma_{t}\right|}\right)$$

Curves in \mathbb{R}^2

 κ reduces to a number k. Define k by $\kappa = kN$ (curvature as a scalar)

Figure 6: For kurves in the plane curvature reduces to a number k.

We can show:

Figure 7: The curve γ defined as a graph y = u(x).

Theorem 1.2 k(s) determines γ up to a rigid motion of \mathbb{R}^2 (to make the starting point $\gamma(0)$ and starting direction $\gamma_s(0)$ coincide, see figure 8).

Curves in \mathbb{R}^3

If $\kappa \neq 0 \forall t$ we call γ an *ordinary curve* and define

$$N := \frac{\kappa}{|\kappa|} \quad \text{normal } (\perp \tau)$$

$$k := |\kappa| \quad \text{curvature scalar (note } k > 0)$$

$$B := \tau \times N \quad \text{binormal}$$

Figure 8: Congruent lines which differ only by rigid motion.

Figure 9: In 3 dimensions κ can move more freely, so a skalar is no longer enough to describe it.

 (τ,N,B) orthonormal basis along $\gamma,$ called a $moving\ frame$

Definition

Torsion vector:

$$\lambda := \langle \frac{dN}{ds}, B \rangle B \in \mathbb{R}^3$$

torsion scalar:

$$\ell := \langle \frac{dN}{ds}, B \rangle \in \mathbb{R}$$

 λ is the measure of that portion of the change of N that occurs within the 2-dimensional normal plane spanned by N, B (That is captured by κ and not that part due to the turning of the normal plane itself.

k(t) is a "2nd derivative of γ " and ℓ is a "3rd derivative" Exercise

1

- i. Compute k, ℓ at t = 0 for $t \to (t, at^2, bt^3)$
- ii. If the torsion $\ell \equiv 0$, show γ lies in a plane.

Figure 10: Torsion

- iii. If k and ℓ are constant along γ , prove γ is a helix.
- iv. * Prove theorem 1.3.

Theorem 1.3 Any given smooth functions k(s) > 0, and $\ell(s)$ of arclength determine γ in \mathbb{R}^3 uniquely, up to a rigid motion (isometry) of \mathbb{R}^3

Figure 11: A curve of constant torsion and curvature is a helix (spiral staircase).

Some Global Theorems

 $\begin{array}{ccc} \mbox{local (infinitesimal)} & \longleftrightarrow & \mbox{global} \\ \mbox{curvature measures local geometry} & & \mbox{integral quantities} \\ & & \mbox{topology} \end{array}$

 γ is called *simple* (or *embedded*) if γ has no self intersections

 $\gamma \text{ is called closed if } \gamma: [a,b] \to \mathbb{R}^n, \ \gamma(a) = \gamma(b)$

Figure 12: A curve with self intersections, which is therefore not simple.

Theorem 1.4 γ closed curve in \mathbb{R}^2 . Then:

- *i.* $\int_{\gamma} k ds = 2\pi n \quad \exists n \in \mathbb{Z}$
- ii. If γ is simple, then $n = \pm 1$

Proof i.

$$\int_{\gamma} k \quad ds = \int_{a}^{b} k \quad ds = \int_{a}^{b} \frac{d\theta}{ds} ds = \theta(b) - \theta(a) \in 2\pi\mathbb{Z}$$

 θ is well defined on \mathbb{R} , with

$$\theta(s) = \theta(s+b-a) + 2\pi n \qquad \exists n$$

	. 1	
_		

Theorem 1.5 γ closed curve in \mathbb{R}^3 . Then

i.

$$\int_{\gamma} |\kappa| \, ds \ge 2\pi$$

ii. (Milnor) If γ is knotted then

$$\int_{\gamma} |\kappa| \, ds \ge 4\pi$$

This yields a relation between global integrals and global topology.

1.2 The Geometry of Surfaces in \mathbb{R}^3

 T_pM is the tangent space of vectors tangent to M at p and $N\equiv N(p)$ is a unit normal to M at p

Figure 13: A *knotted* curve wich *cannot* be deformed to the standard circle without developing self intersections.

Figure 14: an *unknotted* curve which can be deformed to standard circle without developing self-intersections

1.2.1 (Extrinsic) Curvature

 κ is the curvature vector of γ

$$\kappa = kN \; \exists k \in \mathbb{R}$$

Compute k: Choose orthonormal coordinates in \mathbb{R}^3 such that

$$p = (0, 0, 0)$$

 $T_p M = xy$ -plane (i.e. M is tangent to the xy-plane at p)

N = (0, 0, 1) (i.e. N points in the positive z-direction)

Note Then M is the graph (locally) of some function z = f(x, y) such that

$$f(0,0) = 0, \left. \frac{\partial f}{\partial x} \right|_{0,0} = \left. \frac{\partial f}{\partial y} \right|_{0,0} = 0$$

P is spanned by N, v where v is some unit vector in the xy-plane, $v = (v^1, v^2, 0)$.

Claim The curvature of γ is

$$k = \left(v^1 \ v^2\right) \left(\begin{array}{cc} \frac{\partial^2 f}{\partial x^2}(p) & \frac{\partial^2 f}{\partial x \partial y}(p) \\ \frac{\partial^2 f}{\partial x \partial y}(p) & \frac{\partial^2 f}{\partial y^2}(p) \end{array}\right) \left(\begin{array}{c} v^1 \\ v^2 \end{array}\right) = v^T D^2 f(p) v$$

with $D^2 f(p)$ being the Hessian of f at p

Proof Give P orthogonal coordinates (u, z). In these coordinates, γ is then given by

$$z = g(u) := f(uv^1, uv^2)$$

 $g(0) = g_u(0) = 0$

$$k(0) = \left. \frac{g_{uu}}{(1+g_u^2)^{3/2}} \right|_0 = g_{uu}(0)$$

Use chain rule on $g = f \circ (u \mapsto (uv^1, uv^2))$.

The bilinear form $(D^2 f)_p$ is called the *second fundamental form* or *extrinsic curvature tensor* of M at p. Written:

$$A(p)(\text{or }II(p)): T_pM \times T_pM \to \mathbb{R}$$

Warning The Hessian formula for A(p) is valid only when

$$\left. \frac{\partial f}{\partial x} \right|_{0,0} = \left. \frac{\partial f}{\partial y} \right|_{0,0} = 0$$

Exercise

Suppose M is given as a graph z = f(x, y). Find a formula for A(p) with respect to the coordinates on T_pM given by x, y.

Find an analogous formula for the case of a parametrized surface

$$\phi: \mathbb{R}^2 \supset U \to V \subseteq M \subseteq \mathbb{R}^3$$

U, V open, ϕ smooth with injective differential.

We can rotate the xy-plane so that A(p) becomes diagonal:

$$A(p) = \left(\begin{array}{cc} k_1 & 0\\ 0 & k_2 \end{array}\right)$$

 k_1 and k_2 really capture the geometry of the surface

Definition k_1, k_2 : principal curvatures of M at p

$$H := k_1 + k_2 : mean \ curvature \ of \ M \ at \ p$$
$$K := k_1 k_2 = \det A : Gauss \ curvature \ of \ M \ at \ p$$

Examples

Sphere of radius R has

$$k_1 = k_2 = \frac{1}{R}$$
$$K = \frac{1}{R^2}$$
$$H = \frac{2}{R}$$

Cylinder of radius R has eigenvectors e_1 , e_2 , where e_1 points along the cylinders' axis and e_2 is tangent to the circle that goes around the cylinder, and eigenvalues $k_1 = 0$, $k_2 = \frac{1}{R}$

$$H = \frac{1}{R}, \ K = 0 \cdot \frac{1}{R} = 0$$

Catenoid C:

It is the rotation of curve $\gamma : y = \cosh x$ around the x-axis. Let e_1 be tangent to γ and e_2 tangent to a circle of rotation.

The eigenspaces of A are preserved by the reflections R_Q across planes $Q \supseteq x$ axis. Thus the eigenvectors of A must be e_1, e_2 (since these are the only directions preserved by R_Q). So evidently $k_1 > 0 > k_2$ if N is outward. Compute $k_1 = A(e_1, e_1) =$ curvature of γ , the graph of $g(x) = \cosh x$

$$k_1 = \frac{g_{xx}}{(1+g_x^2)^{3/2}} = \frac{\cosh x}{\cosh^3 x} = \frac{1}{\cosh^2 x}$$

Exercise Compute that $k_2 = -\frac{1}{\cosh^2 x}$. Then

$$H = \frac{1}{\cosh^2 x} - \frac{1}{\cosh^2 x} = 0$$

We call a surface of equal and opposite curvatures minimal surface

Exercise (Helicoid)

Let L_1 be a vertical line and let L_2 be a line normal to L_1 Move L_2 upward at constant speed while rotating slowly about the point of intersection with L_1 .

Prove H = 0, compute K

1.2.2 Intrinsic Geometry

Let $M \subseteq \mathbb{R}^3$.

$$\gamma : [a, b] \to M$$

 $\gamma(a) = p, \ \gamma(b) = q$

Length:

$$L(\gamma) := \int_a^b \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{\mathbb{R}^3}^{1/2} dt$$

Intrinsic distance in M

$$d_M(p,q) := \inf \{ L(\gamma) | \gamma(a) = p, \gamma(b) = q \}$$

 (M, d_M) metric space (please verify)

Geodesic:

a curve that *locally* minimizes length (and therefore: *realizes* distance)

Example Sphere: an arc of a great circle minimizes length if it has length less than πR , but is a geodesic even if it is longer.

Riemannian metric of M

Restrict $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ to $T_p M$:

$$\langle X, Y \rangle_{M,p} := \langle X, Y \rangle_{\mathbb{R}^3} \qquad Y, X \in T_p M$$

Write $g(p) \equiv \langle \cdot, \cdot \rangle_{M,p} : T_p M \times T_p M \to \mathbb{R}$, a positive definite symmetric bilinear form that determines $L(\cdot)$ and $d_M(\cdot, \cdot)$

Definition A property of M is *intrinsic* if it depends only on g.

Isometries

A bijection $\phi: M \to N$ is called an *isometry* if it preserves the metric, i.e.

$$d_M(p,q) = d_N(\tilde{p},\tilde{q})$$
, where $\phi(p) = \tilde{p}, \phi(q) = \tilde{q}$,

or

$$g_M(p)(X,Y) = g_N(\tilde{p})(\tilde{X},\tilde{Y})$$
, where ϕ takes X to \tilde{X} and Y to \tilde{Y} .

(infinitesimal version)

Definition A property (quantity, tensor, structure, etc) is called *intrinsic* if it is preserved by isometries.

Example The rolling map from the flat plane to the cylinder is a *local* isometry (i.e. each point has a neighborhood U such that $\phi|U: U \to \phi(U)$ is an isometry.

We see from the example that

 k_1, k_2 are *not* intrinsic

 $H(:=k_1+k_2)$ is not intrinsic

Example Cone: Also locally isometric to the plane.

Definition A *developable surface* is a surface in \mathbb{R}^3 that is local isometric to a plane.

Example ping-pong ball (hemisphere): it can be deformed in space in such a way that it remains isometric to the original hemisphere (the material does not stretch!).

Exercise Show that the catenoid and helicoid are locally isometric!

A local theorem

Theorem 1.6 (Theorema Egregium) K (the Gauss curvature) is intrinsic!

There is an intrinsic characterization of K:

$$A(r) = \pi r^2 - \frac{\pi}{12}Kr^4 + \dots$$

where A(r) is the area of disk of intrinsic radius r about p.

Example In S^2 , $A(r) = 2\pi(1 - \cos r)$. The area is slightly smaller than expected when K is positive.

Global Theorems

Recall topological classification of *closed* (compact without boundary), *orientable* (abstract) surfaces: Euler chracteristic χ

Theorem 1.7 Let M be a closed surface. The Euler characteristic

$$\chi(M) := \# \underbrace{faces}_{2\text{-simplices}} - \# \underbrace{edges}_{1\text{-simplices}} + \# \underbrace{vertices}_{0\text{-simplices}}$$

is independent of the choice of triangulation.

Definition *n*-simplex:= $\{x \in \mathbb{R}^n | x_1, \dots, x_n \ge 0, x_1 + \dots + x_n \le 1\}$

Theorem 1.8 (Gauss-Bonnet Theorem)

Let (M, g) be a compact surface without boundary with Riemannian metric g. Then

$$\underbrace{\int_{M} K \, dA}_{curvature \ integral \ quantitive, \ geometric} = \underbrace{2\pi\chi(M)}_{topological \ invariant, \ qualitative} \in 2\pi\mathbb{Z}$$

Theorem 1.9 (Uniformization Theorem)

M compact surface without boundary. Then M possesses a metric g of constant Gauss curvature:

$$K \equiv \begin{cases} 1 & iff \quad \chi > 0 & S^2 \\ 0 & iff \quad \chi = 0 & T^2 \\ -1 & iff \quad \chi < 0 \quad surfaces \ with \ 2 \ or \ more \ holes \end{cases}$$

Higher dimensions (preview)

 (M^n, g) Riemannian manifold g_p : inner product on each T_pM How to define curvature without reference to extrinsic geometry? Fact: Given $p \in M, X \in T_pM$ there always exists a geodesic (locally length mini-

mizing curve) with initial velocity $\frac{d\gamma}{dt}(0) = X$. Fix $p \in M$.

Fix a 2-space $P \subseteq T_p M$. Let Q be the surface swept out by the geodesics γ_X with initial velocity X, where X ranges over unit vectors in P.

Define: $K(P) = K_p(P) :=$ Gauss curvature of Q at p (called sectional curvature in planardirection P)

$$K_p: \{2\text{-planes in } T_pM\} \to \mathbb{R}.$$

Clearly K_p is intrinsic.

Theorem 1.10 Cartan's Theorem: If K is constant then M is locally isometric to either

$$S^{n}: K \equiv c > 0$$

$$\mathbb{R}^{n}: K \equiv 0$$

$$\mathbb{H}^{n}: K \equiv -c < 0,$$

where \mathbb{H}^n is hyperbolic space.

Theorem 1.11 (Hadamard's Theorem) If $K \leq -c < 0$ (and complete) then the universal cover of M is topologically equivalent to \mathbb{R}^n .

Note If M is compact it follows that $\pi_1(M)$ is infinite.

• Note • Negative curvature makes geodesics spread out.

• Positive Curvature makes them come together (as in S^n , where they meet on the other side.)

Theorem 1.12 (Bonnet-Myers Theorem) If $K \ge \beta > 0$, then M is compact with

$$d_M(p,q) \le \frac{\pi}{\sqrt{\beta}} \ \forall p,q \in M$$

This inequality is exact on S^2 . Let p, q be antipodal points. We have

$$K = \frac{1}{R^2} =: \beta$$
$$d(q, p) = \pi R = \frac{\pi}{\sqrt{\beta}}$$

Note It follows that the universal cover M is also compact, so $|\pi_1(M)| < \infty$.

2 Differentiable Manifolds

- A topological manifold is a Hausdorff topological space such that each point has a neighborhood that is locally homeomorphic to \mathbb{R}^n
- A differentiable manifold is chatacterized by the additional condition that the overlap maps are smooth.

Definition let M be a set. A *chart* for M is a pair $(U, \psi), U \subseteq M, \psi : U \to \mathbb{R}^n$ injective, $\psi(U)$ open in \mathbb{R}^n .

 $\psi(p) = (x^1(p), \dots, x^n(p))$ (coordinate functions on U)

We call $\psi^{-1}: \psi(U) \subseteq \mathbb{R}^n \longrightarrow U \subseteq M$ a parametrization of U

$$\psi^{-1}(x_1,\ldots x_n) = p$$

We cover M with charts:

$$M = \cup_{\alpha \in \mathcal{A}} U_{\alpha}$$

and examine their behaviour on an overlap

$$W := U_{\alpha} \cap U_{\beta}.$$

Definition We call $(U_{\alpha}, \psi_{\alpha})$ and $(U_{\beta}, \psi_{\beta})$ (smoothly) compatible if $\psi_{\alpha}(W), \psi_{\beta}(W)$ are open in \mathbb{R}^{n} and the overlap (or transition) map

$$\psi_{\beta} \circ (\psi_{\alpha}^{-1}|_{\psi_{\alpha}(W)}) : \psi_{\alpha}(W) \to \psi_{\beta}(W)$$

and its inverse are infinitely differentiable.

Definition A differentiable manifold of dimension n is given by a set M equipped with a collection of charts $(U_{\alpha}, \psi_{\alpha})_{\alpha \in \mathcal{A}}$ such that

- i. $\cup_{\alpha \in \mathcal{A}} U_{\alpha} = M$
- ii. each pair of charts is smoothly compatible
- iii. the induced topology of M is Hausdorff

Motivation for ii.

Let
$$f: M \to \mathbb{R}$$
.

Then in coordinates:

$$f \circ \psi_{\alpha}^{-1}$$
 smooth $\Leftrightarrow f \circ \psi_{\beta}^{-1}$ smooth

$$\underbrace{f \circ \psi_{\alpha}^{-1}}_{\text{on } \mathbb{R}^n} = \underbrace{(f \circ \psi_{\beta}^{-1})}_{\text{on } \mathbb{R}^n} \circ \underbrace{(\psi_{\beta} \circ \psi_{\alpha}^{-1})}_{\mathbb{R}^n \to \mathbb{R}^n}$$

Example

• \mathbb{R}^n

• any open set $M := U \subseteq \mathbb{R}^n$ just one chart

$$\operatorname{id}_U: M \supseteq U \to U \subseteq \mathbb{R}^n$$

• graph of a smooth function

$$f: V \subseteq \mathbb{R}^n \to \mathbb{R} \ (V \text{ open})$$

just one chart: projection from the graph to V via $(z, f(z)) \mapsto z$.

- any set $M \subseteq \mathbb{R}^n$ that can be written locally as a graph
- e.g.

$$S^n := \partial B_1 \subseteq \mathbb{R}^{n+1}$$

needs 2(n+1) charts (of graph projection type)

• Möbius strip:

$$M := (0,3) \times (0,1) / \sim$$

equivalence relation: $(x, y) \sim (x + 2, y - 1), 0 < x < 1, 0 < y < 1$. The natural projection is

$$\begin{aligned} \pi : (0,3) \times (0,1) &\to M \\ (x,y) &\to [(x,y)] := \text{ equivalence class of } (x,y) \end{aligned}$$

2 charts:

$$\psi_1^{-1} := \pi | (0,2) \times (0,1) \to M$$

$$\psi_2^{-1} := \pi | (1,3) \times (0,1) \to M$$

 G(n,k) := {all k-dimensional subspaces of Rⁿ} This is called the *(real)* Grassmannian of k-planes in Rⁿ.
 Exercise What's its dimension?

$$\mathbb{R}P^{n} := \{ \text{all lines through the origin in } \mathbb{R}^{n+1} \} \\ = G(n+1,1)$$

Exercise Find charts for $\mathbb{R}P^n$

- configuration space of all 3-4-5 triangles in \mathbb{R}^2
- configuration space of all (equilateral) 1-1-1 triangles
- Even the space of {a-a-a triangles in ℝ² : a ≥ 0} is a manifold. Exercise: What manifold is this?

2.1 Topology of M

How to define a notion of open sets in M? We transfer them from \mathbb{R}^n via charts. This results in a *local* test, as follows.

Definition $W \subseteq M$ is open (in M) if $\forall \alpha \in A, \psi_{\alpha}(W \cap U_{\alpha})$ is open in \mathbb{R}^{n} .

Let $\mathcal{T} := \{ \text{open sets } S \text{ in } M \}$

Proposition 2.1 (Exercise) \mathcal{T} has the following properties:

i.

 $V, W \in \mathcal{T} \Rightarrow V \cap W \in \mathcal{T}$

ii.

 $W_{\beta} \in \mathcal{T} \ \forall \beta \in B \Rightarrow \cup_{\beta \in B} W_{\beta} \in \mathcal{T}$

iii.

$$\varnothing, M \in \mathcal{T}$$

A collection of subsets of a set M that satisfies (1)-(3) is called a *topology* on M, and (M, \mathcal{T}) is called a *topological space*.

Example The collection of open sets in a metric space (X, d) always satisfies (1)-(3). It is called the *topology induced by the metric d*.

In our case, M has no metric. \mathcal{T} is called the topology induced by the charts. Using a topology one can express

- continuity
- convergence, topological boundaries
- paths
- connectedness
- simple connectedness, number of holes

Definition A map $f : (X, \mathcal{T}) \to (Y, \mathcal{S})$ between topological spaces is called a *homeomorphism* (or a *topological equivalence*, or *bicontinuous*) if f is bijective and preserves open sets:

$$U \in \mathcal{T} \Leftrightarrow f(U) \in \mathcal{S}.$$

Exercise Show that U_{α} is open in M, and each chart

$$\psi_{\alpha}: M \supseteq U_{\alpha} \to \psi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^{n}$$

is a homeomorphism.

The topology on U_{α} is defined by $\mathcal{T}_{U_{\alpha}} := \{W \cap U_{\alpha} | W \in \mathcal{T})\}$ Verify: $\mathcal{T}_{U_{\alpha}}$ is a topology on U_{α} . It is called the *subspace topology* induced by \mathcal{T} on U_{α} .

Definition (X, \mathcal{T}) is *Hausdorff* if any two points $x, y \in X, x \neq y$ can be separated by open sets, i.e. $\exists U, V$ in \mathcal{T} so that $x \in U, y \in V, U \cap V = \emptyset$.

Observation: A metric space is Hausdorff.

Example

$$\mathcal{T} := \{ \varnothing, \{a, b\}, \{b\} \}$$

(b converges to a but a doesn't converge to b)

Why Hausdorff?

Consider the example.

$$(x,1) \sim (x,2), x \neq 0$$
$$M := \mathbb{R} \times \{1\} \cup \mathbb{R} \times \{2\} / \sim$$

The 2 points at the origin cannot be separated by open sets! This space fulfills conditions (1)-(2) of definition of a smooth manifold (check!) but fails to be Hausdorff. This is highly undesirable: For example, M could never be given a metric.

2.1.1 Maximal Atlas

Suppose we have an *atlas*

$$\mathcal{A} = (U_{\alpha}, \psi_{\alpha})_{\alpha \in A}$$

There may be *many* other charts (U, ϕ) that are compatible with each chart in \mathcal{A} . Let

$$\mathcal{A} := \{ \text{all charts } (U, \phi) \text{ compatible with each chart in } \mathcal{A} \}$$

Easy to verify: These charts are also compatible with each other. Thus \mathcal{A} is an atlas. $\overline{\mathcal{A}}$ is the (unique) maximal atlas containing \mathcal{A} .

We call $\overline{\mathcal{A}}$ the differentiable structure (or smooth structure) induced by \mathcal{A} . We also observe that $\mathcal{T}_{\overline{\mathcal{A}}} = \mathcal{T}_{\mathcal{A}}$ **Definition** A differentiable manifold (smooth manifold, C^{∞} manifold) is a pair (M, \mathcal{A}) where \mathcal{A} is a maximal atlas (satisfies (1)-(3)).

Remark (Freedman/Donaldson 1980's)

Starting in n = 4, there are topological manifolds that cannot be given a smooth structure.

Smooth functions from $M \to N$

 M^n, N^m smooth manifolds,

$$\phi: M \to N$$

a function.

Definition

- i. ϕ is smooth if ϕ is smooth near each $p \in M$.
- ii. ϕ is smooth near p if there exist charts ψ, χ

$$p \in U \stackrel{\psi}{\to} \mathbb{R}^n$$

$$\phi(p) \in V \stackrel{\chi}{\to} \mathbb{R}^m$$

such that $\phi(U) \subseteq V$

and

$$\chi \circ \phi \circ \psi^{-1} | \psi(U) : \psi(U) \to \mathbb{R}^m$$

is infinitely differentiable on U.

Remark Using the chain rule, it follows that ϕ is smooth in *all* charts.

Definition A function $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ is *continuous* provided

$$V \in \mathcal{S} \Rightarrow f^{-1}(V) \in \mathcal{T}$$

Proposition 2.2 A smooth map between differentiable manifolds is continuous with respect to the topologies induced by the smooth structures.

3 Tangents, differentials of maps

Tangent vectors

Here're two alternative ways of defining tangent vectors:

i. Identify together vectors in charts to equivalence classes via the equivalence relation $(X, \alpha, p) \sim (\tilde{X}, \beta, p)$ where

$$\tilde{X}^{i} = \sum_{j=1}^{n} \frac{\partial \left(\psi_{\beta} \circ \psi_{a}^{-1}\right)^{i}}{\partial x^{j}} X^{j}, \quad i = 1, \dots, n.$$

ii. A tangent vector is a *directional derivative operator* coming from differentiation along some smooth curve.

3.1 Tangent vector as directional derivative operator

 $C^{\infty}(M) := \{ \text{infinitely differentiable functions } M \to \mathbb{R} \}$

Motivation

Let $X \in \mathbb{R}^n$ be a vector based at $p \in \mathbb{R}^n$. X yields a linear operator $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ as follows: pick curve $\gamma, \gamma(0) = p, \dot{\gamma}(0) = X$, e.g. $t \mapsto p + tX$, then define

$$\begin{aligned} X: C^{\infty}(\mathbb{R}^n) &\to \mathbb{R} \\ f &\mapsto \left. \frac{d}{dt} \right|_0 f(\gamma(t)). \end{aligned}$$

Compute

$$X \cdot f = \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) \frac{d\gamma^{j}}{dt}(0)$$
$$= \sum_{j=1}^{n} \frac{\partial f}{\partial x^{j}}(p) X^{j}$$

On a manifold, we have the curves γ but not yet X.

Definition Let $p \in M$. A *tangent vector to* M *at* p is a linear function

$$X: C^{\infty}(M) \to \mathbb{R}, f \mapsto X \cdot f$$

that arises as the directional derivative along some smooth curve starting at p, i.e.

$$\exists \gamma : (-\varepsilon, \varepsilon) \to M \text{ smooth}, \gamma(0) = p$$

such that

$$X \cdot f = \left. \frac{d}{dt} \right|_{t=0} f(\gamma(t)) \ \forall f \in C^{\infty}(M).$$

(One says that X is the velocity vector of γ at t = 0)

Definition

$$T_pM := \{(p, X) \mid X \text{ is a tangent vector to } M \text{ at } p\}$$

tangent space of M at p. Informally, we often use X to stand for the pair (X, p).

Expression in coordinates

i. Coordinate vectors

Let $p \in M$, $\psi : U \subseteq M \to \mathbb{R}^n$ a chart near $p, \ \tilde{p} := \psi(p)$. $\tilde{f} := f \circ \psi^{-1}$. Consider the *coordinate curve*

$$\begin{split} \hat{\beta}_i &: t \mapsto \tilde{p} + t e_i \text{ in } \mathbb{R}^n, \\ \beta_i &:= \psi^{-1} \circ \tilde{\beta}_i \quad \text{in } M. \end{split}$$

Define

$$\left(\frac{\partial}{\partial x^i}\right)_p \equiv \left(\frac{\partial}{\partial x^i}\right)_{p,\psi} \in T_p M$$

by

$$\left(\frac{\partial}{\partial x^i}\right)_p \cdot f := \left.\frac{d}{dt}\right|_{t=0} f(\beta_i(t)).$$

Compute

$$\begin{split} \left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot f &= \left.\frac{d}{dt}\right|_{0} f \circ \beta_{i} \\ &= \left.\frac{d}{dt}\right|_{0} \tilde{f} \circ \tilde{\beta}_{i} \\ &= \left.\frac{d}{dt}\right|_{0} \tilde{f}(\tilde{p} + te_{i}) \\ &= \left.\frac{\partial \tilde{f}}{\partial x^{i}}(\tilde{p}) \end{split}$$

Get $\left(\frac{\partial}{\partial x^1}\right)_p, \ldots, \left(\frac{\partial}{\partial x^n}\right)_p \in T_p M$, linearly independent in the vector space $\operatorname{Hom}(C^{\infty}(M), \mathbb{R}).$

ii. **Claim** Any tangent vector X in T_pM is a linear combination of the $\left(\frac{\partial}{\partial x^i}\right)_p$'s.

Proof For some curve γ with $\gamma(0) = p$:

$$X \cdot f = \frac{d}{dt} \Big|_{0} f(\gamma(t))$$
$$= \frac{d}{dt} \Big|_{0} \underbrace{(f \circ \psi^{-1})}_{\tilde{f}(x_{1},\dots,x_{n})} \circ \underbrace{(\psi \circ \gamma)}_{\tilde{\gamma}(t)}$$
$$= \sum_{j=1}^{n} \frac{\partial \tilde{f}}{\partial x^{j}}(\tilde{p}) \frac{d\tilde{\gamma}^{j}}{dt}(0)$$

with $\tilde{\gamma}(t) = (\tilde{\gamma}^1(t), \dots, \tilde{\gamma}^n(t))$

$$= \left(\sum_{j=1}^{n} \frac{d\tilde{\gamma}^{j}}{dt}(0) \left(\frac{\partial}{\partial x^{j}}\right)_{p}\right) \cdot f$$

 \mathbf{SO}

$$X = \sum_{j=1}^{n} \frac{d\tilde{\gamma}^{j}}{dt}(0) \left(\frac{\partial}{\partial x^{j}}\right)_{p}$$

Thus: $T_p M$ is an *n*-dimensional vectorspace with basis $\left(\frac{\partial}{\partial x^1}\right)_p, \dots, \left(\frac{\partial}{\partial x^n}\right)_p$

iii. Consider the following possible alternative definition of a tangent vector: A tangent vector to M at p is a linear functional

$$X: C^{\infty}(M) \to \mathbb{R}$$

that satisfies the Leibniz rule:

$$X \cdot (fg) = (X \cdot f)g(p) + f(p)X \cdot g$$

Exercise Prove this for n = 1, and find out if it's true for general n.

3.2 Differential of a map

Let $\phi: M^n \to N^m$ be smooth, $p \in M$.

Definition Define $d\phi(p) \equiv d\phi_p : T_pM \to T_{\phi(p)}N$ as follows: Let $X \in T_pM$, choose a path α such that X = velocity vector of α at t = 0, i.e.

$$X \cdot f = \left. \frac{d}{dt} \right|_0 f(\alpha(t)) \; \forall f \in C^\infty(M),$$

Let $\beta = \phi \circ \alpha$. Define $(Y \equiv) d\phi(p)(X) :=$ velocity vector of β at t = 0 i.e.

$$Y \cdot g := \left. \frac{d}{dt} \right|_0 g(\beta(t)) \; \forall g \in C^\infty(N).$$

Since $\beta(0) = \phi(\alpha(0)) = \phi(p)$, we get $Y \in T_{\phi(p)}N$.

Observe:

$$Y \cdot g = \frac{d}{dt} \Big|_{0} g(\phi(\alpha(t)))$$
$$= \frac{d}{dt} \Big|_{0} (g \circ \phi)(\alpha(t))$$
$$= X \cdot (g \circ \phi)$$

which shows that Y depends only on X and not on the choice of α . This also shows that $d\phi(p)$ is linear. (We could have taken $Y \cdot g := X(g \circ \phi)$ to be the definition of $d\phi_p(X)$)

In coordinates

Let
$$X \in T_p M$$
, $Y := d\phi(p)(X) \in T_q M$, $q := \phi(p)$.
Write
 $X = X^i \left(\frac{\partial}{\partial x^i}\right)_p$, $Y = \underbrace{Y^j \left(\frac{\partial}{\partial y^j}\right)_q}_{\sum_{i=1}^m}$

Einstein summation convention: paired indices, one upper, one lower, are summed over appropriately.

We want to express

$$Y^j = ? \cdot X^i.$$

Set $\tilde{\phi} := \chi \circ \phi \circ \psi^{-1}, \ \tilde{g} := g \circ \chi^{-1}$ Compute:

$$\begin{split} Y \cdot g &= X \cdot (g \circ \phi) \\ &= X^{i} \left(\frac{\partial}{\partial x^{i}} \right)_{p} \cdot (g \circ \phi) \\ &= X^{i} \left(\frac{\partial}{\partial x^{i}} \right)_{p} \cdot \left[\underbrace{(g \circ \chi^{-1})}_{\tilde{g}} \circ \underbrace{(\chi \circ \phi \circ \psi^{-1})}_{\tilde{\phi}} \circ \psi \right] \\ &= X^{i} \left(\frac{\partial}{\partial x^{i}} \right)_{p} \tilde{g} \circ \tilde{\phi} \circ \psi \\ &= X^{i} \frac{\partial (\tilde{g} \circ \tilde{\phi})}{\partial x^{i}} (\tilde{p})^{-1} \\ &= X^{i} \frac{\partial \tilde{g}}{\partial y^{j}} (\tilde{q}) \frac{\partial y^{j}}{\partial x^{i}} (\tilde{p}) \quad \text{(chain rule)} \\ &= \left(X^{i} \frac{\partial y^{j}}{\partial x^{i}} (\tilde{p}) \left(\frac{\partial}{\partial y^{j}} \right)_{q} \right) \cdot g \end{split}$$

i.e.

$$Y = X^{i} \frac{\partial y^{j}}{\partial x^{i}} (\tilde{p}) \left(\frac{\partial}{\partial y^{j}} \right)_{q}$$

i.e.

$$Y = Y^j \left(\frac{\partial}{\partial y^j}\right)_q,$$

where

$$\underbrace{Y^j}_m = \underbrace{\frac{\partial y^j}{\partial x^i}(\tilde{p})}_{m \times n} \underbrace{X^i}_n$$

Shows: $d\phi(p)$ is given in coords by the matrix

$$\frac{\partial y^j}{\partial x^i} \left(\equiv \frac{\partial \tilde{\phi}^j}{\partial x^i} \right)$$

Proposition 3.1 (Chain rule)

¹previously showed: $\left(\frac{\partial}{\partial x^i} \cdot f = \frac{\partial \tilde{f}}{\partial x^i}(\tilde{p}), \ \tilde{f} = f \circ \psi^{-1}\right)$

If

$$M \xrightarrow{f} N \xrightarrow{g} P$$

$$T_pM \xrightarrow{df_p} T_{f(p)}N \xrightarrow{dg_{f(p)}} T_{g(f(p))}P$$

then:

$$d(g \circ f)_p = dg_{f(p)} \circ df_p.$$

 ${\bf Proof}$ Transfer the chain rule

$$\mathbb{R}^m \to \mathbb{R}^n \to \mathbb{R}^p$$

to M, N, P via charts.

Products

Let M^m, N^n : be smooth manifolds with atlases

$$\mathcal{A} = (U_{\alpha}, \psi_{\alpha})_{\alpha \in A}$$
$$\mathcal{B} = (V_{\beta}, \chi_{\beta})_{\beta \in B}$$

where

$$\psi_{\alpha} : U_{\alpha} \to \mathbb{R}^{m}$$

$$\chi_{\beta} : V_{\beta} \to \mathbb{R}^{n}.$$

Give $M \times N$ the charts

$$\psi_{\alpha} \times \chi_{\beta} : U_{\alpha} \times V_{\beta} \to \mathbb{R}^{m} \times \mathbb{R}^{n},$$

(p,q) $\mapsto (\psi_{\alpha}(p), \chi_{\beta}(q))$

and the atlas

$$\mathcal{A} \times \mathcal{B} := \{ (U_{\alpha} \times V_{\beta}, \psi_{\alpha} \times \chi_{\beta}) \mid \alpha \in A, \beta \in B \}$$

Canonical projections:

$$\pi_M: M \times N \to M$$
$$(p,q) \mapsto p$$
$$\pi_N: M \times N \to N$$
$$(p,q) \mapsto q$$

Proposition 3.2 (Exercise)

Show $(M \times N, \mathcal{A} \times \mathcal{B})$ yields a manifold, and π_M , π_N are smooth.

Example $\mathbb{R}^p \times \mathbb{R}^q$ is the same as \mathbb{R}^{p+q}

$$S^1 \times S^1 = T^2$$
 (2-Torus)
 $T^n := S^1 \times \dots \times S^1$ (*n*-torus)

Example $\Xi := \{\text{space of right handed 3-4-5 triangles in } \mathbb{R}^2\}$ Project $T \in \Xi$ to $p(T) \in \mathbb{R}^2$ (the sharpest vertex) and to $\Theta(T) \in S^1$ (the angle that the length 4 side, directed away from p(T), makes with the positive *x*-axis). Then the bijection $(p, \Theta) : \Xi \to \mathbb{R}^2 \times S^1$ shows $\Xi = \mathbb{R}^2 \times S^1$.

Tangent bundle

M smooth. Define

i.

$$T_pM := \{(p, X) \mid X \in \text{Hom}(C^{\infty}(M), \mathbb{R}) \text{ is a tangent vector to } M \text{ at } p\}$$

so $0_p \neq 0_q$ when $p \neq q$. $(p, X) \equiv X$ (abuse of notation)

ii.

$$TM := \bigcup_{p \in M} T_p M = \{(p, X) : p \in M, X \in T_p M\}$$

 T_pM is called the *fiber* at *p*.

iii.

$$\pi: TM \to M$$
$$(p, X) \mapsto p$$

(canonical projection)

Proposition 3.3 TM has the structure of a 2n-dimensional manifold.

Let (U, ψ) be a chart for M

$$p \in U \subseteq M \quad \stackrel{\psi}{\mapsto} \quad \psi(p) = \left(x^{1}(p), \dots, x^{n}(p)\right) \in \mathbb{R}^{n}$$
$$X^{i}\left(\frac{\partial}{\partial x^{i}}\right)_{p} = X \in T_{p}M \quad \stackrel{d\psi(p)}{\longrightarrow} \quad \left(X^{1}, \dots, X^{n}\right) \in \mathbb{R}^{n}. \quad \text{(check this!)}$$

Define a chart for TM as follows: Set

$$U := TU = \pi^{-1}(U) = \bigcup_{p \in U} T_p M \subseteq TM$$

Define

$$\Psi: \mathbf{U} \to \psi(U) \times \mathbb{R}^{n} \text{ by}$$

(p, X) $\mapsto (x^{1}(p)), \dots, x^{n}(p)), X^{1}, \dots, X^{n})$
$$= \left(\underbrace{x^{1}, \dots, x^{n}}_{\text{coords of } p}, \underbrace{X^{1}, \dots, X^{n}}_{\text{coords of } X \text{ within } T_{p}X}\right)$$

The associated parametrization has a some what simpler form:

$$\Psi^{-1}: \left(x^1, \dots, x^n, X^1, \dots, X^n\right) \mapsto \left(\underbrace{\psi^{-1}(x^1, \dots, x^n)}_{p}, \sum X^i\left(\frac{\partial}{\partial x^i}\right)_p\right)$$

Exercise The charts (U, Ψ) are compatible and give TM the structure of a 2*n*-manifold. $\pi: TM \to M$ smooth. TM is *locally* a product $\psi(U) \times \mathbb{R}^n$

Example S^1 Coordinates:

$$\begin{array}{rcl} \mathbb{R} & \to & S^1 \\ \theta & \mapsto & [\theta] := \theta + 2\pi k, \, k \in \mathbb{Z} \end{array}$$

$$TS^{1} \xrightarrow{\ni} \left([\theta], a \left(\frac{\partial}{\partial \theta} \right)_{[\theta]} \right) \qquad [\theta] \in S^{1}, a \in \mathbb{R}$$

$$\cong \left| \begin{array}{c} \text{preserves smooth structure} \\ \downarrow \\ S^{1} \times \mathbb{R} \qquad \ni ([\theta], a) \end{array} \right.$$

 $TS^1 \simeq S^1 \times \mathbb{R}$ cylinder, a product, of the base S^1 with \mathbb{R} .

$$TS^{2} \ncong S^{2} \times \mathbb{R}^{2}$$
$$TS^{3} \cong S^{3} \times \mathbb{R}^{3}$$
$$TS^{4} \ncong S^{4} \times \mathbb{R}^{4}$$
$$\vdots$$

Definition A smooth vector field on M is a smooth function $X : M \to TM$ such that $X(p) \in T_pM \ \forall p \in M$. In coordinates $p \xrightarrow{\psi} (x^1, \dots, x^n)$

$$X(x^{1},...,x^{n}) = (x^{1},...,x^{n},X^{1}(x^{1},...,x^{n}),...,X^{n}(x^{1},...,x^{n}))$$

= $(X^{1}(x^{1},...,x^{n}),...,X^{n}(x^{1},...,x^{n}))$

Evidently, X is a smooth vector field \Leftrightarrow components $X^1(x^1, \ldots, x^n), \ldots, X^n(x^1, \ldots, x^n)$ of X are smooth.

Semi intrinsically, we write

$$X(p) = \sum_{i=1}^{n} \underbrace{X^{i}\left(x^{1}, \dots, x^{n}\right)}_{C^{\infty}} \left(\frac{\partial}{\partial x^{i}}\right)_{p}$$

Question: How many pointwise linearly independent vector fields can we find on S^n ? Specifically, we require $\forall p \in S^n, e_1(p), \ldots e_k(p)$ are linearly independent in T_pS^n .

Theorem 3.4 There is no nowhere-vanishing vector field on S^2 .

Theorem 3.5 (F.Adams) Gives a peculiar formula for the maximum number of pointwise linear independent vectorfields on S^n . (See Greenberg & Harper.)

$$TS^{1} \cong S^{1} \times \mathbb{R} \quad S^{1} \quad 1$$

$$S^{2} \quad 0$$

$$TS^{3} \cong S^{3} \times \mathbb{R}^{3} \quad S^{3} \quad 3$$

$$S^{4} \quad 0$$

$$S^{5} \quad \neq 0, 5$$

$$S^{6} \quad 0$$

$$TS^{7} \cong S^{7} \times \mathbb{R}^{7} \quad S^{7} \quad 7$$

4 Submanifolds, diffeomorphisms, immersions and submersions

Reference: Guillemin and Pollack Chap 1, pp 1-27 Let M be a smooth manifold, $N \subseteq M$ a subset.

Definition N is a (smooth) k-dimensional submanifold of M if $\forall x \in N$, $\exists U \ni x$ open and a chart $\psi : U \to \mathbb{R}^n$ such that

$$\psi(N \cap U) = (\mathbb{R}^k \times \{0\}) \cap \psi(U).$$

Atlas for N:

 $\mathcal{A}_N := \{ (V, \chi) | \quad V := N \cap U \quad \chi := \psi | N \cap U : N \cap U \to \mathbb{R}^k, (U, \psi) \text{ as above} \}.$

Examples

- open subset of a manifold
- S^n in \mathbb{R}^{n+1}
- S^{n-1} in S^n
- (prove later) classical groups $O(n), U(n), Sp(n), \ldots$ are submanifolds of $M^{n \times n} \cong \mathbb{R}^{n^2}$
- open upper hemisphere of S^n , in \mathbb{R}^{n+1}

Proposition 4.1

- (N, \mathcal{A}_N) is a smooth k-manifold.
- The inclusion map of N in M $i \equiv i_{N \subseteq M}$:

$$\begin{array}{cccc} N & \to & M \\ p & \mapsto & p \end{array}$$

is smooth.

• It's differntial

$$di_p: T_pN \to T_pM$$

is an injection $\forall p$, modelled on the linear inclusion $\mathbb{R}^k \subseteq \mathbb{R}^n$.

• The subspace topology on N coincides with the chart topology. For any $N \subseteq (M, \mathcal{T}_M)$ (not necessarily a submanifold), we define $\mathcal{T}_N := \{U \cap N | U \in \mathcal{T}_M\}$. called the subspace topology induced on N from (M, \mathcal{T}_M)

Proposition 4.2 T_N is a topology on N

Big Questions:

- i. When is the image of a smooth map a submanifold?
- ii. When is the zero-set of a smooth map a submanifold?

4.1 Immersions, submersions, diffeomorphisms

Let

$$\begin{array}{rcccc} f: & M^n & \to & N^m \\ df_p: & T_p M & \to & T_{f(p)} N. \end{array}$$

be smooth, and consider

Definition

- i. f is an *immersion* if df_p is injective $\forall p \in M$
- ii. f is a submersion if df_p is surjective $\forall p \in M$
- iii. f is a *diffeomorphism* if f is bijective and f^{-1} is also smooth. (NB: then $f^{-1} \circ f = id_M, (df^{-1})_{f(p)} \circ df_p = id_{T_pM}$, so df_p is an isomorphism)

Correspondingly, we have

- i. Local immersion theorem (Blatter II p.106)
- ii. Local submersion theorem (\equiv Implicit function theorem) (Blatter II p.99)
- iii. Inverse function theorem (Blatter II p.88)

The first two are dual and both are proved from iii.

Diffeomorphisms

$$(M,\mathcal{A}) \xrightarrow[f]{f^{-1}} (N,\mathcal{B})$$

f diffeomorphism $\Leftrightarrow f^{-1}$ diffeomorphism. Write: $M \stackrel{\text{diff}}{\cong} N$ It means: M and N "look the same" from a differentiable viewpoint.

Advanced Fact (Taubes/Donaldson 80's)

Starting in n = 4, a topological manifold can have 0,1 or ≥ 2 distinct (i.e. non-diffeomorphic) differentiable structures.

Example (Milnor 50's) The topological manifold S^7 has 28 distinct differentiable structures. Standard one: $S^7 := \{x \in \mathbb{R}^8 | |x| = 1\}$

Theorem 4.3 (Inverse function theorem) Let $f: M \to N$ be smooth. If $df_p: T_pM \to T_{f(p)}N$ is an isomorphism, then f is a diffeomorphism near p, that is, $\exists U \ni p, V \ni f(p)$ open such that $f|U: U \to V$ is a diffeomorphism.

Proof Transfer the usual Inverse Function Theorem from \mathbb{R}^n to M, N via charts.

Definition Let $f: M \to N$

- i. f is a local diffeomorphism if every $p \in M$ has a neighborhood $U \ni p$ such that f(U) is open in N and $f|U: U \to f(U)$ is a diffeomorphism.
- ii. f is a (smooth) covering map if every $q \in N$ has a neighborhood $V \ni q$ such that $f^{-1}(V) = \bigcup_{\delta \in \Delta} U_{\delta}$, where the U_{δ} are open disjoint sets in M, and $f|U_{\delta}: U_{\delta} \to V$ is a diffeomorphism for each δ .

Clear:

Covering map $\stackrel{\Rightarrow}{\not\Leftarrow}$ local diffeomorphism

Exercise Prove that the number of preimage points $f^{-1}(q)$ is constant on each *connected component* of N, if f is a covering map.

Example

$$\begin{array}{rccc} S^n & \stackrel{\pi}{\to} & \mathbb{R}P^n \\ p & \mapsto & \pi(p) := \text{line through } p \text{ and } 0 \end{array}$$

 π is a covering map (where we give $\mathbb{R}P^n$ a suitable smooth structure). Each $L \in \mathbb{R}P^n$ has two preimage points p, -p in S^n .

Let Γ be a group of diffeomorphisms from M to M, i.e.

$$\begin{array}{rcl} id_M \in \Gamma, & g \in \Gamma & \Rightarrow & g^{-1} \in \Gamma \\ & g, h \in \Gamma & \Rightarrow & g \circ h \in \Gamma \end{array}$$

Definition Γ acts freely and properly discontinuously on M if $\forall p \in M \exists U_{\text{open}} \ni p$ such that

$$g \neq h \in \Gamma \Rightarrow g(U) \cap h(U) = \emptyset.$$

Example

$$\mathbb{Z}_2 \cong \{id_{s^n}, g\}$$

where g(x) := -x, $g^2 = id_M$. Then \mathbb{Z}_2 acts freely and properly discontinuous on S^n .

Definition Let Γ be a group and M a manifold. Γ acts smoothly on M if there is a homomorphism of Γ to the group of diffeomorphisms ($\equiv \text{Diff}(M)$) of M.

Example \mathbb{Z}^n acts freely and properly discontinuously on \mathbb{R}^n by translation.

Notation

$$\begin{array}{rcl} \rho: \Gamma & \to & \mathrm{Diff}(M) & \mathrm{group \ action} \\ g & \mapsto & \rho(g) \\ \rho(g)(x) & \equiv & g(x) \end{array}$$

Definition We call $\Gamma \cdot x := \{g(x) | g \in \Gamma\}$ the orbit of x under action of Γ .

M decomposes into a disjoint union of orbits. Specifically one can easily see:

- i. for all $x, y \in M$, either $\Gamma \cdot x = \Gamma \cdot y$ or $\Gamma \cdot x \cap \Gamma \cdot y = \emptyset$
- ii. $M = \bigcup_{x \in M} \Gamma \cdot x$

Each orbit is an equivalence class for the relation

$$x \sim y \Leftrightarrow y = g(x) \; \exists g \in \Gamma.$$

We obtain:

$$\begin{array}{rcccc} \pi : & M & \to & M/\Gamma \\ & x & \mapsto & \Gamma \cdot x \end{array}$$

$$M/\Gamma := \{\text{set of orbits}\}\$$
$$= \{\Gamma \cdot x | x \in M\}\$$
$$= M/ \sim$$

Theorem 4.4 (Exercise)

If Γ acts freely and properly discontinuously on M, then $\pi : M \to M/\Gamma$ induces a smooth structure on M/Γ such that π is a covering map.

Warning Not every covering map comes from an appropriate group action!

Exercise Find an example.

Definition A subset A of a topological space X is *discrete* if for each $x \in A \exists U$ open such that $A \cap U = \{x\}$.

Exercise G Lie group (a manifold such that the group operations are smooth), Γ discrete subgroup (not necessarily normal!) and G/Γ coset space of Γ in G

- $SL(2,\mathbb{R})/SL(2,\mathbb{Z}) =?$ (3-manifold)
- $S^3/\{\pm 1\} \cong \mathbb{R}P^3$, S^3/\mathbb{Z}_ℓ (some 3-manifold)

$$\mathbb{Z}_{\ell} := \left\{ e^{2\pi i k/\ell} | k = 0, \dots, \ell - 1 \right\}$$

Exercise

Find all the manifolds (up to diffeomorphism) of the form \mathbb{R}^2/Γ , Γ acts freely and properly discontinuously on \mathbb{R}^2 by isometries (translations, rotations, refections and slide reflections).

* Same problem for \mathbb{R}^3 .

4.2 Immersions

An *immersion* is a function such that

$$\begin{array}{rcccc} f: & M^k & \to & N^n & \text{smooth} \\ df(p): & T_pM & \to & T_{f(p)}N & is an injection. \end{array} (\Rightarrow k \leq n)$$

Example The inclusion map $i: M \to N, x \mapsto x$ of any submanifold M of N is an immersion.

Example (curves) A regular curve ($\dot{\gamma}(t) \neq 0$)

$$\mathbb{R} \ni t \mapsto \gamma(t) \in \mathbb{R}^2$$

is an immersion.
Example (Canonical linear immersion)

$$\begin{array}{rccc} i: \mathbb{R}^k & \to & \mathbb{R}^n \\ (x^1, \dots, x^k) & \mapsto & (x^1, \dots, x^k, 0, \dots, 0) \end{array}$$

Theorem 4.5 (Local Immersion Theorem) Let $f: M \to N$ be smooth, $p \in M$ be fixed. Suppose

$$df_p: T_pM \to T_{f(p)}N$$

is injective. Then there exist local coordinates (x^1, \ldots, x^k) about $p, (y^1, \ldots, y^n)$ about f(p) such that in these coordinates, f has the form

 $(x^1,\ldots,x^k)\mapsto (x^1,\ldots,x^k,0,\ldots,0)=(y^1,\ldots,y^n)$

near p.

This says "f is smoothly equivalent to i". This means that any immersion can be straightend, out at least locally.

Proof later.

Corollary 4.6 If df_p is injective at p then df_p will be injective for all q near *p*.

So $\{p \in M | df_p \text{ injective}\}\$ is open. "That is , injectivity of the differential of f is an open condition on points of M".

Corollary 4.7 The image under an immersion of a sufficiently small open set of M is a submanifold of N.

Question:

When is the image of a smooth map a *submanifold* of the target manifold?

Theorem 4.8 If $f: M \to N$ is an injective immersion and a homeomorphism onto it's image², then f(M) is a smooth submanifold of N and f is a diffeomorhism from M to f(M).

Proof

²This means: $f: M \to f(M)$ is a homeomorphism (where f(M) has the subspace topology coming form N).

i. Fix $q \in f(M), p := f^{-1}(q)$ (unique, $f : M \to f(M)$ bijective). By the Local Immersion Theorem, $\exists U_{\text{open}} \ni p, W_{\text{open}} \ni q$ such that

$$f|U:U\to W$$

is the cannonical linear immersion

$$i: \mathbb{R}^k \to \mathbb{R}^k \times \mathbb{R}^{n-k}$$

in coordinate systems (x^1, \ldots, x^k) on U and (y^1, \ldots, y^n) on W. Thus f(U) is a submanifold of N and f|U is a diffeomorphism from U to f(U). Since f is a homeomorphism from M to f(M) and U is open in M, f(U) is open in f(M), i.e.

$$f(U) = V \cap f(M)$$

for some V open in N.

This tells us: f(U) is cleanly separated via V from the rest of f(M).

In fact, we have that $f(M) \cap V$ is a submanifold of N.(Recall that in the coordinates y^1, \ldots, y^n on N near q, f(M) maps to an open set in \mathbb{R}^k)

Since such a V can be found about any point q of f(M), it follows that f(M) is a submanifold of N.

ii. $f: M \to f(M)$ is a local diffeomorphism by the above, and $f: M \to f(M)$ is a homeomorphism. So $f^{-1}: f(M) \to M$ exists. Using the Inverse Function Theorem, f^{-1} is smooth.

Homeomorphism-ness is hard to test directly.

Definition If $f: M \to N$ satisfies the conclusions of the previous Theorem (ie f(M) is a submanifold of N and $f: M \to f(M)$ is a diffeomorphism), we call f an *embedding* of M in N.

Theorem 4.9 Suppose $f : M \to N$ is an injective immersion and M is compact. Then f is an embedding.

Proof Must show: $f: M \to f(M)$ homeomorphism. Note that f is bijective and continuous. Thus it suffices to show that f^{-1} is continuous, i.e. show: if U open in M then f(U) is open in f(M).

$$U \text{ open in } M \implies M \setminus U \text{ closed in } M$$

$$\implies M \setminus U \text{ compact (since } M \text{ is compact}$$

$$\implies f(M \setminus U) = f(M) \setminus f(U) \text{ compact}$$

$$\implies f(M) \setminus f(U) \text{ closed in } f(M)$$

$$\implies f(U) \text{ open in } f(M).$$

Proof (*Local Immersion Theorem*) The theorem is entirely local, so without loss of generality we may assume

$$f: \mathbb{R}^k \supseteq U \to V \subseteq \mathbb{R}^n, \ U, V \text{ open}, \ p = 0$$

Without loss of generality (via postcomposition with a *linear* tronsformation of \mathbb{R}^n) we may assume

$$df_p = i : \mathbb{R}^k \quad \to \quad \mathbb{R}^n$$

(x¹,...,x^k) $\mapsto \quad (x^1,...,x^k,0,...,0)$
(canonical linear immersion)

To apply the Inverse Function Theorem we *augment* \mathbb{R}^k to \mathbb{R}^n by adding n-k new variables. We extend f to a new function F by

$$U \times \mathbb{R}^{n-k} \to \mathbb{R}^k \times \mathbb{R}^{n-k}$$
$$(x', x'') \mapsto f(x') + (0, x'')$$

Compute for: $(X', X'') = X \in T_P(U \times \mathbb{R}^{n-k}) = \mathbb{R}^k \times \mathbb{R}^{n-k}$

$$dF_p(X', X'') = \underbrace{df_p}_i(X') + (0, X'') \\ = (X', 0) + (0, X'') \\ = (X', X'')$$

i.e.

$$dF_p = \mathrm{id}_{\mathbb{R}^n}$$

As matrices:

$$dF_p = \left(\begin{array}{c} \frac{df_p}{x'} \\ \vdots \\ \frac{y'}{x''} \end{array}\right) \left(\begin{array}{c} y' \\ y'' \end{array}\right) = \left(\begin{array}{c} I & 0 \\ 0 & I \end{array}\right) = I$$

By the Inverse Function Theorem, $\exists W \text{ open } \ni p, F(W) \text{ open } \ni F(p,0) = f(p)$ such that

 $F|W: W \to F(W)$

is a diffeomorphism. So $G := (F|W)^{-1}$ is a valid chart for F(W). So we can use (x^1, \ldots, x^n) as coordinates on F(W). Let $U_1 := W \cap (U \times \{0\})$. Get: (x^1, \ldots, x^k) coordinates on U,

 (X^1, \dots, X^n) coordinates on F(W)

Then in these coordinates f has the form

$$(x^1,\ldots,x^k)\mapsto(x^1,\ldots,x^k,0,\ldots,0).$$

Theorem 4.10 (Graphical Image Theorem) (Restatement of Local Immersion Theorem)

The image of a smooth map whose differential is injective at one point can be written locally, in the original target variables (y^1, \ldots, y^n) , as the graph of (n-k) of the variables as a function of remaining k.

Recall that if $f: M \to N$ is injective immersion and M compact then f is an embedding. Let's try to generalize this to M noncompact.

Definition $f: X \to Y$ is proper if $K \subseteq Y$, K compact $\Rightarrow f^{-1}(K)$ compact

Theorem 4.11 If $f : M \to N$ injective immersion and proper then f is an embedding.

Proof Exercise.

Example $\mathbb{R} \to T^2$ with an irrational slope: injective immersion, not proper. The image is dense in T^2 so it isn't an embedding.

Definition We call a topological space (X, \mathcal{T}) second countable if there exists a countable collection of open sets that generate the topology \mathcal{T} via arbitrary unions, i.e. \mathcal{T} has a countable base.

Example

\mathbb{R}	$\left\{ \left(\frac{p}{q}, \frac{r}{s}\right) p, q, r, s \in \mathbb{Z}, q, s \neq 0 \right\}$	countable base
\mathbb{R}^n	products of such intervals:	countable base

Theorem 4.12 (Whitney Theorem) Every (paracompact or second countable) smooth n-manifold can be embedded smoothly in \mathbb{R}^{2n} .

Example

$S^1 \subseteq \mathbb{R}^2$	embedding
$\mathbb{R}P^2\subseteq\mathbb{R}^4$	Veronese embedding
$\mathbb{R}P^2 \to \mathbb{R}^3$	Boy's immersion

There exist no embedding of $\mathbb{R}P^2$ in \mathbb{R}^3

4.3 Submersions

Zero Sets

Question $f: M \to N$ smooth. When is $f^{-1}(q)$ a submanifold of M?

Example

$$f:\mathbb{R}^2\to\mathbb{R}$$

 $f(x,y) := x^3 - y^2, f^{-1}(0)$ is a cone with a cusp (not smooth at (0,0)

$$\nabla f = (3x^2, 2y)$$

Consider

$$f: M \to N \text{ smooth}$$

 $df_p: T_p M \to T_{f(p)} N$

We require: df_p surjective $\forall p \in M$.

Example (Canonical linear projection) Let $n \ge k$ and define

$$\begin{aligned} \pi : \mathbb{R}^n &\to \mathbb{R}^k \\ (x^1, \dots, x^n) &\mapsto (x^1, \dots, x^k). \end{aligned}$$

Then π is a submersion.

Example

Then π_M, π_N are submersions.

Example (Exercise) $TM \xrightarrow{\pi} M$ is a submersion.

Theorem 4.13 (Local Submersion Theorem) $f : M^n \to N^k$ smooth, $p \in M$, $df_p : T_pM \to T_{f(p)}N$ surjective. Then there are coordinates (x^1, \ldots, x^n) near $p, (y^1, \ldots, y^k)$ near f(p), such that f has the form

$$(x^1,\ldots,x^n)\mapsto(y^1,\ldots,y^k)$$

Notation:

$$\mathbb{R}^{n} = \mathbb{R}^{k} \times \mathbb{R}^{n-k} \ni (x^{1}, \dots, x^{k}, x^{k+1}, \dots, x^{n}) = (x', x'')$$
$$\pi' : \mathbb{R} \to \mathbb{R}^{k}, \quad x \mapsto x'$$
$$\pi'' : \mathbb{R}^{n} \to \mathbb{R}^{n-k}, \quad x \mapsto x''$$

Proof Since the theorem is local, we may work in open sets in Euclidean space:

$$f: U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^k$$
$$(x^1, \dots, x^n) \qquad (y^1, \dots, y^k)$$

U, V open.

Precomposing f with an appropriate linear transformation $\mathbb{R}^n \to \mathbb{R}^n$, we may assume

$$df_p = \pi' : \mathbb{R}^n \quad \to \quad \mathbb{R}^k$$
$$(x', x'') \quad \mapsto \quad x'$$

To apply the Inverse Function Theorem, *complete* f to a map F as follows:

$$F: U \to V \times \mathbb{R}^{n-k}$$

(x', x'') $\mapsto (f(x', x''), \underbrace{\pi''(x)}_{\equiv x''})$

Now let $X = (X', X'') \in T_p(\mathbb{R}^k \times \mathbb{R}^{n-k}) = \mathbb{R}^k \times \mathbb{R}^{n-k}$

Compute

$$dF_p(X', X'') = \left(\underbrace{df_p}_{\pi'}(X', X''), \underbrace{d\pi''_p}_{\pi''}(X', X'')\right) \\ = (X', X'').$$

So $dF_p = \mathrm{id}_{\mathbb{R}^n}$ is an isomorphism.

$$\left(dF_p = \left(\begin{array}{c} \frac{df_p}{x'} \\ \vdots \\ \frac{y'}{x''} \end{array}\right) \left(\begin{array}{c} y' \\ y'' \end{array}\right) = \left(\begin{array}{c} I & 0 \\ 0 & I \end{array}\right) = I\right)$$

Thus by the Inverse Function Theorem, $\exists U_1 \subseteq U$ open, $W \subseteq V \times \mathbb{R}^{n-k}$ open such that

$$U_1 \xrightarrow{F|U_1} W$$

is a diffeomorphism. So $F|U_1$ is a valid chart map and we may replace the coordinates x^1, \ldots, x^n on U_1 by the coordinates y^1, \ldots, y^n coming form W. Then U_1 has the coordinates (y^1, \ldots, y^n) . $V \cap (W \cap \mathbb{R}^k \times \{0\})$ has coordinates (y^1, \ldots, y^k) . In these coordinates, f is represented by

$$(y^1, \dots, y^n) \mapsto (y^1, \dots, y^k).$$

Corollary 4.14 df_p surjective at $p \Rightarrow df_p$ surjective for all q near p (i.e. surjectivity of df is an open condition in the domain manifold.)

We return to our question:

When is the preimage $f^{-1}(q)$ a submanifold of M?

Corollary 4.15 Let $f : M^n \to N^k$ be a submerison. Then $f^{-1}(q)$ is an (n-k)-dimensional submanifold of M for any $q \in N$.

Note that the Local Submersion Theorem is really the Implicit Function Theorem in disguise.

We can be more precise in an answer to the above question.

Definition $f: M \to N$ smooth

• $p \in M$ regular point if df_p surjective

- $p \in M$ critical point if df_p not surjective
- $q \in N$ regular value if every $p \in f^{-1}(q)$ is a regular point
- $q \in N$ critical value if some $p \in f^{-1}(q)$ is a critical point.

Note that the set of *regular points* is open and the set of *critical points* is closed.

Example (Very standard!)

$$\begin{array}{rccc} f: \mathbb{R}^2 & \to & \mathbb{R} \\ f(x, y) & := & x^2 - y^2 \end{array}$$

Then

$$df = 2xdx - 2ydy, \text{ or more precisely} df_{(x,y)} = 2xdx_{(x,y)} - 2ydy_{(x,y)}$$

Thus (x, y) critical $\Leftrightarrow df_{(x,y)} = 0 \Leftrightarrow (x, y) = (0, 0)$ All $f^{-1}(q)$ are smooth exept $f^{-1}(0)$.

Corollary 4.16 $f: M^n \to N^k$ smooth, $q \in N$ regular value, then $f^{-1}(q)$ is a smooth submanifold of M.

5 Lie Groups: S^3 and SO(3)

Definition A *Lie group* is a group that has the structure of a smooth manifold such that the group operations

are smooth.

Example

$$O(n) := \{A \in M^{n \times n} | A^T A = 1\}$$
$$= \{A : \mathbb{R}^n \to \mathbb{R}^n | \langle Ax, Ay \rangle = \langle x, y \rangle \ \forall x, y \in \mathbb{R}^n\}$$

$$SO(n) := O(n) \cap \{\det A = 1\}$$
 (orientation preserving)

Exercise Prove O(n) is a Lie group by showing that 1 is a regular value of the function

$$A \in M^{n \times n} \mapsto A^T A \in M^{n \times n}_{\text{symm}}$$

Example The group of isometries of any Riemannian manifold is a Lie group (not easy at this stage).

Example

$$\operatorname{Isom}(\mathbb{R}^n) = \{ x \mapsto Ax + b | A \in \mathcal{O}(n), b \in \mathbb{R}^n \}$$

Exercise What is $\text{Isom}(T_{\text{square}}^2)$?

5.1 Quaternions

$$\mathcal{H} := \{a + bi + cj + dk | a, b, c, d \in \mathbb{R}\}$$
$$\cong \mathbb{R}^4 \text{ as a vector space over } \mathbb{R}$$

 $(\mathcal{H}, +, \cdot)$ is an *algebra* over \mathbb{R} .

Multiplication: 1 is multiplicative unit, and we require

$$ij = -ji = k$$
, $jk = -kj = i$, $ki = -ik = j$

so that

$$(a+bi+cj+dk)(e+fi+gj+hk) = ae - bf - cg - dh$$
$$+(af + be + ch - dg)i$$
$$+(ag + ce - bh + df)j$$
$$+(de + ah + bg - cf)k$$

Let u = a + bi + cj + dk define $\bar{u} := a - bi - cj - dk$ Check: $\bar{\bar{u}} = u$, $\overline{uv} = \bar{v}\bar{u}$. Set $|u|^2 := u\bar{u} = a^2 + b^2 + c^2 + d^2 > 0$ (usual norm on \mathbb{R}^4). Observe:

- $\frac{\overline{u}}{|u|^2}$ is the inverse of $u \neq 0$ so $(\mathcal{H} \setminus \{0\}, \cdot)$ is a Lie group.
- $|uv|^2 = uv\overline{uv} = uv\overline{v}\overline{u} = |v|^2|u|^2$ i.e. |uv| = |u||v|, " $|\cdot|$ is multiplicative".
- $S^3 := \{u | |u| = 1\}$ is closed under multiplication and inversion, so (S^3, \cdot) is a Lie group called the group of unit quaternions. Note that $S^3 \cong SU(2) \cong Sp(1)$

Definition A 1-parameter subgroup of a Lie group G is a homomorphism

 $(\mathbb{R},+) \to (G,\cdot)$

Example

$$\begin{aligned} (\mathbb{R},+) &\to & \mathbb{C} \subseteq (\mathcal{H},\cdot) \\ \theta &\mapsto & e^{i\theta} := \cos\theta + i\sin\theta. \end{aligned}$$

Then $e^{i(\phi+\psi)} = e^{i\phi} \cdot e^{i\psi}$, so $\theta \mapsto e^{i\theta}$ is a 1-parameter subgroup of S^3 . Now set

$$e^{j\theta} := \cos \theta + j \sin \theta$$
$$e^{k\theta} := \cos \theta + k \sin \theta$$

These are also 1-parameter subgroups. Take u := ai+bj+ck, $a^2+b^2+c^2 = 1$. Verify $u^2 = -1$ so $\{a+bu|a, b \in \mathbb{R}\} \cong \mathbb{C}$ as an algebra. Then

$$e^{u\theta} := \cos\theta + u\sin\theta$$

is also a 1-parameter sub group of S^3 .

Picture of S^3

$$i \mapsto (1,0,0)$$

$$j \mapsto (0,1,0)$$

$$1 \mapsto (0,0,0)$$

$$S^{3} \setminus \{-1\} \stackrel{\cong}{\to} \mathbb{R}^{3}$$

In stereographic projection, the 1-parameter subgroups become lines through the origin.

All 1-parameter subgroups are equivalent, i.e. $\exists v \in S^3$ such that $v(e^{u\theta})v^{-1} = e^{i\theta}$ (Proof later).

5.2 Smooth actions, left, right, adjoint actions of a Lie group on itself

Definition G Lie group, M smooth manifold. A smooth action of G on M is a smooth map

$$\phi: G \times M \to M (a, x) \mapsto \phi(a, x) \equiv \phi_a(x)$$

such that

$$\phi_e = \mathrm{id}_M$$
$$\phi_a \circ \phi_b = \phi_{ab}.$$

Consequences

• Each ϕ_a is diffeomorphism. To see this, compute

$$\phi_a \phi_{a^{-1}} = \phi_{aa^{-1}} = \phi_e = \mathrm{id}_M$$

so ϕ_a is invertible with $(\phi_a)^{-1} = \phi_{a^{-1}}$, so ϕ_a is a diffeomorphism.

• ϕ yields a homomorphism

$$\begin{array}{rcl} \phi:G & \to & \mathrm{Diff}(M) \\ a & \mapsto & \phi_a. \end{array}$$

in agreement with our previous defintion of an action of a group on a manifold.

Definition

$$\begin{array}{ll} L_a: & G \to G & \text{left translation} \\ & b \mapsto ab \end{array}$$

$$\begin{aligned} R_a: \quad G \to G \quad \text{right translation} \\ b \mapsto ba \end{aligned}$$

 $a \mapsto L_a$ and $a \mapsto R_{a^{-1}}$ are smooth actions of G on itself:

$$L_a L_b = L_{ab}, \qquad L_e = \mathrm{id}_G$$

$$R_{a^{-1}} R_{b^{-1}} = R_{(ab)^{-1}} = R_{b^{-1}a^{-1}}, \quad R_e = \mathrm{id}_G$$

Note also that $L_a R_b = R_b L_a$.

Definition The *adjoint action* is defined by

$$Ad_a: \quad G \to G$$
$$b \mapsto aba^{-1} = L_a R_{a^{-1}} b = R_{a^{-1}} L_a b$$

which is also a smooth action.

Example

$$\mathbb{R}^4 \cong \mathcal{H} = \{a + bi + cj + dk\} \supseteq S^3$$

Take $u \in S^3$, then $L_u, R_u, \operatorname{Ad}_u : \mathcal{H} \to \mathcal{H}$ are isometries, since |uv| = |u||v| = |v|. Set

$$\mathbb{R}^3 := \{ xi + yj + zk \mid x, y, z \in \mathbb{R} \}$$

Note that

 $T_1 S^3 \perp \mathbb{R} \cdot 1$

where $a \in \mathbb{R}$.

Now Ad_u preserves $\mathbb{R} \cdot 1$, so Ad_u preserves \mathbb{R}^3 , and

$$\operatorname{Ad}_u: \mathbb{R}^3 \to \mathbb{R}^3$$

is an isometry preserves O. Thus $\operatorname{Ad}_u \in O(3)$ and

$$\operatorname{Ad}: S^3 \to \operatorname{O}(3)$$

is a homomorphism, i.e. $\operatorname{Ad}_u \operatorname{Ad}_v = \operatorname{Ad}_{uv}$. Now O(3) consits of two connected components, namely the orientation-preserving orthogonal transformations (SO(3)), and the orientation-reversing ones. Clearly Ad : $S^3 \to O(3)$ is continuous (you may check this by finding a formula for it), and S^3 is connected. Thus Ad(S^3) \subseteq SO(3), i.e.

$$\mathrm{Ad}: S^3 \to \mathrm{SO}(3).$$

Exercise Find a formula for $Ad_u \in SO(3)$ and interpret it geometrically.

Kernel of Ad:

$$u \in \ker(\mathrm{Ad}) \Leftrightarrow uvu^{-1} = v \ \forall v \in \mathbb{R}^{3}$$

$$\Leftrightarrow u = a \in \mathbb{R} \cdot 1 \qquad (\mathrm{check})$$

$$\Rightarrow u = \pm 1$$

$$\ker(\mathrm{Ad}) = \{\pm 1\}$$

so $S^{3}/\{\pm 1\} \cong \mathrm{SO}(3) \text{ (as a group)}$

Exercise One easily verifies: Ad : $S^3 \to SO(3)$ is a 2:1 covering map that takes u and -u to the same point in SO(3). So

$$\operatorname{SO}(3) \stackrel{\text{diff}}{\cong} S^3 / \{\pm 1\} \stackrel{\text{diff}}{\cong} \mathbb{R}P^3$$

as smooth manifolds.

Recall the following lemmas, which might help.

Lemma 5.1 A local diffeomorphism $M \to N$ with a compact domain M is a covering map.

Lemma 5.2 A covering map with connected target has a constant preimage size

$$\#\pi^{-1}(q), q \in N$$

6 Lie brackets, flows of vector fields, Lie derivatives

6.1 Vector fields

Notation:

$$X: M \to TM, X(p) \in T_pM \ \forall p$$

Let ψ be a chart $\psi: U \subseteq M \to \mathbb{R}^n$

$$X(p) = \sum_{i=1}^{n} X^{i}(\psi^{-1}(x^{1}, \dots, x^{n})) \left(\frac{\partial}{\partial x^{i}}\right)_{p}$$

Warning Standard abuse of notation:

$$=\sum_{i=1}^{n} X^{i}(x^{1},\ldots,x^{n})\frac{\partial}{\partial x^{i}}$$

where we identify p with (x^1, \ldots, x^n) , i.e. we drop ψ .

$$C^{\infty}(TM) := \{C^{\infty} \text{vector fields on } M\}$$

$$\Gamma(TM) := \{\text{all vector fields on } M\}$$

Also write: $C^{\infty}(M, TM), C^{\infty}(U, TM)$, where $U \subseteq M$ is open.

$C^{\infty}(M)$:=	$\{C^{\infty} \text{ functions } M \to \mathbb{R}\}\$
$C^0(M)$:=	$\{\text{continuous functions } M \to \mathbb{R}\}\$
$C^1(M)$:=	$\{\text{continuously differentiable functions} M \to \mathbb{R}\}\$
$C^k(M)$:=	{functions $M \to \mathbb{R}$ such that all derivatives of orders
		$0, \ldots, k$ exist and are continuous (in coordinates)}

We say X is $C^k \Leftrightarrow X^i(x^1, \dots, x^n)$ are C^k

6.1.1 Lie Brackets

We wish to define $[X, Y], X, Y \in C^{\infty}(TM).^3$

 $^{^3 \}mathrm{See}$ Spivak I, 207-217

We have the map

$$C^{\infty}(TM) \times C^{\infty}(M) \to \Gamma(M) := \{ \text{functions } M \to \mathbb{R} \}$$
$$(X, f) \mapsto X \cdot f$$
$$(X \cdot f)(p) := \underbrace{X(p)}_{\in T_pM} \cdot \underbrace{f}_{\in C^{\infty}(M)} \in \mathbb{R}$$

Proposition 6.1 $X \cdot f \in C^{\infty}(M)$

 \mathbf{Proof} Use a chart

$$\psi: U \to \psi(U) \subseteq \mathbb{R}^n$$
$$p \mapsto (x^1, \dots, x^n)$$

Compute

$$(X \cdot f)(p) = X(p) \cdot f$$

= $X^{i}(p) \left(\frac{\partial}{\partial x^{i}}\right)_{p} \cdot f$
= $X^{i} \left(\psi^{-1}(x^{1}, \dots, x^{n})\right) \frac{\partial(f \circ \psi^{-1})}{\partial x^{i}}(x^{1}, \dots, x^{n})$

Consider the 2nd order differential operator $X \cdot (Y \cdot f)$, also written as XYf.

Proposition 6.2 Let $X, Y \in C^{\infty}(TM)$. Then there exists a unique vector field $Z \in C^{\infty}(TM)$ such that

$$Z \cdot f = (XY - YX)f, \ f \in C^{\infty}(M)$$

Basic idea: the 2nd order derivatives cancel.

Proof Get an expression for (XY - YX) f in coordinates. Suppress ψ . Write

$$X = X^i \frac{\partial}{\partial x^i}, \ Y = Y^j \frac{\partial}{\partial x^j}.$$

Compute

$$\begin{split} XYf &= \sum_{i} X^{i} \frac{\partial}{\partial x^{i}} \left(\sum_{j} Y^{j} \frac{\partial f}{\partial x^{j}} \right) \\ &= \sum_{i,j} X^{i} Y^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} + X^{j} \left(\frac{\partial Y^{i}}{\partial x^{j}} \right) \frac{\partial f}{\partial x^{i}} \\ YXf &= \sum_{i,j} Y^{i} X^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} + Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}} \end{split}$$

So we get

$$(XY - XY) f = \sum_{i,j} \left(X^j \frac{\partial Y^i}{\partial x^j} - Y^j \frac{\partial X^i}{\partial x^j} \right) \frac{\partial f}{\partial x^i}$$

Define the smooth vector field Z in the chart U by

$$Z := \sum_{i} Z^{i} \frac{\partial}{\partial x^{i}}, \ Z^{i} := \sum_{j} \left(X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \right)$$

Then

$$Z \cdot f = (XY - YX)f$$

This shows Z is well-defined independent of parametrization, smooth and unique.

Definition

$$\begin{split} [\cdot, \cdot] : C^{\infty}(TM) \times C^{\infty}(TM) & \to C^{\infty}(TM) \\ [X, Y] := XY - YX \end{split}$$

(as differential operator on $C^{\infty}(M)$) is called a *Lie bracket*.

Proposition 6.3 Let $X, Y, Z \in C^{\infty}(TM), a, b \in \mathbb{R}, f, g \in C^{\infty}(M)$. Then

- i. [X, Y] = -[Y, X] (anticommutative)
- ii. [aX + bY, Z] = a[X, Z] + b[Y, Z] (bilinear)
- *iii.* [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 (Jacobi identity)
- $iv. \ [fX,gY] = fg[X,Y] + f(X \cdot g)Y g(Y \cdot f)X$

Proof Jacobi Identity

$$\begin{bmatrix} [X,Y],Z \end{bmatrix} = \begin{bmatrix} XY - YX,Z \end{bmatrix} = (XY - YX)Z - Z(XY - YX) \\ \begin{bmatrix} [Y,Z],X \end{bmatrix} = \begin{bmatrix} YZ - ZY,X \end{bmatrix} = (YZ - ZY)X - X(YZ - ZY) \\ \begin{bmatrix} [Z,X],Y \end{bmatrix} = \begin{bmatrix} ZX - XZ,Y \end{bmatrix} = (ZX - XZ)Y - Y(ZX - XZ) \\ \text{sum} = 0$$

Definition A vector space V equipped with a bracket $[\cdot, \cdot] : V \times V \to V$ satisfying i, ii, iii is called a *Lie algebra*. So $C^{\infty}(TM)$ forms a Lie algebra. **Example** Another famous Lie algebra: V vector space over a field \mathbb{K}

$$\operatorname{End}_{\mathbb{K}}(V) := \operatorname{Hom}_{\mathbb{K}}(V, V)$$
$$[A, B] := AB - BA$$

 $(\operatorname{End}_{\mathbb{K}}(V), [\cdot, \cdot])$ is a Lie algebra.

Example $M^{n \times n}(\mathbb{R}), M^{n \times n}(\mathbb{C}).$

Relationships between the two kinds of $[\cdot, \cdot]$ occurs via the *Lie Algebra of* (matrix) *Lie groups*.

6.2 Integral curves and flows of vector fields⁴

Definition An integral curve of X is a path $\gamma : [a, b] \to M$ such that

$$\dot{\gamma}(t) = X(\gamma(t)), \ t \in [a, b].$$

In coordinates, this is an $n \times n$ first order ODE system. We write and obtain:

$$\gamma(t) = \left(x^{1}(t), \dots, x^{n}(t)\right) \in U \subseteq \mathbb{R}^{n}$$
$$\frac{dx^{1}}{dt} = X^{1}\left(x^{1}(t), \dots, x^{n}(t)\right)$$
$$\vdots$$
$$\frac{dx^{n}}{dt} = X^{n}\left(x^{1}(t), \dots, x^{n}(t)\right), \ a \leq t \leq b.$$

6.2.1 Existence, Uniquenes and smooth dependence on initial data

Consider the ODE system

$$(*) \begin{cases} \frac{d\gamma(t)}{dt} = X(\gamma(t)) & -a < t < b, a, b > 0\\ \gamma(0) = p & \text{require: } \gamma \text{ is } C^1 \end{cases}$$

Theorem 6.4 (Short-term existence, uniqueness, regularity for γ) Let $X \in C^{\infty}(TM)$. Then

i. $\exists \delta > 0$ such that (*) has a C^1 solution defined for $-\delta < t < \delta$. (Existence)

 $^{^4 \}mathrm{See}$ Spivak I Chap. 5.

- ii. Any C^1 solution of (*) is C^{∞} (Regularity)
- iii. Any two C^1 solutions of (*) on (-a,b), (-c,d), a, b, c, d > 0 agree on their common interval of definition $(-a,b) \cap (-c,d)$. (Uniqueness)

Proof

Analysis: Either Inverse Function Theorem on Banach spaces, or a successive approximation method⁵.

ii. Exercise

Remark $X \in C^k \Rightarrow$ Theorem holds but with γ in C^{k+1}

Dependence on Initial Conditions

Write $\gamma_x(t) \equiv \phi(x,t) \equiv \phi^t(x)$ (integral curve with initial point $\gamma_x(0) = x$). The equation (*) becomes

$$(*)' \begin{cases} \frac{\partial \phi(x,t)}{\partial t} &= X(\phi(x,t)), \quad x \in U, -a < t < b \\ \phi(x,0) &= x, \qquad x \in U. \end{cases}$$

Theorem 6.5 (Dependence on initial conditions of ϕ) Let $X \in C^{\infty}(TM), p \in M$.

- i. $\exists U \ni p, \delta > 0$ and a function $(C^1 \text{ in } t) \phi : U \times (-\delta, \delta) \to M$ that solves (*)'.
- ii. Any solution of (*)' that is C^1 in t is C^{∞} in x and t.
- iii. Any two solutions $\phi: U \times (-a, b) \to M, \psi: V \times (-c, d) \to M$ agree on the intersection of their domains.

Remark $X \in C^k \Rightarrow \phi$ is C^k in (x, t) (recall from above that ϕ is C^{k+1} in t).

New point of view:

$$\phi_t: \underbrace{U}_{\subseteq M} \to \underbrace{\phi_t(U)}_{\subseteq M}$$

The family $(\phi_t)_{-a < t < b}$ is called a *local flow of* X. Notation:

 $A \subset B$ means \overline{A} is compact and $\overline{A} \subseteq B$, read "A compactly contained in B". If \overline{A} is compact, we say A is precompact.

 $^{^5 \}mathrm{See}$ Lang reference in Spivak I chap 5. Alternately see Rivieère's differential geometry problem last year.

Theorem 6.6 (Larger U, smaller \delta) For any $U \subset M \exists \delta > 0$ such that the local flow is defined on $U \times (-\delta, \delta)$.

Proof By compactness of \overline{U} , we may cover \overline{U} by finitely many open sets V_1, \ldots, V_n such that there are flows (solving (*)')

$$\phi_i: V_i \times (-\delta_i, \delta_i) \to M.$$

Set $\delta := \min \delta_i > 0$. Define

$$\phi: U \times (-\delta, \delta) \to M$$

by:

$$\phi := \phi_i \text{ on } V_i \times (-\delta, \delta)$$

(Consistent by uniqueness assertion (iii) in previous Theorem)

Theorem 6.7 (Pseudogroup Property) If $\phi^t \circ \phi^s$ is defined on U for |s| < S, |t| < T, then ϕ^u is defined on U for |u| < S + T and

$$\phi^{t+s} = \phi^t \circ \phi^s \text{ on } U$$

If $\phi_t : M \to M$ exists for all time $t \in \mathbb{R}$, then ϕ_t is called a *complete flow*. Note that ϕ_t injective \Leftrightarrow uniqueness of initial value problem for *backwards* flow.

Proof Fix |s| < S, |t| < T. Combine the two paths via

$$\alpha(u) := \begin{cases} \gamma_x(u) & 0 \le u \le s \\ \gamma_{\gamma_x(s)}(u-s) & s \le u \le s+t \end{cases}$$

Note that

$$\gamma_x(s) = y = \gamma_{\gamma_x}(0) \implies \alpha \text{ is } C^0$$
$$\dot{\gamma}_x(s) \stackrel{(*)}{=} X(y) \stackrel{(*)}{=} \dot{\gamma}_{\gamma_x(s)} \implies \alpha \text{ is } C^1$$

Also α solves (*). So define (extend) γ via $\gamma_x(u) := \alpha(u), 0 \le u \le t + s$.

Remark (Used in above step) If $\gamma(u), a \leq u \leq b$ solves ODE (*), then so does the time shifted curve $\gamma(u-k), a+k \leq u \leq b+k$.

So $\phi^u: U \to M$ exists, $0 \le u \le t + s$ and $\phi^t \circ \phi^s = \phi^{t+s}$. Speciffically:

$$\phi^{t} \circ \phi^{s}(x) = \phi^{t}(\phi^{s}(x))$$

$$= \phi^{t}(\gamma_{x}(s))$$

$$= \gamma_{\gamma_{x}(s)}(t)$$

$$= \alpha(s+t)$$

$$= \gamma_{x}(s+t)$$

$$= \phi^{s+t}(x).$$

Corollary 6.8 Assume U open and ϕ_t exists on U. Then: $\phi_t(U)$ is open and $\phi_t|U: U \to \phi_t(U)$ is a diffeomorphism.

Proof

i. Assume first that ϕ_t is complete. Then by previous Theorem:

$$\phi_{-t} \circ \phi_t = \phi_{-t+t} = \phi_0 = \mathrm{id}_M.$$

So ϕ_t is invertible with inverse

$$(\phi_t)^{-1} = \phi_{-t} : M \to M$$

and ϕ_{-t} is smooth, so $\Rightarrow \phi_t : M \to M$ is a diffeomorphism and $\phi_t(U)$ open for any open $U \subseteq M$ and $\phi_t|U: U \to \phi_t(U)$ is a diffeomorphism.

ii. Next we do the global case (when ϕ_t is not complete).

Let $U \subset M$ and try for small t. Choose V open such that $U \subset V$ $V \subset M$. Choose δ so small that

$$\begin{aligned} \phi : \quad U \times [0, \delta] & \to V \\ \phi : \quad V \times [-\delta, 0] & \to M \end{aligned}$$

are defined. Then

$$\phi_{-\delta} \circ \phi_{\delta} : U \to M$$

is defined, so by above Theorem $\phi_{-\delta} \circ \phi_{\delta} = \text{id on } U$. It follows that $\phi_{\delta}|U$ is a local diffeomorphism, $\phi_{\delta}(U)$ is open, and $\phi_{\delta}|U$ is a diffeomorphism.

Lemma 6.9 A smooth map

$$\phi: U \to M \ (U \ open)$$

with a smooth left inverse $\psi : A \supseteq \phi(U) \to M, A$ open

$$\psi \circ \phi = id_U$$

is a diffeomorphism and $\phi(U)$ is open.

iii. Next, let $U \subset M$ and let t > 0 be an arbitrary time such that ϕ_t exsists on \overline{U} . Choose V open such that

$$\phi(\bar{U} \times [0,t]) \subset \subset V \subset \subset M.$$

For δ small enough, ϕ_{δ} will be defined on V and $\phi_{\delta} : V \to \phi_{\delta}(V)$ will be a diffeomorphism. Making δ slightly smaller, we can arrange

$$t = k\delta, \phi_t = \underbrace{\phi_\delta \circ \cdots \circ \phi_\delta}_k$$

on U. Thus $\phi_t|U$ is a diffeomorphism onto the open set $\phi_t(U)$.

iv. Now let $U \subseteq M$ be an arbitrary open set and let ϕ_t be defined on U. For ever $V \subset \subset U$, $\phi_t(V)$ is open and $\phi_t|V : V \to \phi_t(V)$ is a diffeomorphism. It follows that $\phi_t(U)$ is open and $\phi_t|U : U \to \phi_t(U)$ is a diffeomorphism.

Get in succession:

$$\begin{split} \phi_{\delta}: V \to \phi_{\delta}(V) \text{ diffeomorphism, } \phi_{\delta}(V) \text{ open} \\ U \subseteq V, \text{ so } \phi_{\delta}(U) \text{ is open} \\ \phi_{\delta}|U: U \to \phi_{\delta}(U) \text{ diffeomorphism} \\ \phi_{\delta}(U) \subseteq V, \text{ so}\phi_{\delta}(\phi_{\delta}(U)) \text{ is open} \\ \phi_{\delta}|\phi_{\delta}(U): \phi_{\delta}(U) \to \phi(\phi_{\delta}(U)) \text{ diffeomorphism} \\ \text{Thus } \phi_{2\delta} = \phi_{\delta} \circ \phi_{\delta}: U \to \phi_{\delta} \circ \phi_{\delta}(U) \text{ diffeomorphism} \\ \text{Induction } \Rightarrow \phi_t: U \to \phi_t(U) \text{ diffeomorphic} \\ \phi_t(U) \text{ is open.} \end{split}$$

Remark on uniqueness

$$\dot{x}(t) = X(x(t)), x(t) \in U \subseteq \mathbb{R}^n$$

Sufficient conditions for uniqueness: X is *Lipschitz*.

Example Fix $0 < \alpha < 1$. Consider

$$\begin{cases} \dot{x} &= x(t)^{\alpha}, \quad t \ge 0\\ x(0) &= 0. \end{cases}$$

Solving, we find a solution

$$x(t) = ((1 - \alpha)t)^{\frac{1}{1 - \alpha}}, t \ge 0$$

In fact, we have two solutions

$$\begin{aligned} x(t) &:= & \left\{ \begin{array}{cc} 0 & t \leq 0 \\ ((1-\alpha)t)^{\frac{1}{1-\alpha}}, & t \geq 0 \end{array} \right. \\ y(t) &:= & 0 \quad t \in \mathbb{R}. \end{aligned}$$

Since $\frac{1}{1-\alpha} > 1$, x(t) is C^1 in t.

Question How far can we extend the flow?

Definition A vector field is called *complete* if it possesses a flow $\phi_t : M \to M$ defined for all $-\infty < t < \infty$.

Remark Then $t \mapsto \phi_t$ defines a 1-parameter subgroup of Diff(M), or equivalently, a smooth action of \mathbb{R} on M.

Example

$$X(x,y) := (x,-y)$$
 on \mathbb{R}^2

A typical solution traces out a curve: xy = const, and has the form

$$\gamma(t) := \left(C_1 e^t, C_2 e^{-t}\right), t \in \mathbb{R}.$$

So this X is complete.

Example

$$\dot{x} = x^2, x(t) \in M := \mathbb{R}, X(x) = x^2 \frac{\partial}{\partial x}$$

Solution: $x(t) = \frac{1}{C-t}, -\infty < t < c \text{ (or } c < t < \infty)$ So this X is incomplete.

Example Clearly

$$\dot{y} = 1, y(t) \in N := (-\infty, 0)$$

is incomplete

Transform the equation to $x = -\frac{1}{y}, \dot{x} = \frac{\dot{y}}{y^2} = \frac{1}{(1/x)^2} = x^2$. It becomes equivalent to the previous problem, with $M = (0, \infty)$. In both cases, the trajectory runs off the end of the manifold in finite time

Example

$$X = \frac{\partial}{\partial x}, U \subseteq \mathbb{R}^2$$

Typically incomplete.

Corollary 6.10 (to group property and short-time existence) If ϕ : $U \times [0,T) \rightarrow M$ and $\phi(U \times [0,T)) \subset M$ then ϕ can be extended to a solution $\phi : U \times [0,T+\delta) \rightarrow M$ for some $\delta > 0$.

Proof Pick V such that

$$\phi(U \times [0,T)) \subseteq V \subset \subset M$$

 ϕ_t is defined on V for $0 \le t < T$ and $\delta > 0$ such that there is a local flow

$$\phi: V \times [0, \delta) \to M.$$

Then ϕ_s is defined on V for $0 \leq s < \delta$. Apply the group property to yield

$$\phi^{s+t} = \phi^s \circ \phi^t = \phi^u, \ 0 \le u < T + \delta,$$

i.e. we can extend ϕ to

$$\phi: U \times [0, T + \delta) \to M.$$

Significance A trajectory $\gamma(t)$ can be continued as long as it stays in a compact set of M. (i.e. if [0, T) is the *maximum* time of existence of $\gamma(t)$, then $\gamma(t)$ must leave every compact set of M.)

Corollary 6.11 If M is compact, then every smooth vector field on M is complete.

Theorem 6.12 If $X \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ has at most linear growth, *i.e.*

$$|X(x)| \le C_1 |x| + C_2, x \in \mathbb{R}^n,$$

then X is complete.

Example

$$\dot{x} = x, \ \dot{x} = x + 1, \ \dot{x} = \begin{cases} \log x, & x \ge 1 \\ \dots & x \le 1. \end{cases}$$

Proof Let $\dot{x}(t) = X(x(t)), x(t) \in \mathbb{R}^n, X : \mathbb{R}^n \to \mathbb{R}^n$. It follows:

$$\frac{d}{dt} |x(t)| = \langle \frac{dx}{dt}, \frac{x}{|x|} \rangle$$

$$\leq \left| \frac{dx}{dt} \right|$$

$$= |X(x(t))|$$

$$\leq C_1 |x(t)| + C_2$$

Compare |x(t)| to the solution of

$$\begin{cases} \frac{da}{dt} = C_1 a + C_2, \quad a(t) \in \mathbb{R} \\ a(0) = |x(0)| \end{cases}$$

г				
L				
L				
L	_	_	_	

Lemma 6.13

$$|x(t)| \le a(t), t \ge 0$$

Proof Let b(t) := |x(t)| - a(t). Compute

$$\frac{db}{dt} = \frac{d|x(t)|}{dt} - \frac{da}{dt}$$

$$\leq C_1|x| + C_2 - (C_1a + C_2)$$

$$= C_1b.$$

So b(t) solves:

$$\begin{cases} b(0) = 0\\ \frac{db(t)}{dt} \leq C_1 b(t) \end{cases}$$

Claim

$$b(t) \le 0 \ \forall t \ge 0.$$

To see this, we argue as follows.

On the open set $I \subseteq \mathbb{R}$ where we compute that b(t) > 0, set $B(t) := \log b(t)$. Write $I = \bigcup_{\alpha} (a_{\alpha}, b_{\alpha})$, where $(a_{\alpha}, b_{\alpha}) \cap (a_{\beta}, b_{\beta}) = \emptyset$. $\frac{dB}{dt} \leq C_1$.

Now
$$B(t) \to -\infty$$
 as $t \to a_{\alpha}{}^{t}$ inside (a_{α}, b_{α})
so $B(t) - C_{1}t \to -\infty$ as $t \to a_{\alpha}{}^{t}$
but $B(t) - C_{1}t$ is nonincreasing. This is impossible. Thus $I = \emptyset$.

This proves the claim.

Upshot:

$$|x(t)| \le a(t) = \left(|x(0)| + \frac{C_2}{C_1}\right)e^{C_1t} - \frac{C_2}{C_1}$$

which is finite, as long as $0 \le t < T$. This shows: x([0,T)) lies in a compact subset of \mathbb{R}^n for any $T < \infty$. Thus: x(t) can be continued forever (i.e. $\forall t$).

Theorem 6.14 Let $X \in C^{\infty}(TM)$. Fix $p \in M$. If $X(p) \neq 0$, then there are coordinates (x^1, \ldots, x^n) near p with $X(q) = \left(\frac{\partial}{\partial x^1}\right)_q$ for all q near p.

Meaning: There are no local invariants of nonzero vector fields (they are all the same, locally).

Proof Choose coords y^1, \ldots, y^n on a small neighborhood $U \ni p$ such that

$$X(p) = \left(\frac{\partial}{\partial y^1}\right)_p, \ p = (0, \dots, 0).$$

We have

$$\phi: \quad U \times (-\varepsilon, \varepsilon) \quad \to \quad M \\ (y^1, \dots, y^n, t) \quad \mapsto \quad (\phi^1, \dots, \phi^n).$$

Now $N := U \cap \{y^1 = 0\}$ is a submanifold of M passing through p. Define

$$\begin{split} \psi &:= \phi|_{N \times (-\varepsilon,\varepsilon)} : \quad N \times (-\varepsilon,\varepsilon) \quad \to \quad M \\ & (y^2, \dots, y^n, t) \quad \mapsto \quad (\psi^1, \dots, \psi^n) \end{split}$$

Concretely. $\psi^i(y^2, \ldots, y^n, t) := \phi^i(0, y^2, \ldots, y^n, t)$. We wish to apply the Inverse Function Theorem to ψ at the point

$$(p,0) \in N \times (-\varepsilon,\varepsilon), \ \psi(p,0) = p,$$

to prove that (y^2, \ldots, y^n, t) can be taken as coordinates on M near p. For $(q,t) \in N \times (-\varepsilon, \varepsilon)$:

$$(d\psi)_{(q,t)}: T_{(q,t)}\left(N \times (-\varepsilon, \varepsilon)\right) = T_q N \times \mathbb{R} \to T_{\psi(q,t)} M$$

Compute for $(q, t) \in N \times (-\varepsilon, \varepsilon)$::

$$(d\psi)_{(q,t)}\left(\left(\frac{\partial}{\partial t}\right)_{(q,t)}\right) = \frac{\partial\psi}{\partial t}(q,t)$$
$$= \frac{\partial\phi}{\partial t}(q,t)$$
$$= X\left(\phi(q,t)\right)$$
$$= X\left(\psi(q,t)\right).$$

At (p, 0), we have:

$$\begin{split} \psi(p,0) &= p \\ d\psi_{(p,0)} : \quad T_q N \times \mathbb{R} \quad \to \quad T_p M \\ \frac{\partial}{\partial y^2}, \dots, \frac{\partial}{\partial y^n}, \frac{\partial}{\partial t} \quad \quad \frac{\partial}{\partial y^1}, \dots, \frac{\partial}{\partial y^n} \end{split}$$

We get

$$\left(\frac{\partial}{\partial t}\right)_{p,0} \mapsto X(p) = \left(\frac{\partial}{\partial y^1}\right)_p \qquad (by above)$$

and

$$\left(\frac{\partial}{\partial y^i}\right)_{(p,0)} \mapsto \left(\frac{\partial}{\partial y^i}\right)_p \ i=2,\ldots,n$$

since $\psi | N \times \{0\}$ is just the inclusion $N \to M$. Thus $(d\psi)_{(p,0)}$ is an isomorphism, so by Inverse Function Theorem,

$$\psi: V \times (-\delta, \delta) \to W \subseteq M$$

is a diffeomorphism for some small $p \in V \subseteq N, p \in W \subseteq M, \delta > 0$. So we may take (y^2, \ldots, y^n, t) as coordinates on W. For $r := \psi(q, t) \in W$, we get:

$$\begin{pmatrix} \frac{\partial}{\partial t} \end{pmatrix}_r = (d\psi)_{(q,t)} \left(\left(\frac{\partial}{\partial t} \right)_{q,t} \right)$$

= $X(\psi(q,t))$
= $X(r)$

Definition (Codimension) Let M^n be a manifold, $N^k \subseteq M^n$ a submanifold of M. Then the codimension of N inside M is dim $M - \dim N = n - k$.

6.3 Lie Derivatives

Pushforward and Pullback of Vector fields

$$f:M\to N$$

Definition (Pushforward) Given $X \in C^{\infty}(TM)$ we wish to produce $f_*(X) \in C^{\infty}(TN)$

If f is bijective, define the pushforward of X via f by

$$f_*(X)(q) := df_{f^{-1}(q)} \left(X(f^{-1}(q)) \right) \in T_q(N) \ \forall q \in N.$$

Definition (Pullback)

$$f^*(X) \in C^{\infty}(TM) \leftarrow X \in C^{\infty}(TN)$$

If $df_p: T_pM \to T_{f(p)}N$ is bijective $\forall p \in M$, define the *pullback of X via f* by

$$f^*(X)(p) := (df_p)^{-1} (X(f(p)))$$

Easy case: f is a diffeomorphism $\Rightarrow f_*, f^*$ are both defined.

Proposition 6.15 (Exercise)

i. $f_*(X), f^*(Y)$ are smooth if X, Y are smooth

ii. Given

$$M \underbrace{\stackrel{f}{\underbrace{N}} N \underbrace{\stackrel{g}{\underbrace{N}} P}_{g \circ f} P,$$
$$X \in C^{\infty}(TM), Z \in C^{\infty}(TP)$$

We have

$$g_*f_*X = (g \circ f)_*(X)$$

 $f^*g^*Z = (g \circ f)^*(Z)$

iii. f a diffeomorphism $\Rightarrow f^*Y = (f^{-1})_*Y, f_*X = (f^{-1})^*X f^*f_*X = X, f_*f^*Y = Y.$

Lie Derivative

We wish to define L_XY , $X, Y \in C^{\infty}(TM)$. We wish to differentiate Y in the direction of X.

Let $X, Y \in C^{\infty}(TM)$. Let ϕ_t be the flow of X. Idea: look forward along the flow of X to see how Y is changing. We must pull back Y by ϕ_t to make the comparison.

 $\phi_t^*(Y)$: family of vector fields on M, with starting value

$$\phi_0^*(Y) = \mathrm{id}_M^*(Y) = Y \ (t = 0).$$

Definition

$$L_X Y(p) := \frac{d}{dt} \bigg|_0 \phi_t^*(Y)(p) = \lim_{t \to 0} \frac{\phi_t^*(Y)(p) - Y(p)}{t}$$
$$= \lim_{t \to 0} \frac{(d\phi_p^t)^{-1}(Y(\phi_t(p))) - Y(p)}{t} \in T_p M$$

The subtraction is permitted because $\phi_t^*(Y)(p)$ and Y(p) both live in T_pM .

Proposition 6.16 If $X, Y \in C^{\infty}(TM)$, then the definiton exists, L_XY is a smooth vector field, and

$$L_X Y = [X, Y]. \tag{(\dagger)}$$

Proposition 6.17

- $i. f^*(L_XY) = L_{f^*X}f^*Y$
- ii. $f^*[X,Y] = [f^*X, f^*Y]$ if df_p is bijective $\forall p$, i.e f is a local diffeomorphism.

We leave ii as an exercise.

Proof of i)

Assume f is any local diffeomorphism, work in a small neighborhood and f becomes a diffeomorphism.

To prove: $\widetilde{L_X Y} = L_{\tilde{X}} \tilde{Y}$.

Claim The pullback of a flow of X is a flow of the pullback of X

Proof (of claim)

For simplicity, just do the case where X is complete.

$$N \xrightarrow{\phi_t} N$$

$$\uparrow^{\uparrow} \qquad \uparrow^{\uparrow} \qquad \uparrow^{\uparrow}$$

$$M \xrightarrow{\tilde{\phi}_t} M$$

Let ϕ_t be the flow of X. Then

$$\tilde{\phi}_t := f^{-1} \circ \phi_t \circ f := f^*(\phi_t)$$

is the flow of $f^*(X)$ Note $d(f^{-1})_q = ((df)_{f^{-1}(q)})^{-1}$, where q = f(p). Compute

$$\begin{aligned} \frac{\partial}{\partial t} \tilde{\phi}_t(p) &= \frac{\partial}{\partial t} f^{-1} \circ \phi_t \circ f(p) \\ &= d(f^{-1})_{\phi_t(f(p))} \left(\frac{\partial}{\partial t} \left(\phi_t(f(p)) \right) \right) \\ &= \left(df_{f^{-1}(\phi_t(f(p)))} \right)^{-1} \left(X(\phi_t(f(p))) \right) \\ &= \left(df_{\tilde{\phi}_t(p)} \right)^{-1} \left(X(f(\underbrace{f^{-1}(\phi_t(f(p)))}_{\tilde{\phi}_t(p)}) \right) \\ &= f^*(X) \left(\tilde{\phi}_t(p) \right) \\ &= \tilde{X} \left(\tilde{\phi}_t(p) \right). \end{aligned}$$

-		
ſ		
I		
I		

We return to the proof of $L_{\tilde{X}}\tilde{Y} = \widetilde{L_XY}$. Compute

$$L_{\tilde{X}}\tilde{Y} = \frac{\partial}{\partial t} \bigg|_{0} \tilde{\phi}_{t}^{*}(\tilde{Y})$$

$$= \frac{\partial}{\partial t} \bigg|_{0} (f^{-1} \circ \phi_{t} \circ f)^{*}(f^{*}Y)$$

$$= \frac{\partial}{\partial t} \bigg|_{0} f^{*} \phi_{t}^{*}(f^{-1})^{*}f^{*}Y$$

$$= f^{*} \frac{\partial}{\partial t} \bigg|_{0} (\phi_{t}^{*}Y)$$

$$= f^{*}(L_{X}Y)$$

$$=: \widetilde{L_{X}Y}$$

Proof of [†]. Both sides are well-defined, coordinate free concepts, as shown by the Lemma. Thus it suffices to prove claim (†) in a chart, $U \subseteq \mathbb{R}^n$. That is, we prove it for the push forwards of X and Y on $V \subseteq M$ to $U \subseteq \mathbb{R}^n$ via the chart $\psi: V \to U$, then pull back the result to M. So let $X, Y \in C^{\infty}(U, \mathbb{R}^n), U \subseteq \mathbb{R}^n$ open, fix $p \in U$. Let ϕ_t be a local flow of X near p. (defined on $p \in V \subset \subset U, -\delta < t < \delta$).

Compute:

$$Z(p) := L_X Y(p) = \frac{d}{dt} \Big|_0 \phi_t^*(Y)(p)$$
$$= \frac{d}{dt} \Big|_0 (d\phi_t(p))^{-1} (Y(\phi_t(p)))$$

Where

$$d\phi_t(p): T_p U = \mathbb{R}^n \to T_{\phi_t(p)} U = \mathbb{R}^n.$$

Lemma 6.18 Let $A(t) : V \to W$ be a smooth family of invertible linear maps. Then

$$\frac{d}{dt}A(t)^{-1} = -A(t)^{-1}\frac{d}{dt}A(t) \circ A(t)^{-1}$$

Proof Write $B(t) := A(t)^{-1}$ so differentiate $A(t) \circ B(t) = I$ get $A'(t) \circ B(t) + A(t) \circ B'(t) = 0$. Now solve for B'(t):

$$B'(t) = -A(t)^{-1} \circ A'(t) \circ A(t)^{-1}.$$

Continue with the computation of $L_X Y$, we get:

$$Z(p) = \frac{d}{dt} \Big|_{0} (d\phi_{t}(p))^{-1} (Y(\phi_{0}(p))) + \frac{d}{dt} \Big|_{0} (d\phi_{0}(p))^{-1} (Y(\phi_{t}(p))) \\ = -d\phi_{0}(p)^{-1} \frac{d}{dt} \Big|_{0} d\phi_{t}(p) d\phi_{0}(p)^{-1} (Y(p)) + \frac{d}{dt} \Big|_{0} Y(\phi_{t}(p)) \\ = -\frac{d}{dt} \Big|_{0} d\phi_{t}(p) (Y(p)) + \frac{d}{dt} \Big|_{0} Y(\phi_{t}(p))$$

We used the fact that $\frac{d}{dt}\Big|_0 f(t,0) = \frac{d}{dt}\Big|_0 f(t,t) - \frac{d}{dt}\Big|_0 f(0,t)$. Now we use the coordinates of \mathbb{R}^n explicitly⁶. Write

$$Z = (Z^i) \in \mathbb{R}^n$$
$$d\phi_t(p) = \left(\frac{\partial \phi_t^i(p)}{\partial x^j}\right) : \mathbb{R}^n \to \mathbb{R}^n$$

⁶They were already used subtly in the first line above, by subtracting Y(p) from $Y(\phi_t(p))$

$$X = (X^i), \ X^i(p) = \left. \frac{\partial \phi_t^i(p)}{\partial t} \right|_0, Y = (Y^i).$$

Compute

$$Z^{i} = -\frac{\partial}{\partial t} \bigg|_{0} \frac{\partial \phi_{t}^{i}(p)}{\partial x^{j}} Y^{j}(p) + \frac{\partial Y^{i}}{\partial x^{j}}(p) \frac{\partial \phi_{t}^{j}}{\partial t} \bigg|_{0}(p)$$
$$= -\frac{\partial}{\partial x^{j}} \frac{\partial \phi_{t}^{i}(p)}{\partial t} \bigg|_{0} Y^{j}(p) + \frac{\partial Y^{i}}{\partial x^{j}}(p) X^{j}(p)$$
$$= -\frac{\partial X^{i}}{\partial x^{j}} Y^{j}(p) + \frac{\partial Y^{i}}{\partial x^{j}} X^{j}(p) = [X, Y]^{i}$$

So we get the important formula:

$$(L_XY)^i = -\frac{\partial X^i}{\partial x^j}Y^j + \frac{\partial Y^i}{\partial x^j}X^j = [X,Y]^i$$

i.e. $L_X Y = [X, Y]$, as desired.

Corollary 6.19

$$L_X Y = -L_Y X.$$

Interpretation of [X, Y] via the flows of X and Y

Construction: Fix p. Set

$$f(s,t) := \psi_{-s} \circ \phi_{-t} \circ \psi_s \circ \phi_t(p)$$

Where ϕ_t is the flow of X and ψ_s the flow of Y. Question: How does f(s,t) differ from p?

Theorem 6.20 In any coordinate system

$$f(s,t) = p + st[X,Y](p) + O\left((|s| + |t|)^3\right)$$

(for s, t small).

This says: the flows commute up to 1st oder, and the (2nd order) discrepancy is measured by [X, Y].

Proof Exercise.

Theorem 6.21

$$[X,Y] = 0 \Leftrightarrow \psi_s \circ \phi_t = \phi_t \circ \psi_s$$

Proof \Leftarrow by above (differentiation) \Rightarrow exercise (integration)

Definition If [X, Y] = 0, we say X, Y commute.

Example

- $\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0$
- $\left[\frac{\partial}{\partial x}, x\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right] = \left[\frac{\partial}{\partial x}, x\frac{\partial}{\partial x}\right] + \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right] = \frac{\partial x}{\partial x}\frac{\partial}{\partial x} x\frac{\partial}{\partial x}\frac{\partial}{\partial x} = \frac{\partial}{\partial x}$

Corollary 6.22 Fix p. If X(p), Y(p) are linearly independent and [X, Y] = 0 near p, then there are coordinates near p with

$$X = \frac{\partial}{\partial x^1}, \ Y = \frac{\partial}{\partial x^2}$$

Proof of Corollary Take s, t as coordinates, defining

$$\Psi(s,t) := \psi_s(\phi_t(p)) \ (= \phi_t(\psi_s(p)))$$
$$\Psi : \mathbb{R}^2 \supseteq U \ni (0,0) \to M \quad \text{smooth}$$

We compute

$$d\Psi_{(s,t)}\left(\frac{\partial}{\partial s}\right) = \frac{\partial}{\partial s}\Psi(s,t)$$
$$= \frac{\partial}{\partial s}\psi_s\left(\phi_t(p)\right)$$
$$= Y\left(\psi_s\left(\phi_t(p)\right)\right)$$
$$= Y\left(\Psi(s,t)\right)$$

Similarly here we use, that the flows commute

$$d\Psi_{(s,t)}\left(\frac{\partial}{\partial t}\right) = X\left(\Psi(s,t)\right).$$

Note

$$\begin{array}{cccc} d\Psi_{(0,0)}: & \frac{\partial}{\partial s} & \mapsto & Y(p) \\ & \frac{\partial}{\partial t} & \mapsto & X(p) \end{array} \right\} \text{ linearly independant }$$

so $d\Psi_{(0,0)}$ is an isomorphism, so Ψ is a diffeomorphism near (0,0), so s, t are valid smooth coordinates on a neighborhood of p, and the coordinate vector field $\left(\frac{\partial}{\partial s}\right)_q$ (for $q = \Psi(s,t)$ near p) is given by $d\Psi_{(s,t)}\left(\frac{\partial}{\partial s}\right)$, which is Y(q) as we have just seen. Similarly, $\left(\frac{\partial}{\partial t}\right)_q = X(q)$.

Interpretations of Jacobi Identity

Recall the Jacobi identity

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

i. Rewrite the Jacobi identity as

$$L_X[Y,Z] = [Y, L_XZ] + [L_XY,Z]$$

A Leibniz rule relating L_X to the $[\cdot, \cdot]$ product. One says: L_X is a *derivation* for $[\cdot, \cdot]$.

ii. Rewrite the Jacobi identity as

$$L_{[X,Y]}Z = L_X L_Y Z - L_Y L_X Z$$

i.e.

$$L_{[X,Y]} = L_X \circ L_Y - L_Y \circ L_X \ (=: [[L_X, L_Y]])$$

The later bracket operator, $[[\cdot, \cdot]]$ is the anticommutator defined on any algebra of endomorphisms. So

$$L: C^{\infty}(TM) \to \operatorname{End}(C^{\infty}(TM))$$
$$X \mapsto L_X$$

so L is a bracket homomorphism from $(C^{\infty}(TM), [\cdot, \cdot])$ to $(\text{End}(C^{\infty}(TM)), [[\cdot, \cdot]])$

7 Riemannian Metrics

Do Carmo Chap 1

Definition Let M be a smooth manifold. A *(smooth) Riemannian metric* on M is a choice of inner product

$$\langle \cdot, \cdot \rangle_p : T_p M \times T_p M \to \mathbb{R}$$

on each tangent space, that is smooth in the sense defined below.

- bilinear, symmetric
- positive definite, i.e.

$$\langle X, X \rangle_p > 0, \ \forall X \neq 0.$$

Notation: Also write g_p or g(p) for $\langle \cdot, \cdot \rangle_p$. Write g for the map $p \mapsto g_p$. We call (M, g) a *Riemannian manifold*.

Coordinate Expression

Let $U \subseteq M, X = X^i \frac{\partial}{\partial x^i}, Y = Y^j \frac{\partial}{\partial x^j}$ on U. Write

$$g(p) (X(p), Y(p)) = g(p) \left(X^{i}(p) \left(\frac{\partial}{\partial x^{i}} \right)_{p}, Y^{j}(p) \left(\frac{\partial}{\partial x^{j}} \right)_{p} \right)$$
$$= X^{i}(p) Y^{j}(p) g(p) \left(\left(\frac{\partial}{\partial x^{i}} \right)_{p}, \left(\frac{\partial}{\partial x^{j}} \right)_{p} \right)$$
$$= X^{i}(p) Y^{j}(p) g_{ij}(p)$$

Where

$$g_{ij}(p) := g(p) \left(\left(\frac{\partial}{\partial x^i} \right)_p, \left(\frac{\partial}{\partial y^j} \right)_p \right)$$

We say g is C^{∞} iff g_{ij} is $C^{\infty}, i, j = 1, \dots, n$.

Change of variables

Let $\phi := \psi_2 \circ \psi_1^{-1}$ be an overlap map. Say

$$d\phi_p : \mathbb{R}^n \to \mathbb{R}^n$$
$$\frac{\partial}{\partial x^i} \mapsto \frac{\partial \phi^j}{\partial x^i}(x) \frac{\partial}{\partial y^j}$$

or from another view point $\left(\frac{\partial}{\partial x^i}\right)_p = \frac{\partial \phi^j}{\partial x^i}(x) \left(\frac{\partial}{\partial y^j}\right)_p$ in $T_p M$. Then

$$g'_{ij}(x^{1},...,x^{n}) = \langle \left(\frac{\partial}{\partial x^{i}}\right)_{p}, \left(\frac{\partial}{\partial x^{j}}\right)_{p} \rangle_{p} \\ = \langle \frac{\partial \phi^{k}}{\partial x^{i}}(x) \left(\frac{\partial}{\partial y^{k}}\right)_{p}, \frac{\partial \phi^{\ell}}{\partial x^{j}}(x) \left(\frac{\partial}{\partial y^{\ell}}\right)_{p} \rangle_{p} \\ = \frac{\partial \phi^{k}}{\partial x^{i}}(x^{1},...,x^{n}) \frac{\partial \phi^{\ell}}{\partial x^{j}}(x^{1},...,x^{n}) g_{k\ell}(y^{1},...,y^{n})$$

where $y^i = \phi^i(x^1, \ldots, x^n)$. Briefly written: $g'_{ij} = \frac{\partial \phi^k}{\partial x^i} \frac{\partial \phi^\ell}{\partial x^j} g_{k\ell}$ (Change of variables) **Consequence:** If g is smooth in one coordinate system, then g is smooth in all other coordinate systems. Some things we get from a metric:

$$|X|_p := \sqrt{\langle X, X \rangle_p}$$

- lengths and angles in $T_p M$
- lengths of paths
- distance
- volume
- covariant differentiation
- etc...

Prefered identification of $(T_p M)^*$ with $T_p M$.

Example (Poincaré ball model of hyberbolic space)

$$g_{ij}(x) := \frac{4\delta_{ij}}{(1 - |x|_{\text{euc}}^2)^2}, \ x \in B_1^n$$

where δ_{ij} is the Euclidean metric

$$X^i \delta_{ij} Y^j = \sum_i X^i Y^i$$

Let γ be the path

$$\gamma(t) := (0, t) \in B^2$$

Compute

$$\begin{split} \dot{\gamma}(t) &= (0,1) \\ |\dot{\gamma}|_g^2 &= \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{g(\gamma(t))} \\ &= \frac{4\delta_{ij} \dot{\gamma}^i(t) \dot{\gamma}^j(t)}{(1 - |\gamma(t)|_{euc}^2)^2} \\ &= \frac{4|\dot{\gamma}(t)|_{euc}^2}{(1 - |\gamma(t)|_{euc}^2)^2} \\ &= \frac{4 \cdot 1}{(1 - t^2)^2} \\ |\dot{\gamma}(t)|_g &= \frac{2}{1 - t^2} \\ L(\gamma) &= \int_{t=0}^{t=1} |\dot{\gamma}(t)| \, dt = \int_{t=0}^{t=1} \frac{2}{1 - t^2} dt = \infty \end{split}$$

Then hyperbolicspace is

$$\mathbb{H}^n := (B_1^n, g_{ij})$$

Homogeneous⁷, isotropic⁸, constant curvature K = -1. It is the only space with these properties (up to isometry).

Exercise Find an isometry of \mathbb{H}^2 that takes (0,0) to (a,0).

Theorem 7.1 Every smooth manifold that is a union of countably many coordinate charts can be given a Riemannian metric.

Remark For manifolds, "union of countably many coordinate charts" \Leftrightarrow 2nd countable.

Let $\operatorname{Sym}^2(V^*)$ be the symmetric bilinear forms T on V. $\operatorname{Sym}^2_+(V^*) := \{T \in \operatorname{Sym}^2(V^*) | (X, X) > 0 \ \forall X \in T_pM \}.$

Proposition 7.2 $Sym^2_+(V^*)$ is a convex cone in the vector space $Sym^2(V^*)$.

⁷all points look the same

 $^{^{8}\}mathrm{all}$ directions look the same

7.1 Pullbacks of Metrics

Suppose $f: M^n \to (N^p, g)$ is smooth. Define the *pullback of* g by f, on M via

$$\begin{aligned} f^*(g)_p &: T_p M \times T_p M &\to \mathbb{R}, p \in M, \\ f^*(g)(p)(X,Y) &:= g(f(p)) \left(df_p(X), df_p(Y) \right), \ X, Y \in T_p M. \end{aligned}$$

Remark concerning $f^*(g)$

- $f^*(g)_{ij}(x) = \frac{\partial f^k}{\partial x^i}(x)\frac{\partial f^\ell}{\partial x^j}(x)g_{k\ell}(f(x))$ (verify!)
- pullback is *always* defined (no bijectivity requirements, in contrast to the case of vectors)
- $f^*(g)$ is bilinear, symmetric, nonnegative
- $f^*(g)$ is positive definite $\Leftrightarrow df_p$ is injective (so: f immersion $\Rightarrow f^*(g)$ is a Riemannian metric)
- If f is a diffeomorphism then $f^*(g)$ is a perfect copy of g.

Definition An *isometry* is a diffeomorphism

$$f:(M,g)\to(N,h)$$

such that $f^*(h) = g$.

Definition

 $\operatorname{Isom}\left((M,g)\right) := \{f: M \to M | f^*(g) = g \text{ and } f \text{ a diffeomorphism} \}$

Example Isom $((S^n, round)) \cong O(n)$

Example (Poincaré upper half-plane model of hyperbolic space) Set $H := \{z = x + iy \in \mathbb{C} | \Im z > 0\}, \ \hat{g}_{ij}(z) := \frac{\delta_{ij}}{y^2}$. We obtain a second definition of hyperbolic space

$$\mathbb{H}^2 := (H, \hat{g}_{ij}).$$

Exercise i. Find an isometry from the upper half-plane model to the Poincaré disk model:

$$(H, \hat{g}) \to (B_1^2, g)$$
ii. Show that the orientation preserving isometries of (H, \hat{g}) are

$$z \mapsto \frac{az+b}{cz+d}$$
 $ad-bc > 0, a, b, c, d \in \mathbb{R}$

iii. Show

$$\operatorname{Isom}\left((H,g)\right) \cong \operatorname{GL}_{+}(2,\mathbb{R})/\mathbb{R} \cdot \mathbb{1} \cong \operatorname{SL}(2,\mathbb{R})/\{\pm \mathbb{1}\} =: \operatorname{PSL}(2,\mathbb{R})$$

(real) projective special linear group

iv. Show \mathbb{H}^2 is homogeneous and isotropic, i.e. *homogenous:* $\forall p, q \in \mathbb{H}^2 \exists$ isometry $p \mapsto q$. *isotropic at p:* $\forall X, Y \in T_p \mathbb{H}^2 \exists$ isometry fixing p and taking $X \mapsto Y$

Definition An isometric immersion of (M, g) into (N, h) is an immersion $f: M \to N$ such that $f^*(h) = g$. We call $f^*(h)$ the metric induced by the immersion.

Example Let $M \subseteq (N, h)$, with

$$\begin{array}{rrrr} i:M & \to & N \\ & x & \mapsto & x \end{array}$$

be the inclusion map. Then $i^*(h)$ is the same as the induced metric we defined weeks ago, namely

$$\langle X,Y\rangle_p^M:=\langle X,Y\rangle_p^N\quad \forall p\in M,\forall X,Y\in T_pM$$

Theorem 7.3 (Nash Embedding Theorem (hard)) (M^n, g) Riemannian manifold compact (union of countable many charts). Then \exists isometric embedding

$$(M,g) \xrightarrow{f} (\mathbb{R}^p, \delta)$$

for some large p. (Here δ is the the standard metric on \mathbb{R}^p .)

7.2 Metrics on Lie groups

Theorem 7.4 Every Lie group possesses a left-invariant metric, i.e a metric g such that

$$L_a^*(g) = g \ \forall a \in G$$

where (recall)

$$\begin{array}{rccc} L_a:G&\to&G\\ b&\mapsto&ab. \end{array}$$

Proof Let g(e) be any inner product on T_eG . Where $e \in G$ is the identity element. Note:

$$\begin{array}{rcccc} L_a:G&\to&G\\ &e&\mapsto&a\\ (dL_a)_e:T_eG&\to&T_aG \end{array}$$

Copy g(e) from T_eG to T_aG via $(dL_a)_e$: for $X, Y \in T_aG$, set

$$g(a)(X,Y) := g(e)\left((dL_a)_e^{-1}(X), (dL_a)_e^{-1}(Y)\right)$$

It is trivial to verify that g is invariant under left translation by $any L_b$: $G \to G, b \in G$. One checks that $L_b : G \to G$ is an isometry i.e. $(dL_b)_a :$ $(T_aG, g(a)) \to (T_{ba}G, g(ba))$ is an isometry $\forall a \in G$.

Exercise Prove a left-invariant metric on a Lie group is smooth.

Theorem 7.5 Every Lie group has at least one left-invariant metric.

Exercise Show that the metric induced on SO(n) by the standard inclusion

$$\mathrm{SO}(n) \subseteq M^{n \times n}(\mathbb{R}) = \mathbb{R}^{n^2}$$

is both left and right invariant (=: *bi-invariant*). Note that $M^{n \times n}(\mathbb{R})$ gets the metric induced by the inner product

$$\langle A, B \rangle := \sum_{i,j} A_i^j B_i^j$$

Theorem 7.6 Every compact Lie group has a bi-invariant metric⁹.

Example We already saw that

$$L_a, R_a: S^3 \to S^3$$

are isometries.

 $^{^9\}mathrm{Do}$ Carmo p-46 prob 7, Lee p.46 prob 3-10,11,12

7.3 Volume and Intergrals

Given a metric g and some map $u: M \to \mathbb{R}$, let us define integration on M

$$\int u \, d\mu \equiv \int_M u(x) \, d\mu_g(x)$$

3 ways to define it

- volume *n*-form: a section of $C^{\infty}(\bigwedge^n T^*M)$, namely $\sqrt{\det g_{ij}} dx^1 \wedge \cdots \wedge dx^n$
 - has a sign
 - M must be orientable
 - requires exterior $algebra^{10}$ (k-forms)
- Hausdorff measure \mathcal{H}^n
 - valid in any metric space \mathcal{H}^n
 - valid for any $\alpha \in [0,\infty)$
 - requires measure theory
- define in charts

$$\int_U f(x^1, \dots, x^n) \sqrt{\det g_{ij}(x)} dx^1 \dots dx^n$$

easiest

Basic Formula in a Chart

Let $(U, g_{ij}) \subseteq \mathbb{R}^n$. Define

$$\int_{U} f \, d\mu_g := \int_{U} f(x) \sqrt{\det g_{ij}(x)} dx^1 \dots dx^n \tag{\dagger\dagger}$$

Definition

- $C^0_c(M) := \{ \text{continuous functions } M \to \mathbb{R} \text{ with compact support} \}$
- support of u: supp:= $\overline{\{x|u(x) \neq 0\}}$

¹⁰Differential Topology

Desired properties of integration

$$I_g: u \mapsto \int_M u \, d\mu_g$$

- i. $I_g: C_c^0(M) \to \mathbb{R}$ linear (over \mathbb{R})
- ii. I_g positive, i.e. $u \ge 0 \Rightarrow I_g(u) \ge 0$.
- iii. I_g agrees with the usual integral on flat \mathbb{R}^n .
- iv. (Change of Variables / Area formula) If $\phi: (M, g) \xrightarrow{\phi} (N, h)$ is C^1 and bijective then

$$\int_{N} u(y) d\mu_h(y) = \int_{M} u(\phi(x)) |J\phi(x)|_{g,h} d\mu_g(x)$$

for any $u \in C_c^0$. Here $|J\phi(x)|$ is the volume expansion factor (Jacobian determinant) from $(T_xM, g(x))$ to $(T_{\phi(x)}, g(x))$

Theorem 7.7 There exsits a unique system of maps

$$u\mapsto \int_M u\,d\mu_g$$

with properties (i)-(iv). They are given locally by formula $(\dagger \dagger)$.

Remark (for measure theory experts)

 $I_g \stackrel{\text{Riesz Rep. Thm}}{\longleftrightarrow} \text{Radon measure } \mu_g.$ $I_g \text{ is a linear functional satisfying (i), (ii) and } \left| \int u \, d\mu_g \right| \leq C(K) \text{supp}|u| \text{ for spt } u \subseteq K \subseteq M, \text{ with } K \text{ compact.}$ $\mu_g \text{ is called the$ *Riemannian volume measure of g.*

Definition of the Jacobian determinant Suppose we are given

$$L: (V,g) \to (W,h)$$
 linear

(V,g) and (W,h) being inner product spaces. Define

$$|JL| \equiv |JL|_{g,h} := \sqrt{\det(L^T L)}$$

Where the transpose $L^T: W \to V$ is characterized by $g(v, L^T w) = h(Lv, w)$

Motivation

Suppose $L: V \to V$ is linear. Then det $L \in \mathbb{R}$ is defined (independent of coordinates and metrics!) Where as if $L: V \to W$, then det L is *not* defined. We note that $L^T L: V \to V$ is symmetric with respect to the inner product g, i.e. $g(v_1, L^T L v_2) = g(L^T L v_1, v_2)$.

Lemma 7.8 (Singular value Decomposition) For any $L : (V, g) \to (W, h)$ there exists an orthonormal basis v_1, \ldots, v_n of V and orthonormal basis w_1, \ldots, w_n of W with $\lambda_1, \ldots, \lambda_n \ge 0^{11}$ such that $Lv_i = \lambda_i w_i$.

Proof Diagonalize $L^T L$:

$$L^T L v_i := \mu_i v_i, i = 1, \dots, n$$

where v_1, \ldots, v_n is an orthonormal basis of V. Observe:

$$h(Lv_i, Lv_j) = g(L^T Lv_i, v_j) = g(\mu_i v_i, v_j) = 0$$

So Lv_1, \ldots, Lv_n is an *orthogonal* set in W. Define

$$w_i = \begin{cases} \frac{Lv_i}{|Lv_i|} & Lv_i \neq 0\\ \text{any completion to orthonormal basis} & Lv_i = 0 \end{cases}$$
$$\lambda_i := |Lv_i| \ge 0.$$

Then w_1, \ldots, w_n orthonormal basis with respect to h, and

$$Lv_i = \lambda_i w_i,$$

as required.

Further: $L^T w_i = \lambda_i v_i$, so $\mu_i = \lambda_i^2$. Thus

$$|JL|_{g,h} := \sqrt{\det(L^T L)} = \sqrt{\mu_1 \cdots \mu_n} = \lambda_1 \cdots \lambda_n$$

is seen to be the volume expansion factor of L from g to h.

 $^{^{11}}$ principal stretches

Definition Suppose $\phi : (M, g) \to (N, h)$ is C^1 . Define

$$|J\phi(x)|_{g,h} := |Jd\phi(x)|_{g(x),h(\phi(x))}.$$

In coordinates: on V, W respectively, we have

$$g = (g_{ij}), \ h = (h_{kl}), \ L = (L_i^k),$$

and

$$v \in V \xrightarrow{L=(L_i^k)} W \ni w$$

$$g^{-1}=(g^{ij}) \downarrow \qquad \qquad \downarrow h=(h_{ij})$$

$$\nu \in V^* \underset{L^*=(L_i^k)}{\leftarrow} W^* \ni \omega$$

 $h: W \to W^*$ is defined by

$$h(w) := h(w, \cdot) \in W^*$$

 $g^{-1}: V^* \to V$ is characterized by

$$g(g^{-1}(\nu), \cdot) = \nu \in V^*$$

We find that $g^{-1} = (g^{ij})$, i.e. the matrix of the inverse of g is the inverse of the matrix of g. The dual map to L is defined by $L^*(\omega) := \omega \circ L \in L^*$. We have

$$v \mapsto Lv, (Lv)^k = L_i^k v^i$$

And also

$$\begin{array}{rcl}
\omega & \mapsto & L^*\omega \\
(L^*\omega)_i & = & L^k_i\omega_k.
\end{array}$$

To see the symmetry of this, observe

$$v^{i}L_{i}^{k}\omega_{k} = w(Lv) = (L^{*}(\omega))(v).$$

Next, we can verify

$$\begin{array}{rcl} L^{T} & = & g^{-1} \circ L^{*} \circ h, \\ (L^{T})^{i}_{\ell} & = & g^{ij} L^{k}_{j} h_{k\ell} \end{array}$$

Formulae

$$|J\phi(x)| = \sqrt{\det(d\phi(x)^T \circ d\phi(x))}$$
$$= \sqrt{\det(g^{ij}(x)\frac{\partial\phi^k}{\partial x^j}(x)h_{k\ell}(\phi(x))\frac{\partial\phi^\ell}{\partial x^i}(x))}$$

- $|J\phi|_{\delta,\delta} = |\det(\frac{\partial\phi^i}{\partial x^j})| \stackrel{\phi(x)=x}{=} |J\phi|_{g,g}$
- $|J_{\mathrm{id}}|_{\delta,g} = \sqrt{\det g_{ij}}$, if $\phi(x) = x$.
- $|J(\phi \circ \psi)|_{g,k} = |J\phi|_{h,k}|J\psi|_{g,h}$, where $(M,g) \xrightarrow{\psi} (N,h) \xrightarrow{\phi} (P,k)$

Local Formula

$$\int_{U} u \, d\mu := \int_{U} u(x) \underbrace{\sqrt{\det g_{ij}(x)}}_{J_{\mathrm{id}}|_{\delta,g}} dx^{1} \cdots dx^{n} \tag{\ddagger}$$

Verify the Area Formula (in a chart)

Given $\phi : (U,g) \to (V,h), C^1$ and bijective with coordinates x^1, \ldots, x^n , y^1, \ldots, y^n respectively. Show $\int_V u \, d\mu_h = \int_U u \circ \phi |J\phi|_{g,h} \, d\mu_g$. Compute:

LHS =
$$\int_{V} u \sqrt{\det h_{k\ell}} \, dy^{1} \cdots dy^{n}$$

= $\int_{U} u \circ \phi \sqrt{\det h_{k\ell} \circ \phi} \left| \det \left(\frac{\partial \phi^{k}}{\partial x^{i}} \right) \right| \, dx^{1} \cdots dx^{n}$

(by the usual change of variables formula), where as

RHS =
$$\int_{U} u \circ \phi \sqrt{\det\left(g^{ij} \frac{\partial \phi^{k}}{\partial x^{j}} h_{k\ell} \circ \phi \frac{\partial \phi^{\ell}}{\partial x^{i}}\right)} \sqrt{\det g_{ij}} \, dx^{1} \cdots dx^{n}$$

Note By taking ϕ to be an *isometry*, this also verifies that our definition (‡) is independent of the coordinates that we chose on the open set $U \subseteq M$, as

follows:

$$U \subseteq (M, k)$$

$$\psi_1$$

Next step:

extend our definition of the integral from each chart U to all of M. Say $M = \bigcup_{\alpha} U_{\alpha}$, then we must move from

$$\int_{U_{\alpha}} u \, d\mu_g \rightsquigarrow \int_M u \, d\mu_g$$

We obtain (as mentioned above)

Theorem 7.9 There exists an integral $\int_M u \, d\mu_g$ that satisfies (i)-(iv)

8 Connections

First we'll look at connections on vector bundles in general, then we'll specialize to the *Riemannian* or *Levi-Civita connection* on TM (induced by a Riemannian metric g)

8.1 Vector Bundles

(Lee Chap 2)

Let M be a smooth manifold. Attach a vector space E_p (disjoint!) to each point in M. Main example: $TM = \bigcup_p T_p M$.

Definition A vector bundle of rank k over M (base space) is a smooth manifold E (total space) together with a smooth map $\pi : E \to M$ such that

- i. Each fiber $E_p := \pi^{-1}(p)$ is endowed with the structure of a k-dimensional vector space.
- ii. For every $p \in M, \exists U \ni p$ open and a diffeomorphism

$$\Psi: \pi^{-1}(U) \to U \times \mathbb{R}^k$$

such that

iia. The following diagram commutes

$$E \supseteq \pi^{-1}(U) \xrightarrow{\Psi} U \times \mathbb{R}^{k}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi_{1}}$$

$$M \supseteq U = U = U$$

This says:

$$\Psi|E_p:E_p\to\{p\}\times\mathbb{R}^k$$

iib. $\Psi|E_p: E_p \to \{p\} \times \mathbb{R}^k$ is a linear isomorphism.

We call the map Ψ a *local trivialization (of* E over U). If U has coordinates (x^1, \dots, x^n) , then Ψ yields coordinates $(x^1, \dots, x^n, \underbrace{V^1, \dots, V^k}_{\text{coords on } \mathbb{R}^k})$ on $\pi^{-1}(U)$

Examples

TM $T^*M := \bigcup_{p \in M} (T_p M)^* \text{ cotangent bundle of } M$ $M \times \mathbb{R}^k \xrightarrow{\pi} M \text{ trivial bundle (of rank } k)$

Simplest nontrivial vector bundle $M = S^1$, Fiber= \mathbb{R} (rank 1) Where

$$S^{1} = [0, 2\pi]/(0 \sim 2\pi)$$
$$E := [0, 2\pi] \times \mathbb{R}/ \sim \ni (\theta, t),$$

where $(0, t) \sim (2\pi, -t)$

$$\pi([\theta, t]) = [\theta]$$

$$\pi : E \to S^1$$

E is the Möbius band, viewed as a line bundle over S^1 We call it the *twisted* \mathbb{R} -Bundle over S^1 .

Example

$$\cup_{p \in M} \operatorname{Bilin}(T_p M \times T_p M \to \mathbb{R})$$

is a vector bundle over M of rank $k=n^2.$ A metric is a smooth and positive section 12 of this bundle

 $^{^{12}\}mathrm{will}$ be defined later

 \mathbb{R}^2 bundles over S^2

$$\mathbb{R}^2 \xrightarrow{} E \\ \downarrow \\ S^2$$

Give S^2 the "charts" $H_+ :=$ closed northern hemisphere $H_{-} := \text{closed southern hemisphere}$ $H_+ \cap H_- = \{\text{equator}\} \cong S^1$

To get S^2 : glue H_+ to H_- along $\partial H_+, \partial H_-$ by the map

$$\begin{array}{rccc} \phi:\partial H_+ & \to & \partial H_- \\ e^{i\theta} & \mapsto & e^{i\theta} \end{array}$$

To get E: observe

$$\partial(H_+ \times \mathbb{R}^2) = (\partial H_+) \times \mathbb{R}^2 \cong S^1 \times \mathbb{R}^2 \partial(H_- \times \mathbb{R}^2) = (\partial H_-) \times \mathbb{R}^2 \cong S^1 \times \mathbb{R}^2$$

Glue $H_+ \times \mathbb{R}^2$ to $H_- \times \mathbb{R}^2$ along their boundaries via

$$\Phi: \partial H_+ \times \mathbb{R}^2 \to \partial H_- \times \mathbb{R}^2$$

defined by

$$\Phi\left(e^{i\theta}, \begin{pmatrix} x\\ y \end{pmatrix}\right) := \left(\phi(e^{i\theta}), A_{e^{i\theta}} \begin{pmatrix} x\\ y \end{pmatrix}\right)$$

Where we choose any family of linear maps

$$A_{e^{i\theta}} : \mathbb{R}^2 \to \mathbb{R}^2$$
$$A_{e^{i\theta}} \in \mathrm{GL}(2, \mathbb{R})$$
$$A : \partial H_+ \to \mathrm{GL}(2, \mathbb{R})$$

Our special choice: Fix $k \in \mathbb{Z}$, define

$$A: \partial H_+ \mapsto \mathrm{SO}(2) \subseteq \mathrm{GL}(2,\mathbb{R})$$

by

$$A(e^{i\theta}) := \begin{pmatrix} \cos k\theta & \sin k\theta \\ -\sin k\theta & \cos k\theta \end{pmatrix}.$$

We obtain

$$\Phi\left(e^{i\theta}, \left(\begin{array}{c}x\\y\end{array}\right)\right) := \left(e^{i\theta}, \left(\begin{array}{c}\cos k\theta & \sin k\theta\\-\sin k\theta & \cos k\theta\end{array}\right) \left(\begin{array}{c}x\\y\end{array}\right)\right)$$

The result is called the k-twisted \mathbb{R}^2 bundle over S^2

Question

What is k for the tangent bundle TS^2 of the 2-Sphere?

8.1.1 Complex vector bundles

Same definition, exept each E_p is a *complex* vector space of complex dimension d. Then $\dim_{\mathbb{R}} = n + 2d^{13}$.

Question

Can you think of a real vector bundle of even rank that *cannot* be made into a complex vector bundle?

Definition Let $M \xrightarrow{f} N$ with vector bundles E and F over M and N respectivly. A *(linear)* bundle map over f is a smooth map

$$L: E \to F$$

such that

$$E \xrightarrow{L} F$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$M \xrightarrow{f} N$$

commutes, i.e. $L(E_p) \subseteq F_{f(p)}$ and

$$L_p := L|E_p : E_p \to F_{f(p)}$$

is linear map.

Definition A bundle isomorphism is a (linear) bundle map that is a diffeo $morphism^{14}$

Example In an exercise, we found a bundle isomorphism

$$i, j, k \in C^{\infty}(TS^3)$$
 and $i(p), j(p), k(p)$ form a basis for $T_pS^3 \forall p$
 $(p, (x, y, z)) \mapsto (p, xi(p) + yj(p) + zk(p))$

 13 as a real manifold

 $^{14}\mathrm{check:}$ this is equivalent to: f is a diffeomorphism and $L|E_p$ is a linear isomorphism $\forall p.$ $^{17} \text{Trivial bundle}, \ p \in S^3, (x,y,z) \in \mathbb{R}^3$

Definition A subbundle of E is a submanifold $F \subseteq E$ such that $F_p := F \cap E_p(=(\pi|F)^{-1}(p))$ is a vector subspace of E (of constant dimension). F is then (check!) a vector bundle over M in it's own right.

Example

i. $M^n \subseteq \mathbb{R}^q$ submanifold $TM^{18} = \bigcup \{p\} \times T_pM \subseteq M \times \mathbb{R}^{q^{19}}$ is a subbundle with $n \leq q$.

ii.

$$NM := \bigcup_{p \in M} \{p\} \times N_p M \subseteq M \times \mathbb{R}^q$$

subundle (called normal bundle of M in \mathbb{R}^q , $N_p M = (T_p M)^{\perp}$).

Definition A section of E is a function $V : M \to E$ such that $V(p) \in E_p, p \in M$. We call V smooth if it is smooth as a map between smooth manifolds.

Definition The *0-section* is the section $O(p) := 0 \in T_p M, p \in M$.

 $\Gamma(E)$: all sections $C^{\infty}(E)$: all smooth sections Both of the above are vector spaces over \mathbb{R}

$$V, W \in C^{\infty}(E) \Rightarrow aV + bW \in C^{\infty}(E)$$

Definition A local frame for E is a list $e_1(p), \ldots, e_d(p), p \in U$ of sections in $C^{\infty}(E|U)$ that form a basis for E_p at each $p \in U$.

A local fram alway yields a local trivialization (and viceversa)

Given a frame over U, we may express any section V locally as a linear combination:

$$V(p) = V^{\alpha}(p)e_{\alpha}(p), p \in U$$

Where V^{α} are the component functions

Evidently: V is smooth iff each component function V^{α} is smooth. Thus $v, w \in C^{\infty}(E) \Rightarrow aV + bW \in C^{\infty}(E)$.

 $^{^{\}overline{18}}$ rank *n*

¹⁹trivial bundle over M with fiber \mathbb{R}^q (rank q).

Example

$$\operatorname{Bilin}(TM, TM; \mathbb{R}) := \bigcup_{p \in M} \operatorname{Bilin}(T_pM \times T_pM \to \mathbb{R})$$

can be given the structure of a smooth vector bundle over M, and a Riemannian metric is a (smooth, symmetric, positive) section of this bundle.

Example Every smooth section of the twisted \mathbb{R} -bundle over S^1 has a zero

8.2 Connections on Vector Bundles

Aim: Given $\tilde{X} \in T_p M, V \in C^{\infty}(E)$, form

$$\mathcal{D}_{\tilde{X}} V \in E_p$$

directional derivative of V in the direction \tilde{X} at p.

[Try:]

- $X^{i}\frac{\partial V^{\alpha}}{\partial x^{i}}, X = X^{j}\frac{\partial}{\partial x^{j}}, V = V^{\alpha}e_{\alpha}.$ Does not transform correctly (depends on choice of frame).
- $\frac{d}{dt}\Big|_{t=0} \frac{V(\gamma(t)) V(\gamma(0))}{t}$ where γ is a path in M, $\gamma(0) = p$, $\dot{\gamma}(0) = \tilde{X}$. Cannot compare vectors in $E_{\gamma}(t)$ to $E_{\gamma(0)}$ in an intrinsic way.

Upshot To differnitate V in directions \tilde{X} , we must *declare*, or *impose* a structure E called a connection

Definition

 $E \to M$ vector bundle

An (affine) connection or covariant derivative operator, on E is a map

$$\begin{array}{cccc} \mathcal{D}: C^{\infty}(TM) &\times & C^{\infty}(E) &\to & C^{\infty}(E) \\ & X & V &\mapsto & \mathcal{D}_X V \end{array}$$

that satisfies

•
$$\mathcal{D}_X(aV + bW) = a\mathcal{D}_XV + b\mathcal{D}_XW, a, b \in \mathbb{R}$$
 (linear in V over \mathbb{R})

- $\mathcal{D}_{fX+gY}V = f\mathcal{D}_XV + g\mathcal{D}_YV, f, g \in C^{\infty}(M)$ (linear in X over $C^{\infty}(M)$)
- $\mathcal{D}_X(fV) = f\mathcal{D}_X V + (X \cdot f)V, f \in C^{\infty}(M)$ (Leibniz rule)

Expression in coordinates

 $X = X^{i} \frac{\partial}{\partial x^{i}}, V = V^{\alpha} e_{\alpha} \text{ over } U$ $\mathcal{D}_{X} V = \mathcal{D}_{X^{i}} \frac{\partial}{\partial x^{i}} (V^{\alpha} e_{\alpha})$ $= X^{i} \mathcal{D}_{\frac{\partial}{\partial x^{i}}} (V^{\alpha} e_{\alpha})$ $= X^{i} \left((\frac{\partial}{\partial x^{i}} \cdot V^{\alpha}) e_{\alpha} + V^{\alpha} \mathcal{D}_{\frac{\partial}{\partial x^{i}}} e_{\alpha} \right)$

Definition The *connection coefficients* are defined by

$$\left(\mathcal{D}_{\frac{\partial}{\partial x^{i}}}e_{\alpha}\right)_{p} = \Delta_{i\alpha}^{\beta}(p)e_{\beta}(p)^{20}, \ p \in U \ i = 1, \dots, n, \ \alpha = 1, \dots, d$$
$$\Delta_{i\alpha}^{\beta} = \Delta_{i\alpha}^{\beta}(p), \Delta_{i\alpha}^{\beta} \in C^{\infty}(U)$$

Get:

$$\mathcal{D}_X V = X^i \frac{\partial V^\alpha}{\partial x^i} e_\alpha + X^i V^\alpha \Delta^\beta_{i\alpha} e_\beta$$

or, writing $\mathcal{D}_X V = (\mathcal{D}_X V)^{\alpha} e_{\alpha}$:

$$\left(\mathcal{D}_X V\right)^{\alpha} = X^i \frac{\partial V^{\alpha}}{\partial x^i} + X^i V^{\beta} \Delta^{\alpha}_{i\beta}$$

i.e. derivative plus correction term.

This shows:

- $\mathcal{D}_X V(p)$ dependes linearly on the value of V and it's first derivatives at p.
- $\mathcal{D}_X V(p)$ depends linearly only on X(p) and not on any derivatives of X. We say $\mathcal{D}_X V$ is tensorial in X or point wise in X.

As a result, we may define

$$\mathcal{D}_{\tilde{X}}V, \tilde{X} \in T_pM, V \in C^{\infty}(E)$$

via

$$\mathcal{D}_{\tilde{X}}V := \mathcal{D}_X V(p)$$

where $X \in C^{\infty}(TM)$ is any vectorfield such that $X(p) = \tilde{X}$. This yields a linear map

$$\mathcal{D}V(p): T_p M \to E_p \tilde{X} \mapsto \mathcal{D}_{\tilde{X}} V (\mathcal{D}V(p))(\tilde{X}) \equiv \mathcal{D}_{\tilde{X}} V$$

 $^{^{20}}nd^2$ functions on U

$$\mathcal{D}V(p) \in \operatorname{Hom}(T_pM, E_p)$$

We can form a vector bundle

$$\operatorname{Hom}(TM, E) := \bigcup_{p \in M} \operatorname{Hom}(T_pM, E_p)$$
$$\mathcal{D}V := (\mathcal{D}V(p))_{p \in M} \in C^{\infty}(\operatorname{Hom}(TM, E))$$

More comments on the formula:

$$\left(\mathcal{D}_X V\right)^{\alpha} = X^i \frac{\partial V^{\alpha}}{\partial x^i} + X^i V^{\beta} \Delta^{\alpha}_{i\beta}$$

 $X^i \frac{\partial V^{\alpha}}{\partial x^i}$ defines the connection $\mathcal{D}^0_X V := X^i \frac{\partial V^{\alpha}}{\partial x^i} e_{\alpha}$ defines a connection (check!) called the *coordinate connection* induced by the frame $e_1, \ldots, e_d, d \equiv \operatorname{rank} E$. So \mathcal{D}^0 has the property: $\mathcal{D}^0_X e_{\alpha} = 0 \ \forall X \in C^{\infty}(TM)$.

Definition We call a section $V \in C^{\infty}(E)$ parallel (for \mathcal{D}) if $\mathcal{D}_X V = 0 \ \forall X \in$ $C^{\infty}(TM).$

Example $\mathbb{R}^n, E = T\mathbb{R}^n, e_i \equiv \frac{\partial}{\partial x^i}$

$$\left(\mathcal{D}_X^0 Y\right)^j = X^i \frac{\partial Y^j}{\partial x^i}$$

(usual directional derivative)

Y parallel iff components are constant

Remark It is rare for a connection to have even *one* parallel section.

Exercise For any choice of nd^2 smooth functions $\Delta_{i\alpha}^{\beta}, p \in U$, the above formula yields a connection.

The correction term yields a bilinear map

$$\tilde{X}, \tilde{V} \mapsto \tilde{X}^i \tilde{V}^\beta \Delta^{\alpha}_{i\beta}(p) e_{\alpha}(p) \in E_p$$

 $\tilde{X} \in T_p M, \tilde{V} \in E_p$

to which we give the name

$$\Delta(p): T_p M \times E_p \to E_p$$

So $\Delta(p) \in \text{Bilin}(T_pM, E_p; E_p)$. We form a smooth vector bundle

$$\operatorname{Bilin}(TM, E; E) := \bigcup_{p \in M} \operatorname{Bilin}(T_pM, E_p; E_p)$$

and we recognize that

$$\Delta := (\Delta(p))_{p \in M} \in C^{\infty}(\operatorname{Bilin}(TM, E; E))$$
$$\Delta : M \to \operatorname{Bilin}(TM, E; E), p \mapsto \Delta(p)$$

Define

$$\Delta(X, V) \in C^{\infty}(E)$$
$$\Delta(X, V)(p) := \Delta(p) (X(p), V(p))$$
$$\Delta : C^{\infty}(TM) \times C^{\infty}(E) \to C^{\infty}(E)$$

So we can write:

$$\mathcal{D}_X V = D_X^0 V + \Delta(X, V)$$
$$\mathcal{D} = \mathcal{D}^0 + \Delta$$

Theorem 8.1

- i. The difference between any two connections on E yields a section of Bilin(TM, E; E).
- ii. Any connection plus any smooth section of Bilin(TM, E; E) yields another connection.

Example

$$E = S^1 \times \mathbb{R} \ni (\theta, t)$$

$$\downarrow$$

$$M = S^1$$

 $e_1(\theta) = (\theta, 1)$

$$V \in C^{\infty}(E), \ V(\theta) = V^{1}e_{1}(\theta), \ \Delta_{11}^{1} = a(\theta)$$
$$X = \frac{\partial}{\partial \theta}, \ \mathcal{D}_{\frac{\partial}{\partial \theta}}V = \frac{\partial V^{1}}{\partial \theta}e_{1} + a(\theta)V^{1}(\theta)e_{1}$$

Let $a(\theta) = -\frac{1}{10}$

$$\mathcal{D}_{\frac{\partial}{\partial \theta}}V = \frac{\partial V^1}{\partial \theta}e_1 - \frac{1}{10}V^1e_1$$

Equation for parallel section:

$$0 = \left(\frac{\partial V^1}{\partial \theta} - \frac{1}{10}V^1\right)e_1$$
$$\frac{dV^1}{d\theta} = \frac{1}{10}V^1$$
$$V^1(\theta) = ce^{\theta/10}, c = 1$$

This connection has no (global) parallel section.

$$\mathcal{D}_{\frac{\partial}{\partial \theta}}e_1 = -\frac{1}{10}e_1$$

i.e. $e_1(\theta)$ is decreasing in length (compared to a parallel section) at rate $-\frac{1}{10}e_1$.

8.3 Inner Products on E and compatible connections

 $(E, \langle \cdot, \cdot \rangle)$ Euclidean bundle

Suppose we have $\langle \cdot, \cdot \rangle_p : E_p \times E_p \to \mathbb{R}, p \in M$ a smooth family of inner products on the fibers of E.

Definition \mathcal{D} is *compatible* with $\langle \cdot, \cdot \rangle$ if

$$X \cdot \langle V, W \rangle = \langle \mathcal{D}_X V, W \rangle + \langle V, \mathcal{D}_X W \rangle \ \forall X \in C^{\infty}(TM), V, W \in C^{\infty}(E)$$

(Leibniz rule) $X \cdot |V|^2 = \langle \mathcal{D}_X V, V \rangle + \langle V, \mathcal{D}_X V \rangle$

Exercise

- i. Prove if \mathcal{D} is compatible with $\langle \cdot, \cdot \rangle$, and V is parallel for \mathcal{D} , then $|V|^2$ is constant on M if M is connected.
- ii. Show the connection

$$\mathcal{D}_{\frac{\partial}{\partial\theta}}V = \left(\frac{\partial V^1}{\partial\theta} - \frac{1}{10}V^1\right)e_1$$

is not compatible with any inner product.

8.4 Riemannian Connections

Also called Levi-Civita Connection of a metric g. $M, g \rightsquigarrow \mathcal{D} = \mathcal{D}^g$ on TM.

Definition A connection \mathcal{D} on TM is called *torsion-free* or symmetric if

$$\mathcal{D}_X Y - \mathcal{D}_Y X = [X, Y] \ \forall X, Y \in C^{\infty}(TM).$$
 (\odot)

Example

• True for the usual directional derivative in \mathbb{R}^n

$$[X,Y]^j = X^i \frac{\partial Y^j}{\partial x^i} - Y^i \frac{\partial X^j}{\partial x^i}$$

• all coordinate connections on *TM* are torsion free.

Interpretation of \odot

The antisymmetric part of $\mathcal{D}_X Y$ is given by something that comes from the smooth structure alone. [X, Y].

In particular:

$$\mathcal{D}_{\frac{\partial}{\partial x^i}}\frac{\partial}{\partial x^j} = \mathcal{D}_{\frac{\partial}{\partial x^j}}\frac{\partial}{\partial x^i}$$

(since $\left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0$)

Theorem 8.2 For every (M, g) there exists a unique connection on TM that is

- symmetric
- compatible with g

In coordinates:

$$\mathcal{D}_X Y = X^i \frac{\partial Y^j}{\partial x^i} \frac{\partial}{\partial x^j} + X^i Y^j \Gamma^k_{ij} \frac{\partial}{\partial x^k}$$

where

$$\mathcal{D}_{\frac{\partial}{\partial x^i}}\frac{\partial}{\partial x^j} = \Gamma_{ij}^k \frac{\partial}{\partial x^k} \text{ (defines } \Gamma_{ij}^k(p).)$$

Then \mathcal{D} is symmetric iff $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Proof Symmetry in coordinates:

$$\begin{split} \left(X^i \frac{\partial Y^k}{\partial x^i} + X^i Y^j \Gamma^k_{ij} \right) &- \left(Y^i \frac{\partial X^j}{\partial x^i} + Y^i X^j \Gamma^k_{ij} \right) \\ &= X^i \frac{\partial Y^k}{\partial x^i} - Y^i \frac{\partial X^k}{\partial x^i} \\ X^i Y^j \Gamma^k_{ij} &= Y^i X^j \Gamma^k_{ij} \; \forall X, Y \\ &\Leftrightarrow \Gamma^k_{ij} &= \Gamma^k_{ji} \end{split}$$

Theorem 8.3 (Levi-Civita) Given (M, g), there exists a unique connection \mathcal{D} on TM satisfying

- i. \mathcal{D} is compatible with g
- ii. \mathcal{D} is torsion-free
- \mathcal{D} is called the Levi-Civita or Riemannian connection of g.

Proof of uniqueness

$$X \cdot \langle Y, Z \rangle = \langle D_X Y, Z \rangle + \langle Y, D_X Z \rangle$$
$$Y \cdot \langle Z, X \rangle = \langle D_Y Z, X \rangle + \langle Z, D_Y X \rangle$$
$$Z \cdot \langle X; Y \rangle = \langle D_Z X, Y \rangle + \langle X, D_Z Y \rangle$$

 $\begin{aligned} X \cdot \langle Y, Z \rangle + Y \cdot \langle Z, X \rangle - Z \cdot \langle X, Y \rangle \\ &= \langle [Y, Z], X \rangle + \langle [X, Z], Y \rangle - \langle [X, Y], Z \rangle + 2 \langle D_x Y, Z \rangle \Rightarrow \text{uniqueness} \end{aligned}$

$$\langle D_X Y, Z \rangle = \frac{1}{2} \left(X \cdot \langle Y, Z \rangle + Y \cdot \langle X, Z \rangle - Z \cdot \langle X, Y \rangle \right.$$
$$\left. \left. \left. \left. \left. \left. \left\{ X, Z \right\} \right\} - \left\langle X, [Y, Z] \right\rangle + \left\langle Z, [X, Y] \right\rangle \right) \right. \right.$$
$$\left. \left. \left. \left. \left\{ X, Z \right\} \right\} \right\} \right.$$

- uniquely characterizes $\mathcal{D}_X Y$ in terms of g and smooth structure of M.
- not quite a formula for $\mathcal{D}_X Y$ (derivatives of Z appear on right hand side).

Find a formula for
$$\mathcal{D}_X Y$$

Insert $X = \frac{\partial}{\partial x^i}, Y = \frac{\partial}{\partial x^j}, Z = \frac{\partial}{\partial x^k}, \left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0$. Recall $g_{ij} = \langle \frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \rangle$
 $\langle \underbrace{\mathcal{D}}_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \rangle = \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} \right)$

Recall

$$(\mathcal{D}_X Y)^k = X^i \frac{\partial Y}{\partial x^i} + \Gamma^k_{ij} X^i Y^j$$

where $\Gamma_{ij}^k \frac{\partial}{\partial x^k} = \mathcal{D}_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j}$ defines Γ_{ij}^k .

LHS =
$$\langle \Gamma_{ij}^m \frac{\partial}{\partial x^m}, \frac{\partial}{\partial x^k} \rangle$$

= $\Gamma_{ij}^m g_{mk} = \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} \right)$

multiply by $g^{-1} = (g^{kl})$ Get:

$$\Gamma_{ij}^{\ell} = \frac{1}{2} g^{\ell k} \left(\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} \right)$$
(†‡)

classic formula for *Christoffel symbols* Γ_{ij}^k . Where

$$(\mathcal{D}_X Y)^{\ell} = X^i \frac{\partial Y^{\ell}}{\partial x^i} + X^i Y^j \Gamma^{\ell}_{ij} \tag{\#}$$

Formulas (\dagger ‡) and (#) define a differntial operator \mathcal{D} . It remains to verify (existence part of theorem)

- \mathcal{D} is a connection (previous exercise)
- \mathcal{D} is symmetric (because $\Gamma_{ij}^k = \Gamma_{ji}^k$)
- \mathcal{D} is compatible with g.

Must verify:

$$X \cdot \langle Y, Z \rangle = \langle \mathcal{D}_X Y, Z \rangle + \langle Y, \mathcal{D}_X Z \rangle$$

In coordinates:

$$\begin{aligned} X^{i} \frac{\partial}{\partial x^{i}} \left(Y^{j} Z^{k} g_{jk} \right) \stackrel{?}{=} \left(X^{i} \frac{\partial Y^{\ell}}{\partial x^{i}} + X^{i} Y^{j} \Gamma^{\ell}_{ij} \right) g_{\ell k} Z^{k} \\ &+ \left(X^{i} \frac{\partial Z^{\ell}}{\partial x^{i}} + X^{i} Z^{k} \Gamma^{\ell}_{ik} \right) g_{\ell j} Y^{j} \end{aligned}$$

$$X^{i}\left(\frac{\partial Y^{j}}{\partial x^{i}}Z^{k}g_{jk}+Y^{j}\frac{\partial Z^{k}}{\partial x^{i}}g_{ik}+Y^{j}Z^{k}\frac{\partial g_{jk}}{\partial x^{i}}\right)\Leftrightarrow\frac{\partial g_{jk}}{\partial x^{i}}\stackrel{?}{=}\Gamma^{\ell}_{ij}g_{\ell k}+\Gamma^{\ell}_{ik}g_{\ell j}$$

This last statement is true, as seen by substitution.

8.5 Parallel Transport

parallel transport of a vector around a 90-90-90 triangle in S^2 creates a 90 rotation.

 $E \to M$ bundle, $\gamma: [a,b] \to M$ smooth curve. (E=TM: main example).

Definition A (smooth) section of E along γ is a smooth function $V : [a, b] \rightarrow E, V(t) \in E_{\gamma(t)} \ \forall t \in [a, b]$

Allowed:

- self-intersections
- $\dot{\gamma} = 0$

Wish to make sense of " $\mathcal{D}_{\dot{\gamma}}V$ "

$$(\mathcal{D}_{\dot{\gamma}}\tilde{V})^{\alpha} = \underbrace{\dot{\gamma}^{i} \frac{\partial \tilde{V}^{\alpha}}{\partial x^{i}}}_{\frac{dV^{\alpha}}{dt}} + \dot{\gamma}^{i} \tilde{V}^{\beta} \Delta^{\alpha}_{i\beta}, \ \tilde{V} \in C^{\infty}(E)$$

 $e_{\alpha}(x)$ local frame for E

$$V(t) = V^{\alpha}(t)e_{\alpha}(\gamma(t))$$

Notation

$$\frac{\mathcal{D}V}{dt} := \left(\frac{dV^{\alpha}(t)}{dt} + \dot{\gamma}^{i}(t)V^{\beta}(t)\Delta^{\alpha}_{i\beta}(\gamma(t))\right)e_{\alpha}(\gamma(t))$$

" $\mathcal{D}_{\dot{\gamma}}V$ " covariant derivative of V along γ

Clearly

- $\frac{DV}{dt}$ is a smooth section of E along γ
- $\frac{\mathcal{D}(fV)}{dt} = \frac{df}{dt}V + f\frac{\mathcal{D}V}{dt}, \ f = f(t)$

- $\frac{d}{dt}\langle V,W\rangle = \langle \frac{\mathcal{D}V}{dt},W\rangle + \langle V,\frac{\mathcal{D}W}{dt}\rangle$ if \mathcal{D} is compatible with some inner product $\langle \cdot, \cdot \rangle$ on E.
- If V is obtained from an ambient section $\tilde{V} \in C^{\infty}(E|U)$ $(U \supseteq \text{Im}\gamma)$ (open) via $V(t) = \tilde{V}(\gamma(t))$ then $\frac{\mathcal{D}V}{dt}(t) = \mathcal{D}_{\dot{\gamma}}\tilde{V}$

Definition A section V along γ is called *parallel along* γ if $\frac{DV}{dt} = 0 \ \forall t \in [a, b]$.

Proposition 8.4 Fix $\gamma : [a, b] \to M, \tilde{V} \in E_a$. Then there exists a unique parallel section V(t) along γ such that $V(a) = \tilde{V}$.

Proof In a fixed chart U we may solve the $d \times d$ system of ODES that says $\frac{DV}{dt} = 0, \hat{V}(a) = \tilde{V}$, namely

$$(*) \begin{cases} \frac{dV^{\alpha}(t)}{dt} + \dot{\gamma}^{i}(t)V^{\beta}(t)\Gamma^{\alpha}_{i\beta} = 0, & \alpha = 1, \dots, d \\ V^{\alpha}(a) = \hat{V}, & \alpha = 1, \dots, d \end{cases}$$

for smooth functions $V^1(t), \ldots, V^d(t)$ $t \in [a, c]$, as long as $\gamma([a, c]) \subseteq U$. Now select $a = t_0 < t_1 < \cdots < t_s = b$ such that each $\gamma([t_i, t_{i+1}])$ lies in a single chart U_i . Existence follow by induction. Uniqueness, smoothness also follow from ODE theory.

Definition Parallel transport is defined along γ from $\gamma(a)$ to $\gamma(b)$ as the map

$$P_{\gamma} : E_{\gamma(a)} \to E_{\gamma(b)}$$
$$\hat{V} = V(a) \to V(b)$$

 P_{γ} is linear since the ODE system we solved to find $P_{\gamma}(\hat{V})$ is linear.

Proposition 8.5 If \mathcal{D} is compatible with $\langle \cdot, \cdot \rangle$ then P_{γ} is an isometry from $E_{\gamma(a)}$ to $E_{\gamma(b)}$.

Proof Let V(t), W(t) be parallel along γ . Then

$$\frac{d}{dt}\langle V,W\rangle = \langle \frac{\mathcal{D}V}{dt},W\rangle + \langle V,\frac{\mathcal{D}W}{dt}\rangle = 0 + 0$$

So $\langle V(t), W(t) \rangle$ is constant.

Example Let γ be a great circle (transversed at unit speed) on S^2 . \mathcal{D}^{S^2} is the Levi-Civita connection of the induced metric an S^2 .

Claim $\dot{\gamma}$ is parallel along γ i.e. $\mathcal{D}_{\dot{\gamma}}^{S^2} \dot{\gamma} = 0$

Lemma 8.6 (Proof will be an exercise) Given (M, g), and $N \subseteq M$ submanifold.

orthogonal projection. Exercise X-I

$$D'_X Y := \pi^{TN}(\mathcal{D}^g_{\tilde{X}} \tilde{Y})$$

 $\tilde{X}, \tilde{Y} \in C^{\infty}(TM)$ extend $X, Y \in C^{\infty}(TN)$. \mathcal{D}' is a connection on TN. $(\tilde{X}|N = X, \tilde{Y}|N = Y)$

$$\mathcal{D}_{\tilde{X}}^{M}\tilde{Y} = \underbrace{\mathcal{D}_{X}^{N}Y}_{tangental \ part} + normal \ part$$

Proof of Claim Setup:

$$e_1 \perp e_2 \in \mathbb{R}^3, |e_1| = |e_2| = 1$$

$$\gamma(t) = \cos t e_1 + \sin t e_2$$
$$\dot{\gamma} = \frac{d\gamma}{dt} = -\sin t e_1 + \cos t e_2$$
$$\mathcal{D}_{\dot{\gamma}}^{\mathbb{R}^3} \dot{\gamma} = \frac{d^2 \gamma}{dt^2} = -\cos t e_1 - \sin t e_2 = -\gamma$$

Calculate:

$$\mathcal{D}_{\dot{\gamma}}^{S^2} \dot{\gamma} = \pi^{TS^2} (\mathcal{D}_{\dot{\gamma}}^{\mathbb{R}^3} \dot{\gamma})$$

$$= \pi^{TS^2} (-\gamma)$$

$$= 0$$

Observe: a continuous vector field V(t) is parallel along γ iff $|V(t)|^2$ is constant, $\langle V(t), \dot{\gamma}(t) \rangle$ is constant.

Example $S^2 \subseteq \mathbb{R}^3$ If β traverses a 90-90-90 triangle in S^2 , then

$$P_{\beta}: T_p M \to T_p M$$

is rotation by 90.

Definition If γ is a closed curve in M, $\gamma(a) = \gamma(b) = p$, \mathcal{D} cannon $E \to M$, the linear map $P_{\gamma} : E_p \to E_p$ is called the *holonomy map*.

9 Geodesics, Exponential Map

A geodesic is a curve with zero acceleration this is equivalent to a locally length-minimizing curve. Define the acceleration (with respect to \mathcal{D}) as

$$\ddot{\gamma} := \frac{\mathcal{D}\dot{\gamma}}{dt} = "\mathcal{D}_{\dot{\gamma}}\dot{\gamma}"$$

(a vector field along γ))

Definition γ is a *geodesic* if $\ddot{\gamma}(t) = 0, t \in [a, b]$. "Motion of a free particle in a Riemannian manifold".

Example A great circle of unit speed in S^n is a geodesic

Remarks

- $\frac{d}{dt}|\dot{\gamma}|^2 = 2\langle \ddot{\gamma}, \dot{\gamma} \rangle = 0$ so $|\dot{\gamma}|$ is constant (constant speed)
- Let $\gamma(t)$ be a geodesic $\Rightarrow \beta(t) := \gamma(ct)$ is a geodesic. $\dot{\beta} = c\dot{\gamma}, \ddot{\beta} = c^2\ddot{\gamma}$

ODE for geodesics

Coordinates x^1, \ldots, x^n on $U \subseteq M$. Write

$$\begin{aligned} \gamma(t) &= (\gamma^{1}(t), \dots, \gamma^{n}(t)) \\ \dot{\gamma}^{i}(t) &= \frac{d\gamma^{i}}{dt}(t) \\ \ddot{\gamma}^{i}(t) &= \left(\frac{\mathcal{D}\dot{\gamma}}{dt}\right)^{i}(t) \\ &= \frac{d\dot{\gamma}^{i}}{dt} + \dot{\gamma}^{j}\dot{\gamma}^{k}\Gamma^{i}_{jk}(\gamma(t)) \end{aligned}$$

so γ is a geodesic iff

$$\frac{d^2\gamma^i}{dt^2} + \frac{d\gamma^j}{dt}\frac{d\gamma^k}{dt}\Gamma^i_{jk}(\gamma(t)) = 0, i = 1, \dots, n$$
(1)

 $n \times n$ system of nonlinear ODEs.(linear in 2nd order derivatives quadratic in 1st oder, fully nonlinear in γ itself.)

Consider the initial conditions

$$\begin{cases} \gamma(0) = p\\ \dot{\gamma}(0) = X \end{cases}$$
(2)

 $p \in M, X \in T_pM$

Theorem 9.1 (Short-term existence for geodesics) Forall $p \in M$ and all $X \in T_pM$ there is a unique solution $\gamma = \gamma_{p,X} : [0, \varepsilon) \to M$ of (1) and (2) for some $\varepsilon > 0$.

Proof later

Definition The *exponential map* by

$$\exp_p: {\text{subset of } T_p M} \to M$$

by

$$\exp_p(X) := \gamma_{p,X}(1)$$

whenever this exists.

Lemma 9.2 (Homogeneity)

- *i.* $\gamma_{p,sX}(t) = \gamma_{p,X}(st)$
- ii. $t \mapsto \exp_p(tX)$ is a geodesic.

Proof

i. $t \mapsto \gamma_{p,X}(st)$ is a geodesic by the above remark, with $\frac{d}{dt}\Big|_0 \gamma_{p,X}(st) = s \frac{d}{dt}\Big|_0 \gamma_{p,X}(t) = sX$ so $t \mapsto \gamma_{p,X}(st)$ and $t \mapsto \gamma_{p,sX}(t)$ have the same initial point, and the same initial velocity so by uniqueness of geodesics they are the same

ii.

$$\exp_p(tX) = \gamma_{p,tX}(1)$$
$$\stackrel{1}{=} \gamma_{p,X}(t)$$

which is a geodesic.

Geodesic Flow 9.1

Rewrite (1),(2) (equations and initial conditions for geodesics) as a $2n \times 2n$ 1st order ODE system for $(\gamma^1(t), \ldots, \gamma^n(t), Y^1(t), \ldots, Y^n(t)) \in TM$ where M has the coordinates $(x^1, \ldots, x^n, X^1, \ldots, X^n)$ and $Y^i(t)$ shall end up being $\frac{d\gamma^i}{dt}(t).$ Get:

$$\begin{cases} \frac{d\gamma^i}{dt} &= Y^i(t), & i = 1, \dots, n\\ \frac{dY^i}{dt} &= -Y^p(t)Y^q(t)\Gamma^i_{pq}(\gamma(t)), & i = 1, \dots, n \end{cases}$$
(1')

$$\gamma(0) = p, \ Y(0) = X \tag{2'}$$

Rewrite as

$$\frac{d\tilde{\gamma}}{dt} = G(\tilde{\gamma}) \tag{1"}$$

$$\tilde{\gamma}(0) = (p, X) \tag{2"}$$

where

$$\tilde{\gamma}(t) = (\gamma(t), Y(t)) Y(t) = Y^{i}(t) \left(\frac{\partial}{\partial x^{i}}\right)_{\gamma(t)} \in T_{\gamma(t)}M$$

is the lifting of the path $\gamma(t)$ via the vector Y(t) to a curve in TM where now

$$G(x^{1}, \dots, x^{n}, Z^{1}, \dots, Z^{n}) := (Z^{1}, \dots, Z^{n}, -Z^{p}Z^{q}\Gamma^{1}_{pq}, \dots, -Z^{p}Z^{q}\Gamma^{n}_{pq}(x))$$

is a smooth vector field on TM. A solution curve $\tilde{\gamma}(t)$ of $(1^{"}), (2^{"})$ yields a pair $\gamma(t), Y(t)$ solving (1'),(2') and hence a geodesic $\gamma(t)$ (we call it $\gamma_{p,X}(t)$) solving (1),(2). This proves Short Term Existence Theorem for geodesics (as it was stated).

Local flow of G

By ODE theory:

Proposition 9.3 Fix $p \in M$. Then there exists a open set $U \subseteq M$ with $p \in U, \varepsilon > 0, \delta > 0$ and $W \subseteq TM$ open of the form

$$W := \{ (x, Z) | x \in U, |Z| < \varepsilon \}$$

and a smooth map

$$\phi: W \times [-\delta, \delta] \to TM$$
$$(x, Z) \in W \ t \in [\delta, \delta]$$

that is the flow for (1"), (2"), i.e.

$$\begin{array}{lcl} \phi(x,Z,0) &=& (x,Z)\\ \\ \frac{\partial \phi}{\partial t}(x,Z,t) &=& G(\phi(x,Z,t))\\ \phi(p,X,t) = (\gamma_{p,X}(t),Y_{p,X}(t)) \end{array}$$

Smoothness of exp and existence in a neighborhood of 0 in T_pM

$$\gamma_{x,Z}(t) = \pi(\phi(x,Z,t)), \pi: TM \to M$$

We have

$$\exp_x(Z) = \gamma_{x,Z}(1) = \gamma_{x,Z/\delta}(\delta) = \pi(\phi(x, Z/\delta, \delta)) \left| \frac{Z}{\delta} \right| < \varepsilon$$

Thus $\exp_x(Z)$ is defined for $x \in U$, $|Z| < \varepsilon \delta$ and is smooth in both variables. Set $B_r^{T_pM}(0) := \{X \in T_pM, |X| < r\}$

Lemma 9.4 $\exp_p : B_r^{T_pM}(0) \to M$ is defined and smooth for sufficiently small r > 0.

Theorem 9.5 For each $p \in M \exists \varepsilon > 0$ such that $\exp_p : B_{\varepsilon}^{T_pM}(0) \to M$ is a diffeomorphism onto its (open) image. In fact,

$$(d \exp_p)_0 : \underbrace{T_0 T_p M}_{T_p M} \to T_p M$$

is the identity.

Proof of Theorem By Inverse Function Theorem, it suffices to prove the latter statement. The path

$$t \mapsto tX$$
 in T_pM

goes to the path

$$t \mapsto \gamma(t) := \exp_p(tX)$$
 in M

which is a geodesic in M with $\gamma(0) = p, \dot{\gamma}(0) = X$.

Differentiate:

$$X = \dot{\gamma}(0)$$

= $\frac{d}{dt} \exp_p(tX)$
= $(d \exp_p)_0 \left(\frac{dt}{dt}\Big|_0 (tX)\right)$
= $(d \exp_p)_0(X)$

Exponential Coordinates

- geodesic normal coordinates
- geodesic polar coordinates

Geodesic Normal Coordinates

Let x^1, \ldots, x^n be orthonormal coordinates on the inner product space $(T_pM, g(p))$. Transfer these coordinates to M via \exp_p^{-1} to obtain *geodesic normal coordinates* near p:

$$\mathbb{R}^{n} \underbrace{\stackrel{x^{1},...,x^{n}}{\leftarrow}}_{\text{Isometry}} T_{p}M \xrightarrow[\text{partial}]{} M \xrightarrow[\text{partial}]{} M$$

$$\triangleq \square \stackrel{\cong}{\leftarrow} \square \stackrel{\cong}{\leftarrow} \square \stackrel{E^{T_{p}M}}{\to} (0) \xrightarrow[\text{exp}_{p}]{} U$$

$$g(X,Y) = g_{ij}(x)X^{i}Y^{j}$$

$$\delta(X,Y) = \delta_{ij}X^{i}Y^{j} = X^{i}Y^{i}$$

Compare

$$g = (g_{ij}(x)), x \in U$$

(expressed in exponential normal coordinates) to $\delta = (\delta_{ij})$ (the back ground flat metric coming from x^1, \ldots, x^n .)

Theorem 9.6 In geodesic normal coordinates at p,

$$g_{ij}(0) = \delta_{ij}, \frac{\partial g_{ij}}{\partial x^k}(0) = 0, \Gamma^k_{ij}(0) = 0$$

So $g_{ij}(x) = \delta_{ij} + \mathcal{O}(|x|^2)^{21}$ for $x \in U$ near p. "Metric looks Euclidean up to 1st order".

 $e^{21}|x| = |x|_{\delta} = \sqrt{x^i x^i}, \mathcal{O} \text{ is some } \varepsilon_{ij}(x) \text{ such that } |\varepsilon_{ij}(x)| \le c|x|^2$

Consequence

A Riemannian metric has no first order invariants to distinguish it from flat space (Euclidean space).

Proof

- i. $g_{ij}(p) = \langle \left(\frac{\partial}{\partial x^i}\right)_p, \left(\frac{\partial}{\partial x^j}\right)_p \rangle = \delta_{ij}$ since we chose orthonormal coordinates x^1, \ldots, x^n on $T_p M$.
- ii. Fix $X = X^i \left(\frac{\partial}{\partial x^i}\right)_p \in T_p M$. Consider the geodesic

$$\gamma(t) = \exp_p(tX)$$

with $\dot{\gamma}(0) = X$. In geodesic normal coordinates, $\gamma(t)$ is given by

$$\begin{aligned} \gamma(t) &= (tX^1, \dots, tX^n) \\ \dot{\gamma}(t) &= (X^1, \dots, X^n) \quad \left(= X^i \left(\frac{\partial}{\partial x^i} \right)_{\gamma(t)} \in T_{\gamma(t)} M \right) \end{aligned}$$

i.e. $\dot{\gamma}(t)$ agrees along γ with the constant coefficient vector field

$$\begin{split} \tilde{X}(q) &:= X^i \left(\frac{\partial}{\partial x^i}\right)_q, q \in U\\ \tilde{X}(\gamma(t)) &= \dot{\gamma}(t). \end{split}$$

Since γ is a geodesic,

$$0 = \ddot{\gamma}(t) = \mathcal{D}_{\dot{\gamma}}\dot{\gamma}(t) = \left(\mathcal{D}_{\tilde{X}}\tilde{X}\right)(\gamma(t))$$

At t = 0:

$$0 = \mathcal{D}_{\tilde{X}}\tilde{X}(0)^k = \underbrace{X^i \frac{\partial X^k}{\partial x^i}}_{=0} + X^i X^j \Gamma^k_{ij}(0)$$

i.e.

$$\Gamma_{ij}^k(0)X^iX^j = 0, \ \forall k.$$

Since this holds $\forall X$ and Γ_{ij}^k is symmetric, polarization yields

$$\Gamma_{ij}^k(0) = 0 \ \forall i, j, k.$$

iii. Compute on U:

$$\begin{aligned} \frac{\partial g_{jk}}{\partial x^i} &= \frac{\partial}{\partial x^i} \langle \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \rangle \\ &= \langle \mathcal{D}_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \rangle + \langle \frac{\partial}{\partial x^j}, \mathcal{D}_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} \rangle \\ &= \langle \Gamma^{\ell}_{ij} \frac{\partial}{\partial x^{\ell}}, \frac{\partial}{\partial x^k} \rangle + \langle \frac{\partial}{\partial x^j}, \Gamma^{\ell}_{ik} \frac{\partial}{\partial x^{\ell}} \rangle \\ &= 0 \quad \text{at } x = 0 \text{ by}(ii) \end{aligned}$$

Remark on polarization Let A(X, Y) be symmetric, then

$$A(X,Y) = \frac{1}{2} \left(A(X+Y,X+Y) - A(X,X) - A(Y,Y) \right)$$

Exercise (Lee)

Show: if two connections on TM (not necessarily torsion free!) have the same symmetric part, then they have the same geodesics.

Corollary 9.7 Any vector X in T_pM can be extended to $\tilde{X} \in C^{\infty}(T_pU), p \in U$ such that \tilde{X} is parallel at p, i.e.

$$\mathcal{D}_Y \tilde{X}(p) = 0 \ \forall Y.$$

Geodesic Polar Coordinates

Place polar coordinates on T_pM and transfer them to $U \subseteq M$ via \exp_p^{-1} . Let $S^{n-1} :=$ unit sphere in T_pM (identified with standard unit sphere in \mathbb{R}^n). Define

$$\begin{array}{rccc} [0,\infty) \times S^{n-1} & \to & T_p M \\ (r,\omega) & \mapsto & r\omega \end{array}$$

Obtain coordinates $r, \omega^1, \ldots, \omega^{n-1}$ and coordinate vector fields $\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^1}, \ldots, \frac{\partial}{\partial w^{n-1}}$ on $U \setminus \{p\} \subseteq M$. Write $S(r) = \{r\} \times S^{n-1}$.

Lemma 9.8 In $U \setminus \{p\}$, with respect to g:

$$\begin{split} i. \ \langle \frac{\partial}{\partial r}, \frac{\partial}{\partial r} \rangle &= 1 \\ ii. \ \langle \frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^a} \rangle &= 0, \ a = 1, \dots, n-1 \\ \hline Radial \ geodesics \ t \mapsto t \omega \ are \ othogonal \ to \ coordinate \ spheres \ S(r). \end{split}$$

iii.
$$\left\langle \frac{\partial}{\partial \omega^a}, \frac{\partial}{\partial \omega^b} \right\rangle = \mathcal{O}(r^2)$$

Proof

i. Fix $\omega \in S^{n-1}$. Then $\gamma(t) := \exp_p(t\omega), t \in \mathbb{R}$ is a geodesic with coordinate expression

$$t \mapsto (t, \omega^1, \dots, \omega^{n-1}) \ (t \neq 0)$$

Thus

$$\dot{\gamma}(t) = (1, 0, \dots, 0) = \left(\frac{\partial}{\partial r}\right)_{\gamma(t)} \ (t \neq 0)$$

 \mathbf{SO}

$$\left| \frac{\partial}{\partial r} \right|_{\gamma(t)} \stackrel{t \neq 0}{=} |\dot{\gamma}|_{\gamma(t)}$$
$$= \text{ const}$$

since γ is a geodesic. What is this constant? Remember: $\left|\frac{\partial}{\partial r}\right|_{\delta} = 1$ (pre-DG fact) so

$$\left| \frac{\partial}{\partial r} \right|_{g} = \left| \frac{\partial}{\partial r} \right|_{\delta} (1 + \mathcal{O}(|x|^{2}))$$
$$= 1 + \mathcal{O}(|x|^{2})$$

(r = |x|, |x| means $|x|_{\delta})$ so the constant is 1.

ii. Fix $a \in \{1, ..., n-1\}$ To show: $\langle \frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^a} \rangle = 0$ on $U \setminus \{p\}$. Observe:

$$\mathcal{D}_{\frac{\partial}{\partial r}}\frac{\partial}{\partial \omega^a} - \mathcal{D}_{\frac{\partial}{\partial \omega^a}}\frac{\partial}{\partial r} = \left[\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^a}\right] = 0 \text{ on } U \setminus \{p\}$$

 $r(\gamma(t)) = t, \frac{\partial}{\partial r} = \frac{d}{dt}$. Now consider $\frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^a}$ as vector fields along $\gamma(t) = \exp_p(t\omega), (\dot{\gamma} = \frac{\partial}{\partial r})$. Compute

$$\frac{d}{dt} \langle \frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^{a}} \rangle_{\gamma(t)} = \langle \overbrace{\mathcal{D}_{\frac{\partial}{\partial r}}, \frac{\partial}{\partial r}}^{=\frac{\gamma=0}{\partial r}}, \frac{\partial}{\partial \omega^{a}} \rangle + \langle \frac{\partial}{\partial r}, \mathcal{D}_{\frac{\partial}{\partial r}}, \frac{\partial}{\partial \omega^{a}} \rangle$$
$$= 0 + \langle \frac{\partial}{\partial r}, \mathcal{D}_{\frac{\partial}{\partial \omega^{a}}}, \frac{\partial}{\partial r} \rangle$$
$$= \frac{1}{2} \frac{\partial}{\partial \omega^{a}} \cdot \underbrace{\langle \frac{\partial}{\partial r}, \frac{\partial}{\partial r} \rangle}_{\equiv 1} = 0$$

so $\langle \frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^a} \rangle = \text{const along } \gamma$. What is this constant?

$$\begin{split} |\langle \frac{\partial}{\partial r}, \frac{\partial}{\partial \omega^a} \rangle| &\leq \left| \frac{\partial}{\partial r} \right|_g \left| \frac{\partial}{\partial \omega^a} \right|_g \text{ Cauchy-Schwarz} \\ &= 1 \cdot \mathcal{O}(r) \end{split}$$

so the constant is zero.

iii. Note $\langle \frac{\partial}{\partial \omega^a}, \frac{\partial}{\partial \omega^b} \rangle_{\delta} = r^2 h_{ab}^{\circ}(w)$ (standard metric on S^{n-1}). Since $g_{ij} = \delta_{ij} + \varepsilon_{ij}, \varepsilon_{ij} = \mathcal{O}(r^2)$, where $|\varepsilon_{ij}(r, \omega)| \leq Cr^2$

$$\langle \frac{\partial}{\partial \omega^a}, \frac{\partial}{\partial \omega^b} \rangle_g = r^2 h_{ab}^{\circ}(\omega) + \mathcal{O}(r^2) = \mathcal{O}(r^2)$$

Corollary 9.9 (Gauss's Lemma) In geodesic polar coordinates, g has the form

$$g = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & r^2 h_{ij}(r,\omega) & \\ 0 & & & \end{pmatrix} \begin{pmatrix} r \\ \omega^1 \\ \vdots \\ \omega^{n-1} \end{pmatrix}$$

where for each $r > 0, h_{ij}(r, \cdot)$ is a metric on S^{n-1} with

$$h_{ij}(r,\omega) = h_{ij}^{\circ}(\omega) + \mathcal{O}(r^2)$$

as $r \to 0$.

Proof A slight refinement of the above.

9.2 Length-minimizing curves

$$L(\gamma) := \int_{a}^{b} |\dot{\gamma}(t)|_{g} dt,$$

$$\gamma : [a, b] \to M.$$

The curve γ is *length-minimizing* if

$$L(\gamma) \le L(\beta)$$

for any smooth curve β with the same endpoints (resp. *strictly length-minimizing* if equality implies $\beta = \gamma$).

Theorem 9.10 (Local Length-minimizing Property) Let γ be geodesic Then for each $a \in dom(\gamma)$ and each b sufficiently close to a $(b > a) \gamma | [a, b]$ is length-minimizing.

Example $\alpha = \gamma | [a, b]$. α is length-minimizing iff $L(\alpha) \leq \pi$ (strictly length-minimizing iff $L(\alpha) < \pi$)

Proof Without loss of generality a = 0. Set $p = \gamma(0)$. Select $\varepsilon > 0$ such that $\exp_p : B_{\varepsilon}^{T_pM}(0) \xrightarrow{\cong} U \subseteq M$ is a diffeomorphism. Fix $b < \varepsilon, q := \gamma(b)$. Use geodesic normal coordinates on U. In these coordinates, $\gamma(t), 0 \leq t \leq b$ is the ray $t \mapsto (tX^1, \ldots tX^n)$ where $X := \dot{\gamma}(0)$. Let β by any curve connectiong $p = \gamma(0)$ to $q = \gamma(b)$.

 $L(\gamma|[0,b]) = b$ To show: $L(\beta) \ge b$. Without loss of generality replace β by the initial segment $\beta|[0,e]$ such that

$$\beta(e) \in S(b), \beta([0, e]) \subseteq \{r(x) \le b\}$$

Show: $L(\beta|[0,e]) \ge b$. Write

$$\begin{aligned} \beta(u) &= \left(r(u), \omega^{1}(u), \dots, \omega^{n-1}(u)\right), 0 \leq u \leq e \\ \dot{\beta}(u) &= \left(\frac{dr}{du}, \frac{d\omega^{1}}{du}, \dots, \frac{d\omega^{n-1}}{du}\right) \\ &= \underbrace{\frac{dr}{du} \frac{\partial}{\partial r}}_{\text{radial part}} + \underbrace{\sum_{a=1}^{n-1} \frac{d\omega^{a}}{du} \frac{\partial}{\partial \omega^{a}}}_{\text{tangental part}} \\ &= \dot{\beta}(u)^{R} + \dot{\beta}(u)^{T} \end{aligned}$$

 \mathbf{SO}

$$\begin{aligned} |\dot{\beta}(u)|^2 &= |\dot{\beta}(u)^R|^2 + |\dot{\beta}(u)^T|^2 \\ |\dot{\beta}(u)| &\geq |\frac{dr}{du}||\frac{\partial}{\partial r}| = |\frac{dr}{du}| \end{aligned}$$

 \mathbf{SO}

$$L(\beta|[0,e]) = \int_0^e |\dot{\beta}(u)| \, du$$

$$\geq \int_0^e |\frac{dr}{du}| \, du$$

$$\geq r(e) - r(0)$$

$$= b - 0 = b$$

Furthermore: equality occurs iff $\dot{\beta}$ is a nonnegative multiple of $\frac{\partial}{\partial r}$ for all $u \in [0, e]$. But then, $\beta = \gamma[0, b]! \ \gamma$ is a strict minimizer, $b < \varepsilon!$ Recall $d(p, q) := \inf\{L(\beta)|\beta$ joins p to $q\}$

Definition If $\exp_p : B_{\varepsilon}^{T_pM}(0) \xrightarrow{\cong} U \subseteq M$ is a diffeomorphism, we call U a normal neighborhood of p.

Corollary 9.11 $p, q \in M, r < \varepsilon$ normal coordinates about p.

$$\begin{array}{rcl} d(p,q) &=& r(q) & \text{if } q \in \exp_p(B_{\varepsilon}^{T_pM}(0)) \\ d(q,p) &\geq & \varepsilon & \text{if } q \notin \exp_p(B_{\varepsilon}^{T_pM}(0)) \end{array}$$

9.3 Metric Space Structure

(induced by g) $(M, g) \rightsquigarrow d(q, p).$

Proposition 9.12 (*M* connected) (*M*, *d*) is a metric space. (*M* not connected: extended metric space: $d = \infty$ allowed.)

Proof

- Triangle inequality: $d(x, y) + d(y, z) \ge d(x, z)$
- symmetry: d(p,q) = d(q,p)
- positivity: if $p \neq q$ then d(p,q) > 0.

Proof $p \neq q$, pick ε so $q \notin \exp_p(B_{\varepsilon}^{T_pM}(0)) \ d(q,p) \geq \varepsilon$.

Definition

$$B_{\sigma}(p)(=B_{\sigma}^{g}(p)=B_{\sigma}^{M}(p)):=\{q\in M|d(p,q)<\sigma\}$$

geodesic ball of radius σ about p.

Example (need not be a topological ball) By the Corollary(9.11):

$$B_{\varepsilon}(p) = \exp_p(B_{\varepsilon}^{T_p M}(0))$$

(provided $\exp_p | B_{\varepsilon}^{T_p M}(0)$ is a diffeomorphism onto it's image.)

This implies

Proposition 9.13 The metric space topology generated by $d(\cdot, \cdot)$ coincides with the topology induced by the differntial structure.

Proof Both topologes are generated (by taking arbitrary unions) by small balls $B_{\sigma}(p), \sigma < \varepsilon(p)$.

Theorem 9.14 (Geodesically Convex Balls) For $p \in M$, there is $\sigma = \sigma(p) > 0$ such that every pair of points $p_1, p_2 \in B_{\sigma}(p)$ can be joined by a (unique) minimizing geodesic γ , and γ lies in $B_{\sigma}(p)$.

Completeness: Hopf-Rinow Theorem

Questions:

- When can geodesics be extended indefinitely
- When can $p, q \in M$ be joined by a minimizing geodesic?

Theorem 9.15 (Hopf-Rinow) (M,g) The following are equivalent:

- i. (M, d) is metrically complete (cauchy sequences converge).
- ii. (M,g) is geodesically complete (each geodesic can be extended indefinitely)

We call M complete.

Example Any compact manifold is complete.

Example $\mathbb{R}^2 \setminus \{0\}$. Metric completion: \mathbb{R}^2 . $\mathbb{R}^2 \setminus \{0\}$ metric completion $\mathbb{R}^2 \setminus \{0\} \cup \{z\}$

Corollary 9.16 (of Proof) M connected, complete \Rightarrow every pair p, q can be joined by a minimum geodesic. $\Leftrightarrow \exp_p$ is surjective for all p, i.e. there are no places you can't see from p.

Example Hyperbolic space is complete.

Proposition 9.17 If a curve $\gamma \subseteq M^2$ is the fixed-point of a nontrivial isometry, then that curve is a geodesic.

10 Testing for Flatness

(Lee chap 7) (Motivation for Riemannian curvature tensor.) How can we tell when 2 Riemannian manifolds are locally isometric? Answer: Invariants.

10.1 Special case

How can we tell when a Riemannian manifold is flat (= locally isometric to Euclidean space)?

Observation

If M is flat, then near each point there is a frame $e_1(x), \ldots, e_n(x)$ consisting of parallel vector fields.

$$(\mathbb{R}^{n}, \delta) \subseteq V \quad \stackrel{\text{isom. } \phi}{\longleftarrow} \quad U \subseteq (M^{n}, g)$$
$$\frac{\partial}{\partial x^{i}} \quad \mapsto \quad \phi^{*}(\frac{\partial}{\partial x^{i}})$$
$$\phi^{*}(\mathcal{D}_{X}^{\delta}Y) = \mathcal{D}_{\phi^{*}(X)}^{\phi^{*}(\delta)}\phi^{*}(Y)$$

Theorem 10.1 No neighborhood of a point in S^2 possesses a parallel vector field. Thus: No neighborhood af any point in S^2 is isometric to an open set in \mathbb{R}^2 .

Lemma 10.2 The holonomy about a circle of latitude $\gamma = \partial B_{\theta}^{S^2}(N)$ is a nontrivial rotation

$$H\gamma: T_pS^2 \to T_pS^2$$

Proof sketch (Do Carmo) Let C be the cone tangent to S^2 along γ . Since S^2 and C have the same tangent planes along γ , we have for any vector field $X(t) \in T_{\gamma(t)}S^2$ along γ

$$\mathcal{D}_{\dot{\gamma}}^{S^2} X = \pi^{\perp} \left(\mathcal{D}_{\dot{\gamma}}^{\mathbb{R}^3} X \right) = \mathcal{D}_{\dot{\gamma}}^{C} X$$

So the holonomy about γ is the same, whether we regard γ as a curve in S^2 or in C. But C can be cut and rolled out flat and the holonomy computed easily.
Exercise Find the holonomy about any simple closed curve in S^2 .

10.2 Try to construct a parallel vector field (locally)

 (M^2, g) given, $p \in M$ fixed. x^1, x^2 local coords near p. Fix $Z \in T_p M$. Extend Z parallel along x^1 -axis $t \mapsto (t, 0)$. Then extend vertically along each curve $t \mapsto (x^1, t)$ $(x^1 \in \mathbb{R}$ fixed). Get:

$$\begin{cases} \mathcal{D}_{\frac{\partial}{\partial x^2}} Z = 0 & \text{all } x^1, x^2 \\ \mathcal{D}_{\frac{\partial}{\partial x^1}} Z = 0 & \text{all } x^1, x^2 = 0 \end{cases}$$

If $\mathcal{D}_{\frac{\partial}{\partial x^1}} Z = 0$ for all x^1, x^2 then Z would be parallel:

$$\mathcal{D}_X Z = X^1 \mathcal{D}_{\frac{\partial}{\partial x^1}} Z + X^2 \mathcal{D}_{\frac{\partial}{\partial x^2}} Z$$

Too see what $\mathcal{D}_{\frac{\partial}{\partial x^1}}Z$ is like for $x^2 \neq 0$, consider how it varies along curve $t \mapsto (x^1, t)$. Measured by

$$\mathcal{D}_{\frac{\partial}{\partial x^2}}\mathcal{D}_{\frac{\partial}{\partial x^1}}Z$$

Now if we were so lucky and the operators $\mathcal{D}_{\frac{\partial}{\partial r^2}}, \mathcal{D}_{\frac{\partial}{\partial r^1}}$ commuted on Z, then

$$\mathcal{D}_{\frac{\partial}{\partial x^2}} \mathcal{D}_{\frac{\partial}{\partial x^1}} Z = \mathcal{D}_{\frac{\partial}{\partial x^1}} \underbrace{\mathcal{D}_{\frac{\partial}{\partial x^2}} Z}_{0} = 0 \ \forall x^1, x^2$$

Then $\mathcal{D}_{\frac{\partial}{\partial x^1}}Z$ would be *parallel* along $t \mapsto (x^1, t)$. But $\mathcal{D}_{\frac{\partial}{\partial x^1}}Z = 0$ at $(x^1, 0)$. So $\mathcal{D}_{\frac{\partial}{\partial x^1}}Z$ would be $0 \ \forall x^1, x^2$. So the question of constructing parallel vector fields comes down to: *Do directional derivatives of vector fields commute?*

In \mathbb{R}^n , this is true: $\mathcal{D}^{\delta} = \mathcal{D}^0 = \text{coordinate connections.}$

$$\mathcal{D}^{0}_{\frac{\partial}{\partial x^{1}}} \mathcal{D}^{0}_{\frac{\partial}{\partial x^{2}}} \left(Z^{i}(x) \frac{\partial}{\partial x^{i}} \right) = \mathcal{D}_{\frac{\partial}{\partial x^{1}}} \left(\frac{\partial Z^{i}}{\partial x^{2}}(x) \frac{\partial}{\partial x^{i}} \right)$$
$$= \frac{\partial^{2} Z^{i}}{\partial x^{1} \partial x^{2}} (x) \frac{\partial}{\partial x^{i}}$$
$$= \mathcal{D}^{0}_{\frac{\partial}{\partial x^{2}}} \mathcal{D}^{0}_{\frac{\partial}{\partial x^{1}}} Z$$
$$\mathcal{D}_{X} \mathcal{D}_{Y} Z \stackrel{?}{=} \mathcal{D}_{Y} \mathcal{D}_{X} Z$$

Even in \mathbb{R}^n , it's not so simple.

$$\mathcal{D}_{X}^{0}\mathcal{D}_{Y}^{0}Z = X^{i}\mathcal{D}_{\frac{\partial}{\partial x^{i}}}^{0}\left(Y^{j}\mathcal{D}_{\frac{\partial}{\partial x^{j}}}^{0}Z\right)$$
$$= X^{i}Y^{j}\mathcal{D}_{\frac{\partial}{\partial x^{i}}}^{0}\mathcal{D}_{\frac{\partial}{\partial x^{j}}}^{0}Z + X^{i}\frac{\partial Y^{j}}{\partial x^{i}}\mathcal{D}_{\frac{\partial}{\partial x^{j}}}^{0}Z$$

Antisymmetrizing, we get

$$\mathcal{D}_X^0 \mathcal{D}_Y^0 Z - \mathcal{D}_Y^0 \mathcal{D}_X^0 Z = O + [X, Y]^j \mathcal{D}_{\frac{\partial}{\partial x^j}} Z$$
$$= \mathcal{D}_{[X, Y]}^0 Z.$$

According:

Proposition 10.3 In a flat manifold

$$\mathcal{D}_X \mathcal{D}_Y Z - \mathcal{D}_Y \mathcal{D}_X Z - \mathcal{D}_{[X,Y]} Z = 0.$$
^(‡)

Proof \mathcal{D} and $[\cdot, \cdot]$ are both invariant under isometries.

г		1
L		
L		

10.3 Riemann Curvature

Definition Let $X, Y, Z, W \in C^{\infty}(TM)$.

i. The *Riemann curvature operator* of (M, g) is defined as

$$\mathcal{R}(X,Y)Z := -\mathcal{D}_X\mathcal{D}_YZ + \mathcal{D}_Y\mathcal{D}_XZ + \mathcal{D}_{[X,Y]}Z$$

ii. The *Riemannian curvature tensor* is defined by

$$\mathcal{R}_m(X, Y, Z, W) := \langle \mathcal{R}(X, Y) Z, W \rangle$$
$$\mathcal{R}(\cdot, \cdot) \cdot : C^{\infty}(TM) \times C^{\infty}(TM) \times C^{\infty}(TM) \to C^{\infty}(TM)$$

 $\mathcal{R}_m \equiv 0$ iff M is flat, (iff later).

 \mathcal{R}_m measures how far M is from being Euclidean.

10.4 Tensors (over \mathbb{R})

V, W vector spaces with bases e_1, \ldots, e_m and d_1, \ldots, d_n . $V \otimes W$ vector space $mn = \dim \text{ basis } e_i \otimes d_j \ i = 1, \ldots, m, j = 1, \ldots, n.$ $\binom{k}{0}$ tensor over V is a k-linear map

$$T:\underbrace{V\times\cdots\times V}_{k}\to\mathbb{R}$$

or equivalently an element of $\underbrace{V^* \otimes \cdots \otimes V^*}_k$. Typical element: $T = T_{i_1 \dots i_m} e^*_{i_1} \otimes \cdots \otimes e^*_{i_m}$, e^*_1, \dots, e^*_m dual basis (to e_1, \dots, e_m) of $V^*, e^*_i(X) = X^i X_\ell = X^p_\ell e_p$

$$T(X_{1},...,X_{m}) = T_{i_{1}...i_{m}} \left(e_{i_{1}}^{*} \otimes \cdots \otimes e_{i_{m}}^{*} \right) (X_{1},...,X_{m})$$

= $T_{i_{1}...i_{m}} e_{i_{1}}^{*} (X_{1}) \cdots e_{i_{m}}^{*} (X_{m})$
= $T_{i_{1}...i_{m}} X_{1}^{i_{1}} \cdots X_{m}^{i_{m}}.$

A $\binom{k}{\ell}$ tensor over V is a k-linear map

$$\underbrace{V\times\cdots\times V}_k\to \underbrace{V\otimes\cdots\otimes V}_\ell$$

or equivalently, an element of $\underbrace{V^* \otimes \cdots \otimes V^*}_k \otimes \underbrace{V \otimes \cdots \otimes V}_{\ell}$. Given smooth vector bundles $E, F \to M$, we can form smooth vector bundles $E^*, E \otimes F$ over M with fibers

$$(E^*)_p := (E_p)^*, (E \otimes F)_p := E_p \otimes F_p$$

 $T^*M = (TM)^*, T_p^*M = (T_pM)^*.$

Then a $\binom{k}{\ell}$ tensor field T on M is a section

$$T \in C^{\infty}(\underbrace{T^*M \otimes \cdots \otimes T^*M}_{k} \otimes \underbrace{TM \otimes \cdots \otimes TM}_{\ell})$$

Exercise

- i. $\binom{0}{1}$ tensor fields are vector fields
- ii. $\binom{1}{0}$ tensor fields are dual vector fields, or 1-forms
- iii. g (Riemannian metric) is a $\binom{2}{0}$ tensor field.

 $\mathcal{D}_X Y$ vector field in $C^{\infty}(TM)$

$$\mathcal{D}Y = (\mathcal{D}Y(p) : T_pM \to T_pM)$$

$$\in C^{\infty}(\operatorname{Lin}(TM; TM))$$

$$\in C^{\infty}(T^*M \otimes TM)$$

so if Y is a vector field, then $\mathcal{D}Y$ is a $\begin{pmatrix} 1\\1 \end{pmatrix}$ tensor field.

$$Z = T(X,Y) := \mathcal{D}_X^1 Y - \mathcal{D}_X^2 Y \in C^{\infty}(TM)$$

T(X,Y)(p) depends only on X(p), Y(p) (bilinearly). $T \in C^{\infty}(T^*M \otimes T^*M \otimes TM)$. So T (the difference between two connections) is a $\binom{2}{1}$ tensor. $\mathcal{R}(\cdot, \cdot) : C^{\infty}(TM) \times C^{\infty}(TM) \times C^{\infty}(TM) \to C^{\infty}(TM)$

$$\mathcal{R}(X,Y)Z := -\mathcal{D}_X \mathcal{D}_Y Z + \mathcal{D}_Y \mathcal{D}_X Z + \mathcal{D}_{[X,Y]} Z$$
$$\mathcal{R}_m(X,Y,Z,W) := \langle \mathcal{R}(X,Y)Z,W \rangle$$

Proposition 10.4 $(\mathcal{R}(X,Y)Z)(p)$ depends only on X(p), Y(p), Z(p) (and not on their derivatives.)

TM, E vector bundles over M

Definition A k-linear map (k-linear over $\mathbb{R}!$)

$$T: C^{\infty}(TM) \times \cdots \times C^{\infty}(TM) \to C^{\infty}(E)$$

is called *tensorial* $(k-\text{linear over } C^{\infty}(M)!)$

$$T(f_1X_1,\ldots,f_kX_k) = f_1\cdots f_kT(X_1,\ldots,X_k) \ \forall f_1,\ldots,f_k \in C^{\infty}(M)$$

Criterion for being a tensor field

If a k-linear map (over \mathbb{R})

$$T: \underbrace{C^{\infty}(TM) \times \cdots \times C^{\infty}(TM)}_{k} \to C^{\infty}(E)$$

is in fact k-linear over $C^{\infty}(M)$, i.e.

$$T(f_1X_1,\ldots,f_kX_k) = f_1\cdots f_kT(X_1,\ldots,X_k) \ \forall f_1,\ldots,f_k \in C^{\infty}(M)$$

(i.e. T is tensorial), then T is given by a tensor field, i.e. $T(X_1, \ldots, X_k)(p)$ depends only on $X_1(p), \ldots, X_k(p)$ and in fact there are k-linear maps

$$\tilde{T}(p): T_pM \times \cdots \times T_pM \to E_p$$

such that

$$T(X_1,\ldots,X_n)(p) = (\tilde{T}(p))(X_1(p),\ldots,X_k(p))$$

Accordingly, the map

 $\tilde{T}: p \mapsto T(p)$

is a section $\tilde{T} \in C^{\infty}(T^*M \otimes \cdots \otimes T^*M \otimes E)$. We drop $\tilde{}$ and identify T with \tilde{T} .

Proof Let $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n}$ be a coordinate fram for TM defined over some open $U \ni p$. Fix a *cutoff function* ϕ for p in U i.e. $\phi \in C^{\infty}(M)$, $\operatorname{spt} \phi \subset \subset U, \phi \equiv 1$ near p.

$$X_i = X_i^j \frac{\partial}{\partial x^j}$$
 on U only!

Compute

$$T(X_1, \dots, X_k)(p) = \underbrace{\phi^{2k}(p)}_1 T(X_1, \dots, X_k)(p)$$

= $(\phi^{2k}T(X_1, \dots, X_k))(p)$
= $T(\phi^2 X_1, \dots, \phi^2 X_k)(p)$
= $\left((\phi X_1^{j_1}) \cdots (\phi X_k^{j_k})T(\phi \frac{\partial}{\partial x^{j_1}}, \dots, \phi \frac{\partial}{\partial x^{j_k}}\right)(p)$
= $X_1^{j_1}(p) \cdots X_k^{j_k}(p)T(\phi \frac{\partial}{\partial x^{j_1}}, \dots, \phi \frac{\partial}{\partial x^{j_k}})(p)$

depends only on $X_1(p), \ldots, X_k(p)$, and indeed, k-linear.

г		
L		
н		

Remark

• $\phi_{\overline{\partial x^j}} \in C^{\infty}(TM)$ meaning

$$\phi \frac{\partial}{\partial x^j} = \begin{cases} \phi \frac{\partial}{\partial x^j} & \text{on } U \\ 0 & \text{on } M \setminus \text{spt}\phi \text{ (open)} \end{cases}$$

•
$$\phi X_i^j \in C^\infty(M)$$

$$X, Y, Z, W \in C^{\infty}(TM)$$
$$\mathcal{R}(\cdot, \cdot) \cdot : C^{\infty}(TM) \times C^{\infty}(TM) \times C^{\infty}(TM) \to C^{\infty}(TM)$$
$$\mathcal{R}(X, Y)Z := -\mathcal{D}_{X}\mathcal{D}_{Y}Z + \mathcal{D}_{Y}\mathcal{D}_{X}Z + \mathcal{D}_{[X,Y]}Z$$
$$\mathcal{R}_{m}(X, Y, Z, W) := \langle \mathcal{R}(X, Y)Z, W \rangle$$

Proposition 10.5

$$\mathcal{R}(\cdot, \cdot) \cdot \in C^{\infty}(T^*M \otimes T^*M \otimes T^*M \otimes TM)$$

$$\mathcal{R}_m \in C^{\infty}(T^*M \otimes T^*M \otimes T^*M \otimes T^*M)$$

Proof If suffices to check $\mathcal{R}(fX, gY)hZ = fgh\mathcal{R}(X, Y)Z$ for $f, g, h \in C^{\infty}(M)$ (Tensoriality Criterion).

Do h:

$$\begin{aligned} \mathcal{R}(X,Y)(hZ) \stackrel{?}{=} h\mathcal{R}(X,Y)Z \\ \mathcal{D}_X \mathcal{D}_Y(hZ) = \mathcal{D}_X \left((Yh)Z + h\mathcal{D}_Y Z \right) \\ &= (X(Yh))Z + (Yh)\mathcal{D}_X Z + (Xh)\mathcal{D}_Y Z + h\mathcal{D}_X \mathcal{D}_Y Z \\ \mathcal{D}_X \mathcal{D}_Y(hZ) = \text{similar} \dots \\ \mathcal{D}_{[X,Y]}(hZ) = ([X,Y]h)Z + h\mathcal{D}_{[X,Y]} Z \\ \mathcal{R}(X,Y)(hZ) = -h\mathcal{D}_X \mathcal{D}_Y Z + h\mathcal{D}_Y \mathcal{D}_X Z + h\mathcal{D}_{[X,Y]} Z \\ &- (XYh)Z + (YXh)Z + [X,Y]hZ \\ &= h\mathcal{R}(X,Y)Z \end{aligned}$$

Do f,g: similar but shorter

Definition Define components of the curvature tensor in a coordinate neighborhood by

$$\mathcal{R}(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}})\frac{\partial}{\partial x^{k}} = \mathcal{R}_{ijk}^{\ell}\frac{\partial}{\partial x^{\ell}}$$
$$\mathcal{R}_{ijkl} := \mathcal{R}_{m}(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}}) = \langle \mathcal{R}(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}})\frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}} \rangle$$

Then we have

$$\mathcal{R}(X,Y)Z = X^{i}Y^{j}Z^{k}\mathcal{R}^{\ell}_{ijk}\frac{\partial}{\partial x^{\ell}}$$
$$\mathcal{R}_{m}(X,Y,Z,W) = X^{i}Y^{j}Z^{k}W^{\ell}\mathcal{R}_{ijk\ell}$$

Note $\mathcal{R}_{ijkl} = g_{pl} \mathcal{R}_{ijk}^p$. \mathcal{R} given by at most n^4 functions.

Invariance under isometries $\phi : (M, g) \to (N, h)$ isometry

$$\mathcal{R}_m^g(X, Y, Z, W)(p) = \mathcal{R}_m^h(\phi_* X, \phi_* Y, \phi_* Z, \phi_* W)(\phi(p))$$

Diffeomorphism invariance

$$\phi^*(f) = f \circ \phi$$

$$\phi_*(f) = f \circ \phi^{-1}$$

$$\phi_*(\mathcal{R}^g_m(X, Y, Z, W)) = \mathcal{R}^{\phi_*(g)}_m(\phi_* X, \phi_* Y, \phi_* Z, \phi_* W)$$

 C^∞ functions on $\mathbb R$ with compact support

$$f(x) := \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

f is C^{∞}

Claim $f^{(k)}(\eta) \to 0$ as $\eta \to \infty \ \forall k$

$$f^{(1)} = \frac{1}{x^2} e^{-\frac{1}{x}} \quad f^{(k)} = a_k(x) e^{-\frac{1}{x}}$$

$$f^{(2)} = \left(-\frac{2}{x^3} + \frac{1}{x^4}\right) e^{-\frac{1}{x}} \quad |a_k(x)| \le x^{-2k} (0 \le x \le 1)$$

Proposition 10.6

•
$$\mathcal{R}^{\ell}_{ijk} = -\frac{\partial}{\partial x^i} \Gamma^{\ell}_{jk} + \frac{\partial}{\partial x^j} \Gamma^{\ell}_{ik} - \Gamma^{\ell}_{ip} \Gamma^{p}_{jk} + \Gamma^{\ell}_{jp} \Gamma^{p}_{ik}$$

• $\mathcal{R}_{ijkl} = g_{\ell m} \mathcal{R}^{m}_{ijk}$

Proof

i.

$$\begin{aligned} \mathcal{R}_{ijk}^{\ell} \frac{\partial}{\partial x^{\ell}} = & \mathcal{R}(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}) \frac{\partial}{\partial x^{k}} \\ = & -\mathcal{D}_{\frac{\partial}{\partial x^{i}}} \mathcal{D}_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{k}} + \mathcal{D}_{\frac{\partial}{\partial x^{j}}} \mathcal{D}_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}} \\ & + \mathcal{D}_{[\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}]} \frac{\partial}{\partial x^{k}} \\ = & -\mathcal{D}_{\frac{\partial}{\partial x^{i}}} (\Gamma_{jk}^{\ell} \frac{\partial}{\partial x^{\ell}}) + \mathcal{D}_{\frac{\partial}{\partial x^{j}}} (\Gamma_{ik}^{\ell} \frac{\partial}{\partial x^{\ell}}) \\ = & (-\frac{\partial}{\partial x^{i}} \Gamma_{jk}^{\ell}) \frac{\partial}{\partial x^{\ell}} - \Gamma_{jk}^{\ell} \mathcal{D}_{\frac{\partial}{\partial x^{\ell}}} + (\frac{\partial}{\partial x^{j}} \Gamma_{ik}^{\ell}) \frac{\partial}{\partial x^{\ell}} + \Gamma_{ik}^{\ell} \mathcal{D}_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{\ell}} \\ = & -\frac{\partial}{\partial x^{i}} \Gamma_{jk}^{\ell} \frac{\partial}{\partial x^{\ell}} - \Gamma_{jk}^{p} \Gamma_{ip}^{\ell} \frac{\partial}{\partial x^{\ell}} + \frac{\partial}{\partial x^{j}} \Gamma_{ik}^{\ell} \frac{\partial}{\partial x^{\ell}} + \Gamma_{ik}^{p} \Gamma_{jp}^{\ell} \frac{\partial}{\partial x^{\ell}} \end{aligned}$$

The proposition shows:

$$g_{ij} \xrightarrow{\operatorname{deriv}} \mathcal{D} \xrightarrow{\operatorname{deriv}} \mathcal{R}_m$$

 \mathcal{R}_m = combinations of various 0th, 1st and 2nd derivatives of components of the metric tensor $g_{ij}(x)$.

Exercise Find a formula for $\mathcal{R}_{ijk\ell}$ in terms of $g_{ij}, \partial g_{ij}, \partial^2 g_{ij}$ that shows: $\mathcal{R}_{ijk\ell}$ is

- linear in $\frac{\partial^2 g_{ij}}{\partial x^k \partial x^\ell}$
- quadratic in $\frac{\partial g_{ij}}{\partial x^k}$
- nonlinear in g_{ij} .

(recall: same pattern in ODE for geodesics)

10.4.1 Flat Manifolds

(Lee Chap 7.)

Theorem 10.7 (Riemann) $\mathcal{R}_m \equiv 0$ *iff* M *is* locally isometric to Euclidean space.

Proof (\Leftarrow) done (\Rightarrow) Suppose $\mathcal{R}_m \equiv 0$ Fix $p \in M$. 4 steps:

- i. Build a set of *parallel*, orthonormal $(\mathcal{R}_m \equiv 0)$ vector fields Y_1, \ldots, Y_n near p.
- ii. Then $[Y_i, Y_j] = 0 \ \forall i, j$.
- iii. Then M has a coordinate system y^1, \ldots, y^n near p with $Y^i = \frac{\partial}{\partial y^i}$.
- iv. A coordinate system whose coordinate vector fields are orthonormal is the same as an isometry into \mathbb{R}^n .
- ii. $\mathcal{D}_{Y_i}Y_j = 0 \ \forall i, j \text{ by i. so } [Y_i, Y_j] = \mathcal{D}_{Y_i}Y_j \mathcal{D}_{Y_j}Y_i = 0$

iii. If

- (a) Y_1, \ldots, Y_n commute
- (b) Y_1, \ldots, Y_n linearly independent at p

 \Rightarrow there exists a coordinate system. $\phi = (y^1, \dots, y^n) : U \subseteq M \xrightarrow{\cong} V \subseteq \mathbb{R}^n$ near p such that

$$\underbrace{Y_i}_{\in U \subseteq M} = \phi^*(\underbrace{\frac{\partial}{\partial y^i}}_{\in \mathbb{R}^n})$$

iv. Then $\langle Y_i, Y_j \rangle_g \stackrel{(1)}{=} \delta_{ij} = \langle \frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \rangle_\delta$ so ϕ is an isometry.

Follows from:

Subclaim Any $\hat{Y} \in T_p M$ can be extended to parallel vector field near p. Why does it follow? Fix p. $\hat{Y}_1, \ldots, \hat{Y}_n \in T_p M$ orthonormal basis. Use subclaim to extend to Y_1, \ldots, Y_n parallel defined near p. But $X \cdot \langle Y_i, Y_j \rangle = \langle \mathcal{D}_X Y_i, Y_j \rangle + \langle Y_i, \mathcal{D}_X Y_j \rangle = 0$ so $\langle Y_i, Y_j \rangle = \delta_{ij}$ is constant near p.

Proof of subclaim Let x^1, \ldots, x^n be any coordinate system near p.

$$p = 0, \ U = \{x | -\varepsilon < x_i < \varepsilon\}$$

Fix $\hat{Y} \in T_p M$

$$M_k := \left\{ (x^1, \dots, x^k, 0 \dots, 0) | -\varepsilon < x_1, \dots, x_k < \varepsilon \right\} \cong \mathbb{R}^k$$
$$\{0\} = M_0 \subseteq M_1 \subseteq \dots \subseteq M_n = U$$

Extend \hat{Y} from M_0 to M_1 by parallel transport along $\gamma : t \mapsto (t, 0, \dots, 0) \in M_1$. Get:

$$\begin{cases} Y: M_1 \to TM_1 \\ \mathcal{D}_{\frac{\partial}{\partial x^1}} Y = 0 \text{ on } M_1 \end{cases}$$

Extend from M_1 to M_2

$$x = (x^1, 0, \dots, 0) \in M_1$$
$$y_x : t \mapsto (x^1, t, 0, \dots, 0) \in M_2$$

Extend Y along γ_x by parallel translation. Get:

$$\begin{cases} Y: M_2 \to TM \\ \mathcal{D}_{\frac{\partial}{\partial x^2}} Y = 0 \text{ on } M_2 \\ \mathcal{D}_{\frac{\partial}{\partial x^1}} Y = 0 \text{ on } M_1 \end{cases}$$

 $Y(x_1, x_2, 0, ..., 0)$ is smooth in x^1, x^2 by smooth dependence of solutions of ODEs on initial conditions (and using the fact that $(x_1, 0, ..., 0)$ is smooth). Want: $\mathcal{D}_{\frac{\partial}{\partial x^1}}Y = 0$ on M_2 . By definition of curvature

$$\mathcal{D}_{\frac{\partial}{\partial x^2}} \mathcal{D}_{\frac{\partial}{\partial x^1}} Y = \mathcal{D}_{\frac{\partial}{\partial x^1}} \mathcal{D}_{\frac{\partial}{\partial x^2}} Y + \mathcal{D}_{[\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}]} Y - \mathcal{R}(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}) Y$$
$$= \mathcal{D}_{\frac{\partial}{\partial x^1}}, \underbrace{\mathcal{D}_{\frac{\partial}{\partial x^2}} Y}_{=0}$$
$$= 0 \text{ on } M_2$$

So $\mathcal{D}_{\frac{\partial}{\partial x^1}}Y$ is parallel along γ_x . But $\mathcal{D}_{\frac{\partial}{\partial x^1}}Y = 0$ at $\gamma_x(0) = (x^1, 0, \dots, 0)$ so $\mathcal{D}_{\frac{\partial}{\partial x^1}}Y = 0$ on γ_x i.e. on M_2 . Proceed by induction. Extend Y from M_k to M_{k+1} Given:

$$(H_k) \begin{cases} Y: M_k \to TM \\ \mathcal{D}_{\frac{\partial}{\partial x^1}} Y = \cdots = \mathcal{D}_{\frac{\partial}{\partial x^k}} Y = 0 \text{ on } M_k \end{cases}$$

Want:

$$(H_{k+1}) \begin{cases} Y: M_{k+1} \to TM \\ \mathcal{D}_{\frac{\partial}{\partial x^1}} Y = \cdots = \mathcal{D}_{\frac{\partial}{\partial x^{k+1}}} = 0 \text{ on } M_{k+1} \end{cases}$$

Using parallel transport along curves

$$\gamma_x : t \mapsto (x^1, \dots, x^k, t, 0, \dots, 0) \in M_{k+1}$$

 $(x = (x^1, \dots, x^k, 0, \dots, 0) \in M_k$

 get

$$Y: M_{k+1} \to TM$$
$$\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}} Y = 0 \text{ on } M_{k+1}$$

Using $\mathcal{R}_m \equiv 0$ as before, we get

$$\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}}\mathcal{D}_{\frac{\partial}{\partial x^i}}Y = \mathcal{D}_{\frac{\partial}{\partial x^i}}\underbrace{\mathcal{D}_{\frac{\partial}{\partial x^{k+1}}}Y}_{=0} = 0$$

on M_{k+1} , so as (before)

$$\mathcal{D}_{\frac{\partial}{\partial x^i}}Y = 0 \text{ on } M_{k+1} \forall i$$

10.5 Symmetries of Curvature

i.

$$\mathcal{R}_m(X, Y, Z, W) \stackrel{(a)}{=} -\mathcal{R}_m(Y, X, Z, W)$$
$$\stackrel{(b)}{=} -\mathcal{R}_m(X, Y, W, Z)$$

ii. $\mathcal{R}_m(X, Y, Z, W) = \mathcal{R}_m(Z, W, X, Y)$

iii.
$$0 = \mathcal{R}_m(X, Y, Z, W) + \mathcal{R}_m(Y, Z, X, W) + \mathcal{R}_m(Z, X, Y, W)$$
 (Bianchi I)

Proof

i. (a) $\mathcal{R}(X,Y)Z = -\mathcal{D}_X\mathcal{D}_YZ + \mathcal{D}_Y\mathcal{D}_XZ + \mathcal{D}_{[X,Y]}Z$ (b) Differentiate $\langle Z, W \rangle$ twice:

$$X \cdot Y \cdot \langle Z, W \rangle = X \cdot (\langle \mathcal{D}_Y Z, W \rangle + \langle Z, \mathcal{D}_Y W \rangle)$$

= $\langle \mathcal{D}_X \mathcal{D}_Y Z, W \rangle + \langle \mathcal{D}_Y Z, \mathcal{D}_X W \rangle + \langle \mathcal{D}_X Z, \mathcal{D}_Y W \rangle$
+ $\langle Z, \mathcal{D}_X \mathcal{D}_Y W \rangle$

Antisymmetrize in X, Y:

$$[X,Y] \cdot \langle Z,W \rangle = \langle \mathcal{D}_X \mathcal{D}_Y Z - \mathcal{D}_Y \mathcal{D}_X Z,W \rangle + \langle Z, \mathcal{D}_X \mathcal{D}_Y W - \mathcal{D}_Y \mathcal{D}_X W \rangle$$

$$[X,Y] \cdot \langle Z,W \rangle = \langle \mathcal{D}_{[X,Y]}Z,W \rangle + \langle Z,\mathcal{D}_{[X,Y]}W \rangle$$

Rearrange:

$$\langle \mathcal{R}(X,Y)Z,W\rangle + \langle Z,\mathcal{R}(X,Y)W\rangle = 0$$

iii. (Bianchi I) $0 = \mathcal{R}_m(X, Y, Z, W) + \mathcal{R}_m(Y, Z, X, W) + \mathcal{R}_m(Z, X, Y, W).$

$$\begin{aligned} \mathcal{R}(X,Y)Z &= -\mathcal{D}_X \mathcal{D}_Y Z + \mathcal{D}_Y \mathcal{D}_X Z + \mathcal{D}_{[X,Y]} Z \\ \mathcal{R}(Y,Z)X &= -\mathcal{D}_Y \mathcal{D}_Z X + \mathcal{D}_Z \mathcal{D}_Y X + \mathcal{D}_{[Y,Z]} X \\ \mathcal{R}(Z,X)Y &= -\mathcal{D}_Z \mathcal{D}_X Y + \mathcal{D}_X \mathcal{D}_Z Y + \mathcal{D}_{[Z,X]} Y \\ \text{Sum} &= -\mathcal{D}_X [Y,Z] - \mathcal{D}_Y [Z,X] - \mathcal{D}_Z [X,Y] + \mathcal{D}_{[X,Y]} Z + \mathcal{D}_{[Y,Z]} X + \mathcal{D}_{[Z,X]} Y \\ &= -[X,[Y,Z]] - [Y,[Z,X]] - [Z,[X,Y]] = 0 \text{ Jacobi identity} \end{aligned}$$

ii. combine i. and iii. cleverly. Exercise

In components:

- i. $\mathcal{R}_{ijk\ell} = -\mathcal{R}_{jik\ell} = -\mathcal{R}_{ij\ell k}$
- ii. $\mathcal{R}_{ijk\ell} = \mathcal{R}_{k\ell ij}$
- iii. $\mathcal{R}_{ijk\ell} + \mathcal{R}_{jki\ell} + \mathcal{R}_{kij\ell} = 0$

Elie Carton called Differential Geometry "the debauch of indices". Gromov: "The Riemannian curvature tensor remains a nasty, mysterios bundle of multilinear algebra."

Exercise What is the dimension of the space of potential curvature tensors at a point?

Example

- n = 1 $\mathcal{R}_{1111} = -\mathcal{R}_{1111} \Rightarrow \mathcal{R}_{1111} \equiv 0$ no curvature.
- n = 2 $0 = \mathcal{R}_{11ij} = \mathcal{R}_{22ij} = \mathcal{R}_{ij11} = \mathcal{R}_{ij22} \mathcal{R}_{1212} = -\mathcal{R}_{2112} = -\mathcal{R}_{1221} = \mathcal{R}_{2121}$ The Riemannian curvature tensor of a 2-manifold reduces to a single scalar. What is that scalar?
 - i. $(M^2, g) \kappa(p) := \mathcal{R}_m(e_1, e_2, e_1, e_2), e_1, e_2$ orthonormal basis of $T_p M$.

Exercise Prove $\kappa(p)$ is independent of choice of e_1, e_2 .

Theorem 10.8 (Theorema Egregium (Gauss)) Suppose (M^2, g) is isometrically embedded in \mathbb{R}^3 . Then

$$\kappa(p) = k_1 \cdot k_2$$

product of principal curvatures of M^2 inside \mathbb{R}^3 .

 $(M^n, g), p \in M, \sigma \subset T_pM$ 2-plane

Definition Sectinal curvature of M at p along σ .

$$\kappa(p,\sigma) := \mathcal{R}_m(e_1, e_2, e_1, e_2)$$

 e_1, e_2 orthonormal basis of σ . (Exercise: independence of e_1, e_2)

Fact

$$\kappa(p,\sigma) \equiv 1 \quad \text{on } S^n$$

$$\kappa(p,\sigma) \equiv -1 \quad \text{in } \mathbb{H}^n$$

Theorem 10.9 If (M, g) has $\kappa(p, \sigma) \ge \frac{1}{r^2} > 0 \ \forall p, \sigma$ then M is compact and $diam(M) := \max_{p,q \in M} d(p,q) \le \pi r \ \kappa \ge \frac{1}{r^2} > 0 \Rightarrow M$ is compact.

Index

Symbols

1-parameter	subgroup			•	•	•	•	•	•	•	•	4	6
-------------	----------	--	--	---	---	---	---	---	---	---	---	---	---

Α

adjoint action		
atlas	•••••	 21

В

bundle isomorphism

\mathbf{C}

chart of a manifold
Christoffel symbols
$\operatorname{codimension} \dots \dots$
$compact\ containment\ldots 53$
complete flow $\dots \dots 54$
$complete\ manifold\ldots\ldots 107$
complete vector field $\dots \dots 57$
connection
affine85
coefficients 86
compatible 89
coordinate87
symmetric
torsion-free $\dots \dots 90$
continuous function
covariant derivative operator 85
covariant derivative along a curve.93
cuttoff function 113

D

differentiable Manifold	22
differentiable manifold	17
dimension	18

\mathbf{E}

embedding	38
exponential map	97
extended metric space10	06

G

geodesic	. 96
geodesic ball	106
Geodesically Convex Balls	107
Graphical Image Theorem	.40

Н

Hausdorff	21
holonomy map	96
homeomorphism	20
Hopf-Rinow Theorem 1	.07

Ι

Implicit	Function	Theorem	•••	 	43
integral	curve			 	52

\mathbf{L}

Levi-Civita Connection
Levi-Civita Theorem
Lie algebra51
Lie bracket 49, 51
lie group
smooth action $\dots \dots 46$
local flow53
local frame
Local Immersion Theorem
Local Submersion Theorem 42

\mathbf{M}

minimal length 104

local property	105
strictly	104

Ν

0

open sets on a manifold 20

Р

parallel transport	94
precompact 5	53
pullback of a vector field	32
pushforward of a vector field 6	31

\mathbf{Q}

quaternions	•				•	•																		4	15
-------------	---	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

\mathbf{R}

Riemann cu	cvature op	erator	. 110
Riemannian	curvature	$ ext{tensor} \dots$. 110

\mathbf{S}

second countable
section
0-section
along a curve93
parallel
sectional curvature $\dots \dots 120$
smoothly comatible charts $\dots 18$
$subbundle\dots\dots 84$

\mathbf{T}

tensorial	112
tensors over vector spaces	111
topological manifold	.17
torison scalar	8
torsion vector	8

W

Whitney	Theorem														4	1
---------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---