The most important exercises are marked with an asterisk *.
1.1. Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth Hamiltonian function. Suppose $H$ is compactly supported and let $\Phi_{t}$ be the associated Hamiltonian flow.
(a) Consider the Hamiltonian vector field

$$
X(q, p)=\binom{\frac{\partial H}{\partial p}(q, p)}{-\frac{\partial H}{\partial q}(q, p)}
$$

Show that $\operatorname{div} X=0$.
(b) Let $Y: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be any smooth vector field with $\operatorname{div} Y=0$. Suppose $\Psi_{t}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is its flow, i.e.

$$
\forall x \in \mathbb{R}^{m}: \quad \frac{\mathrm{d}}{\mathrm{~d} t} \Psi_{t}(x)=Y\left(\Psi_{t}(x)\right), \quad \Psi_{0}=\mathrm{id}
$$

Show that

$$
\operatorname{det}\left(\mathrm{d} \Psi_{t}(x)\right)=1 \quad \text { for all } x \in \mathbb{R}^{m} \text { and } t \in \mathbb{R}
$$

Hint: Jacobi's formula on how to express a derivative of a determinant might be helpful.
(c) Deduce from parts (a) and (b) that $\Phi_{t}$ is volume-preserving, i.e. for each bounded open domain $U \subseteq \mathbb{R}^{2 n}$

$$
\operatorname{vol}(U)=\operatorname{vol}\left(\Phi_{t}(U)\right)
$$

This is the Liouville Theorem.
*1.2. Consider the standard volume form on $\mathbb{R}^{2 n}$ :

$$
\operatorname{vol}=\mathrm{d} p_{1} \wedge \mathrm{~d} q_{1} \wedge \cdots \wedge \mathrm{~d} p_{n} \wedge \mathrm{~d} q_{n} .
$$

Show that

$$
\mathrm{vol}=\frac{\omega_{\mathrm{std}}^{\wedge n}}{n!},
$$

where

$$
\omega_{\mathrm{std}}=\sum_{i=1}^{n} \mathrm{~d} p_{i} \wedge \mathrm{~d} q_{i} .
$$

Deduce that any symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is volume-preserving.
*1.3. Let $\Sigma \subseteq \mathbb{R}^{3}$ be a surface, i.e. a smooth 2-dimensional submanifold, and let $\nu: \Sigma \rightarrow \mathbb{R}^{3}$ be a co-orientation of $\Sigma$, i.e. a smooth unit normal vector field. We define the 2 -form $\omega$ on $\Sigma$ by

$$
\omega_{x}(v, w):=\nu(x) \cdot(v \times w) \quad \forall x \in \Sigma, v, w \in T_{x} \Sigma
$$

where $\cdot$ denotes the Euclidean inner product and $\times$ denotes the cross product.
(a) Show that $\omega$ is a symplectic form.
(b) Give a formula for $\omega$ in the case of the 2-sphere:

$$
S^{2}:=\left\{x \in \mathbb{R}^{3}| | x \mid=1\right\} .
$$

*1.4. Let $(M, \omega)$ be a $2 n$-dimensional symplectic manifold. Show that $\omega^{\wedge n}$ is a volume form, i.e. that $\omega^{\wedge n}$ is a nowhere vanishing form of top degree.
Note that would imply that $M$ is canonically oriented. The form $\frac{\omega^{\wedge n}}{n!}$ is called the symplectic volume.

