The most important exercises are marked with an asterisk *.

1.1. Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth Hamiltonian function. Suppose H is compactly supported and let Φ_t be the associated Hamiltonian flow.

(a) Consider the Hamiltonian vector field

$$X(q,p) = \begin{pmatrix} \frac{\partial H}{\partial p}(q,p) \\ -\frac{\partial H}{\partial q}(q,p) \end{pmatrix}.$$

Show that $\operatorname{div} X = 0$.

(b) Let $Y \colon \mathbb{R}^m \to \mathbb{R}^m$ be any smooth vector field with div Y = 0. Suppose $\Psi_t \colon \mathbb{R}^m \to \mathbb{R}^m$ is its flow, i.e.

$$\forall x \in \mathbb{R}^m$$
: $\frac{\mathrm{d}}{\mathrm{d}t}\Psi_t(x) = Y(\Psi_t(x)), \quad \Psi_0 = \mathrm{id}.$

Show that

det
$$(d\Psi_t(x)) = 1$$
 for all $x \in \mathbb{R}^m$ and $t \in \mathbb{R}$.

Hint: Jacobi's formula on how to express a derivative of a determinant might be helpful.

(c) Deduce from parts (a) and (b) that Φ_t is volume-preserving, i.e. for each bounded open domain $U \subseteq \mathbb{R}^{2n}$

$$\operatorname{vol}(U) = \operatorname{vol}(\Phi_t(U)).$$

This is the Liouville Theorem.

*1.2. Consider the standard volume form on \mathbb{R}^{2n} :

 $\mathrm{vol} = \mathrm{d}p_1 \wedge \mathrm{d}q_1 \wedge \cdots \wedge \mathrm{d}p_n \wedge \mathrm{d}q_n.$

Show that

$$\operatorname{vol} = \frac{\omega_{\operatorname{std}}^{\wedge n}}{n!}$$

where

$$\omega_{\rm std} = \sum_{i=1}^n \mathrm{d} p_i \wedge \mathrm{d} q_i.$$

Last modified: October 27, 2023

ETH Zürich	Symplectic Geometry	D-MATH
HS 2023	Exercise Sheet 1	Dr. Patricia Dietzsch

Deduce that any symplectomorphism $\Phi \colon \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is volume-preserving.

*1.3. Let $\Sigma \subseteq \mathbb{R}^3$ be a surface, i.e. a smooth 2-dimensional submanifold, and let $\nu \colon \Sigma \to \mathbb{R}^3$ be a co-orientation of Σ , i.e. a smooth unit normal vector field. We define the 2-form ω on Σ by

$$\omega_x(v,w) \coloneqq \nu(x) \cdot (v \times w) \qquad \forall x \in \Sigma, \, v, w \in T_x \Sigma,$$

where \cdot denotes the Euclidean inner product and \times denotes the cross product.

- (a) Show that ω is a symplectic form.
- (b) Give a formula for ω in the case of the 2-sphere:

$$S^2 \coloneqq \{x \in \mathbb{R}^3 \mid |x| = 1\}$$

*1.4. Let (M, ω) be a 2*n*-dimensional symplectic manifold. Show that $\omega^{\wedge n}$ is a volume form, i.e. that $\omega^{\wedge n}$ is a nowhere vanishing form of top degree.

Note that would imply that M is canonically oriented. The form $\frac{\omega^{\wedge n}}{n!}$ is called the *symplectic volume*.