The most important exercises are marked with an asterisk *.
*2.1. Let (M, ω) be a closed symplectic manifold of positive dimension. Show that ω is not exact.
*2.2. Let (M, ω) be a symplectic manifold, $H, K:[0,1] \times M \rightarrow \mathbb{R}$ be two smooth Hamiltonian functions and $\chi \in \operatorname{Symp}(M, \omega)$.
(a) Show that $\psi_{t}^{H} \circ \psi_{t}^{K}$ is generated by

$$
(H \# K)_{t}=H_{t}+K_{t} \circ\left(\psi_{t}^{H}\right)^{-1}
$$

(b) Show that $\left(\psi_{t}^{H}\right)^{-1}$ is generated by

$$
\bar{H}_{t}=-H_{t} \circ \psi_{t}^{H}
$$

(c) Show that $\chi^{-1} \psi_{t}^{H} \chi$ is generated by $H_{t} \circ \chi$.
(d) Deduce from parts (a), (b) and (c) that $\operatorname{Ham}(M, \omega)$ is a normal subgroup of $\operatorname{Symp}(M, \omega)$.
2.3. Find an example of a symplectic manifold (M, ω) (without boundary) and a smooth function $H:[0,+\infty) \times M \rightarrow \mathbb{R}$ such that the domain \mathcal{D}_{H} of the Hamiltonian flow ψ^{H} is not equal to $[0,+\infty) \times M$. This flow is by definition the flow of the time-dependent Hamiltonian vector field $X^{H_{t}}$, which is defined by $-\mathrm{d} H^{t}=\omega\left(X^{H_{t}}, \cdot\right)$.
Find an example in which ψ_{t}^{H} is not surjective for some t.
*2.4. This problem is intended for students who are not yet familiar with the Lie derivative and Cartan's formula. Let $I \subset \mathbb{R}$ be an open interval, M a closed smooth manifold and $f: I \times M \rightarrow M$ a smooth function such that $f_{s} \in \operatorname{Diff}(M)$ for all $s \in I$. Let $k \geq 1$ and $\omega \in \Omega^{k}(M)$ a differential k-form on M.

The goal of this exercise is to prove Cartan's formula:

$$
\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}^{*} \omega=f_{s}^{*}\left(\iota_{X_{s}} \mathrm{~d} \omega+d \iota_{X_{s}} \omega\right)
$$

where X_{s} is the time-dependent vector field on M defined by

$$
\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}=X_{s} \circ f_{s}
$$

For $s \in I$ consider the linear map

$$
T_{s}: \Omega^{k}(I \times M) \rightarrow \Omega^{k-1}(M),
$$

defined by

$$
\left(T_{s} \sigma\right)_{x}\left(w_{1}, \ldots w_{k-1}\right)=\sigma_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k-1}\right)\right)
$$

for $x \in M$ and $w_{1}, \ldots, w_{k-1} \in T_{x} M$. Here we use the decomposition

$$
T_{(s, x)}(I \times M) \cong T_{s} \mathbb{R} \oplus T_{x} M \cong \mathbb{R} \oplus T_{x} M
$$

(a) Let $f \in C^{\infty}(I \times M)$ and $\alpha \in \Omega^{k-1}(M)$. Prove that for $\sigma=f \mathrm{~d} s \wedge \pi^{*} \alpha$ we have

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) \sigma,
$$

where $i_{s}: M \rightarrow I \times M, i_{s}(x)=(s, x)$ and $\pi: I \times M \rightarrow M, \pi(s, x)=x$.
(b) Let $f \in C^{\infty}(I \times M)$ and $\beta \in \Omega^{k}(M)$. Prove that for $\sigma=f \pi^{*} \beta$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) \sigma .
$$

(c) Deduce from parts (a) and (b) that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) \sigma
$$

for every $\sigma \in \Omega^{k}(I \times M)$.
(d) Prove Cartan's formula.
(e) Let $X \in \Gamma(T M)$ be a smooth vector field on M and let ψ_{t} be its flow. The Lie derivative $\mathcal{L}_{X} \omega \in \Omega^{k}(M)$ is defined by

$$
\mathcal{L}_{X} \omega=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \psi_{t}^{*} \omega .
$$

Show that

$$
\mathcal{L}_{X} \omega=\iota_{X} \mathrm{~d} \omega+\mathrm{d} \iota_{X} \omega .
$$

