The most important exercises are marked with an asterisk *.

*3.1.

(a) Find a symplectic manifold and a symplectomorphism on M that is not isotopic to the identity. (In particular, such a symplectomorphism is not a Hamiltonian diffeomorphism.)
(b) Find a symplectic manifold and a symplectomorphism on M that is isotopic to the identity through symplectomorphisms, but is not a Hamiltonian diffeomorphism.

Hint: Consider translations on a cylinder.
(c) Does there exist a non-Hamiltonian symplectomorphism on S^{2} equipped with the standard symplectic form, that is isotopic to the identity through symplectomorphisms?
3.2. This exercise covers two useful facts from differential geometry and algebraic topology.
(a) Let $\omega_{t} \in \Omega^{k}(M)$ be a differential k-form and φ_{t} a smooth isotopy of diffeomorphisms. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}^{*} \omega_{t}=\varphi_{t}^{*}\left(\mathcal{L}_{X_{t}} \omega_{t}+\frac{\mathrm{d}}{\mathrm{~d} t} \omega_{t}\right)
$$

where X_{t} is the vector field defined by

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}=X_{t} \circ \varphi_{t}
$$

(b) Let $d \geq 1$ and $\alpha \in \Omega^{d}\left(\mathbb{R}^{n}\right)$ be a closed d-form, i.e. $\mathrm{d} \alpha=0$. Show that α is exact, i.e. there exists $\lambda \in \Omega^{d-1}\left(\mathbb{R}^{n}\right)$ such that $\alpha=\mathrm{d} \lambda$. In other words, $\mathrm{H}^{d}\left(\mathbb{R}^{n} ; \mathbb{R}\right)=0$.

Hint: Use the retraction $f_{t}(x)=t x$ and the strategy we used in the lecture to show that "strongly isotopic" implies "isotopic".
*3.3. In this exercise, we prove Moser stability for volume forms. Let M be a closed smooth manifold of dimension m.
(a) Suppose $\mu_{t} \in \Omega^{m}(M), t \in[0,1]$, is a smooth family of volume forms on M such that
(i) μ_{t} is a volume form for each t,
(ii) $\frac{\mathrm{d}}{\mathrm{d} t} \mu_{t}$ is exact for all $t \in[0,1]$.

Prove that there exists a smooth isotopy $\varphi_{t}: M \rightarrow M$ of diffeomorphisms on M satisfying $\varphi_{t}^{*} \mu_{t}=\mu_{0}$ for all $t \in[0,1]$.
(b) Let $\mu_{0}, \mu_{1} \in \Omega^{m}(M)$ be two volume forms on M such that

$$
\int_{M} \mu_{0}=\int_{M} \mu_{1}
$$

Prove that there exists a diffeomorphism $\varphi: M \rightarrow M$, isotopic to id, satisfying $\varphi^{*} \mu_{1}=\mu_{0}$.
3.4. Let (Σ, σ) and $\left(\Sigma^{\prime}, \sigma^{\prime}\right)$ be two closed connected symplectic surfaces. Suppose Σ has total area 1 and Σ^{\prime} has total area c. Let $a \in \mathbb{R} \backslash 0$. Endow the product manifold $\Sigma \times \Sigma^{\prime}$ with the symplectic form $\omega_{a}=a \sigma \oplus a^{-1} \sigma^{\prime}$.
(a) Show that $\left(M, \omega_{a}\right)$ all have the same volume.
(b) Show that there exist a such that $\left(M, \omega_{1}\right)$ and $\left(M, \omega_{a}\right)$ are not symplectomorphic. Hint: The Degree Theorem from Algebraic Topology tells us the following. Let X and Y be compact oriented manifolds of same dimension and let $f: X \rightarrow Y$ be a smooth map. Then every top degree form Ω satisfies

$$
\int_{X} f^{*} \Omega=\operatorname{deg} f \int_{Y} \Omega
$$

Since in Exercise 3.4 (a) we saw that all $\left(M, \omega_{a}\right)$ have the same volume, try instead using the Degree Theorem to compare volumes of the projections on Σ of ω_{a} calculated directly and as $\varphi^{*} \omega_{1}$ for φ a symplectomorphism.

