The most important exercises are marked with an asterisk *.

*4.1. Let Sp(2n) be the group of symplectic matrices

$$\operatorname{Sp}(2n) = \left\{ A \in \operatorname{GL}(2n, \mathbb{R}) \, | \, A^T J_0 A = J_0 \right\},\,$$

where

$$J_0 = \begin{pmatrix} 0 & \mathrm{id}_n \\ -\mathrm{id}_n & 0 \end{pmatrix}.$$

- (a) Show that if $\Psi \in \text{Sp}(2n)$ then $\Psi^{-1} \in \text{Sp}(2n)$ and $\Psi^T \in \text{Sp}(2n)$.
- (b) Show that if $P \in \text{Sp}(2n)$ is a symmetric, positive definite symplectic matrix, then $P^{\alpha} \in \text{Sp}(2n)$ for every $\alpha \ge 0$, $\alpha \in \mathbb{R}$.
- (c) Show that $\operatorname{Sp}(2n) \cap \operatorname{O}(2n) = \operatorname{U}(n)$ and that the inclusion $\operatorname{U}(n) \subset \operatorname{Sp}(2n)$ is a homotopy equivalence.

Hint: Consider the homotopy $f_t(\Psi) = \Psi \left(\Psi^T \Psi \right)^{-\frac{t}{2}}, t \in [0, 1].$

4.2.

(a) Let $\Omega(\mathbb{R}^{2n})$ denote the space of linear symplectic forms on \mathbb{R}^{2n} . Show that

 $\Omega(\mathbb{R}^{2n}) \cong \operatorname{GL}(2n, \mathbb{R}) / \operatorname{Sp}(2n).$

- (b) Deduce that Ω(ℝ²ⁿ) is homotopy equivalent to O(2n)/U(n). *Hint:* Use a similar strategy as in Exercise 4.1 (c).
- (c) Let $\mathcal{J}(\mathbb{R}^{2n})$ denote the space of linear complex structures on \mathbb{R}^{2n} . Show that

 $\mathcal{J}(\mathbb{R}^{2n}) \cong \operatorname{GL}(2n,\mathbb{R})/\operatorname{GL}(n,\mathbb{C}).$

(d) Show that $\operatorname{GL}(n,\mathbb{C}) \cap \operatorname{O}(2n) = \operatorname{U}(n)$ and that $\mathcal{J}(\mathbb{R}^{2n})$ is homotopy equivalent to $\operatorname{O}(2n)/\operatorname{U}(n)$. In particular, $\Omega(\mathbb{R}^{2n})$ and $\mathcal{J}(\mathbb{R}^{2n})$ are homotopy equivalent.

*4.3.

(a) Show that any co-oriented hypersurface $\Sigma \subset \mathbb{R}^3$ inherits an almost complex structure from the vector product as follows. Let $\nu \colon \Sigma \to S^2$ be the Gauss map. Then

$$J_x(u) := \nu(x) \times u$$

is an almost complex structure.

(b) Show that J is compatible with the symplectic form

$$\omega_x(v,w) = \nu(x) \cdot (v \times w)$$

(see Exercise 1.3).

- (c) Show that every co-oriented hypersurface $M \subset \mathbb{R}^7$ also carries an almost complex structure.
- (d) Give an example of an almost complex manifold that does not admit a symplectic structure.