The most important exercises are marked with an asterisk *.
5.1. Let $\omega \in \Omega^{2}(M)$ be a non-degenerate 2 -form and $J \in \mathcal{J}_{c}(M, \omega)$. Let ∇ denote the Levi-Civita connection associated to the Riemannian metric $g_{J}(v, w):=\omega(v, J w)$.
(a) Show that for any $X \in \Gamma(T M)$, we have

$$
\left(\nabla_{X} J\right) J+J\left(\nabla_{X} J\right)=0 .
$$

(b) Let $X, Y, Z \in \Gamma(T M)$ be three vector fields. Show that

$$
g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(Y,\left(\nabla_{X} J\right) Z\right)=0 .
$$

(c) Show that

$$
\mathrm{d} \omega=g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(\left(\nabla_{Y} J\right) Z, X\right)+g_{J}\left(\left(\nabla_{Z} J\right) X, Y\right)
$$

5.2. Let $\omega \in \Omega^{2}(M), J \in \mathcal{J}_{c}(M, \omega), g_{J}$ and ∇ be as above. Show that the following are equivalent:
(i) $\nabla J=0$
(ii) J is integrable and ω is closed.
*5.3. Let $B(r) \subset \mathbb{R}^{2}$ denote the open disc of radius r. We use the coordinates $x_{1}, y_{1}, x_{2}, y_{2}$ and the symplectic form $\mathrm{d} y_{1} \wedge \mathrm{~d} x_{1}+\mathrm{d} y_{2} \wedge \mathrm{~d} x_{2}$ on \mathbb{R}^{4}. Consider the product $B(r) \times B\left(\frac{1}{r}\right) \subset \mathbb{R}^{4}$.
(a) Show that there exists a volume preserving diffeomorphism

$$
\psi: B(1) \times B(1) \rightarrow B(r) \times B\left(\frac{1}{r}\right)
$$

for any $r>0$.
(b) Let c be symplectic capacity in dimension 4 . Show that

$$
c\left(B(r) \times B\left(\frac{1}{r}\right), \omega_{\mathrm{std}}\right) \rightarrow 0
$$

as $r \rightarrow 0$.
(c) Let $0<r_{1} \leq r_{2}$ and $0<s_{1} \leq s_{2}$. Show that there exists a symplectic diffeomorphism

$$
\varphi: B\left(r_{1}\right) \times B\left(r_{2}\right) \rightarrow B\left(s_{1}\right) \times B\left(s_{2}\right)
$$

if and only if $r_{1}=s_{1}$ and $r_{2}=s_{2}$.
Hint: You may use the fact that a symplectic capacity exists.
Remark: The generalization of (c) to the product of n open symplectic 2-balls in $\mathbb{R}^{2 n}$ is true. The proof is more subtle and needs more machinery (e.g. symplectic homology).
*5.4. Given a linear subspace $W \subset \mathbb{R}^{2 n}$, its symplectic complement is defined by

$$
W^{\perp}=\left\{v \in \mathbb{R}^{2 n} \mid \omega_{\text {std }}(v, w)=0 \text { for all } w \in W\right\} .
$$

The subspace W is called isotropic if $W \subset W^{\perp}$.
(a) Show that $\left(W^{\perp}\right)^{\perp}=W$ and $\operatorname{dim} W^{\perp}=\operatorname{dim} \mathbb{R}^{2 n}-\operatorname{dim} W$.
(b) Show that if W is isotropic then $\operatorname{dim} W \leq n$.
(c) Let c be a symplectic capacity. Let $\Omega \subset \mathbb{R}^{2 n}$ be an open bounded set containing 0 and $W \subset \mathbb{R}^{2 n}$ a linear subspace of codimension 2 . Show that

$$
c(\Omega+W)=+\infty
$$

if W^{\perp} is isotropic. Here,

$$
\Omega+W=\left\{x+w \in \mathbb{R}^{2 n} \mid x \in \Omega, w \in W\right\} .
$$

(d) Let $\Omega \subset \mathbb{R}^{2 n}$ and $W \subset \mathbb{R}^{2 n}$ be as above. Show that

$$
0<c(\Omega+W)<+\infty
$$

if W^{\perp} is not isotropic.

