The most important exercises are marked with an asterisk *.

6.1.

(a) Let (V, ω) be a symplectic vector space and $g: V \times V \to \mathbb{R}$ be an inner product. Show that there exists a symplectic basis $e_1, \ldots, e_n, f_1, \ldots, f_n$ that is orthogonal with respect to g. Moreover, this basis can be chosen so that $g(e_j, e_j) = g(f_j, f_j)$.

Hint: Consider \mathbb{R}^{2n} with the standard inner product and a linear symplectic form ω . Use an orthonormal basis $z_1, \ldots, z_n \in \mathbb{C}^n$ of eigenvectors of the skew-symmetric matrix A representing ω .

(b) Let g be an inner product on \mathbb{R}^{2n} and consider the ellipsoid

$$E(g) = \left\{ w \in \mathbb{R}^{2n} \, | \, g(w, w) < 1 \right\}.$$

Show that there exists a symplectic linear matrix $A \in \text{Sp}(2n)$ and an *n*-tuple $\mathbf{r} = (r_1, \ldots, r_n)$ with $0 < r_1 \leq \cdots \leq r_n$ and such that $AE = E(\mathbf{r})$, where

$$E(\mathbf{r}) = \left\{ (x, y) \in \mathbb{R}^{2n} \, \middle| \, \sum_{j=1}^{2n} \frac{x_j^2 + y_j^2}{r_j^2} < 1 \right\}.$$

(c) Show that the numbers r_1, \ldots, r_n are uniquely determined by E(g).

Hint: Suppose $E(\mathbf{r})$ and $E(\mathbf{s})$ are related by $A \in \text{Sp}(2n)$. Show that $J_0 \operatorname{diag}(\frac{1}{r_1^2}, \ldots, \frac{1}{r_n^2})$ is similar to $J_0 \operatorname{diag}(\frac{1}{s_1^2}, \ldots, \frac{1}{s_n^2})$ and compare the eigenvalues.

(d) Interpret the result for n = 1.

6.2. Let $E \subset \mathbb{R}^{2n}$ be an ellipsoid centered at 0. Show that there exists $A \in GL(2n, \mathbb{R})$ such that $A^*\omega_{\text{std}} = -\omega_{\text{std}}$ and A(E) = E.

*6.3. Let $\psi_n \colon \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be a sequence of continuous maps converging to a homeomorphism $\psi \colon \mathbb{R}^{2n} \to \mathbb{R}^{2n}$, uniformly on compact sets. Let $E \subset \mathbb{R}^{2n}$ be an ellipsoid centered at 0.

(a) Show that for any $\lambda < 1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\psi_n(\lambda E) \subset \psi(E).$$

Last modified: October 26, 2023

1/2

(b) Show that for any $\mu > 1$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$,

 $\psi(E) \subset \psi_n(\mu E).$

Hint: Consider maps $\phi_n \colon \mu \partial E \to S^{2n-1}$ obtained by normalizing $\psi^{-1} \circ \psi_n$ and study their degree.

- (c) Deduce that if ψ_n preserve the capacity of all ellipsoids, then also ψ preserves the capacity of all ellipsoids.
- *6.4. Deduce from Exercise 6.3 that $\text{Symp}(\mathbb{R}^{2n})$ is C^0 -closed in $\text{Diff}(\mathbb{R}^{2n})$.