The most important exercises are marked with an asterisk *.

6.1.

(a) Let (V, ω) be a symplectic vector space and $g: V \times V \rightarrow \mathbb{R}$ be an inner product. Show that there exists a symplectic basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ that is orthogonal with respect to g. Moreover, this basis can be chosen so that $g\left(e_{j}, e_{j}\right)=g\left(f_{j}, f_{j}\right)$.

Hint: Consider $\mathbb{R}^{2 n}$ with the standard inner product and a linear symplectic form ω. Use an orthonormal basis $z_{1}, \ldots, z_{n} \in \mathbb{C}^{n}$ of eigenvectors of the skewsymmetric matrix A representing ω.
(b) Let g be an inner product on $\mathbb{R}^{2 n}$ and consider the ellipsoid

$$
E(g)=\left\{w \in \mathbb{R}^{2 n} \mid g(w, w)<1\right\} .
$$

Show that there exists a symplectic linear matrix $A \in \operatorname{Sp}(2 n)$ and an n-tuple $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ with $0<r_{1} \leq \cdots \leq r_{n}$ and such that $A E=E(\boldsymbol{r})$, where

$$
E(\boldsymbol{r})=\left\{(x, y) \in \mathbb{R}^{2 n} \left\lvert\, \sum_{j=1}^{2 n} \frac{x_{j}^{2}+y_{j}^{2}}{r_{j}^{2}}<1\right.\right\} .
$$

(c) Show that the numbers r_{1}, \ldots, r_{n} are uniquely determined by $E(g)$.

Hint: Suppose $E(\boldsymbol{r})$ and $E(\boldsymbol{s})$ are related by $A \in \operatorname{Sp}(2 n)$. Show that $J_{0} \operatorname{diag}\left(\frac{1}{r_{1}^{2}}, \ldots, \frac{1}{r_{n}^{2}}\right)$ is similar to $J_{0} \operatorname{diag}\left(\frac{1}{s_{1}^{2}}, \ldots, \frac{1}{s_{n}^{2}}\right)$ and compare the eigenvalues.
(d) Interpret the result for $n=1$.
6.2. Let $E \subset \mathbb{R}^{2 n}$ be an ellipsoid centered at 0 . Show that there exists $A \in \operatorname{GL}(2 n, \mathbb{R})$ such that $A^{*} \omega_{\text {std }}=-\omega_{\text {std }}$ and $A(E)=E$.
*6.3. Let $\psi_{n}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a sequence of continuous maps converging to a homeomorphism $\psi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$, uniformly on compact sets. Let $E \subset \mathbb{R}^{2 n}$ be an ellipsoid centered at 0 .
(a) Show that for any $\lambda<1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\psi_{n}(\lambda E) \subset \psi(E)
$$

(b) Show that for any $\mu>1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\psi(E) \subset \psi_{n}(\mu E)
$$

Hint: Consider maps $\phi_{n}: \mu \partial E \rightarrow S^{2 n-1}$ obtained by normalizing $\psi^{-1} \circ \psi_{n}$ and study their degree.
(c) Deduce that if ψ_{n} preserve the capacity of all ellipsoids, then also ψ preserves the capacity of all ellipsoids.
*6.4. Deduce from Exercise 6.3 that $\operatorname{Symp}\left(\mathbb{R}^{2 n}\right)$ is C^{0}-closed in $\operatorname{Diff}\left(\mathbb{R}^{2 n}\right)$.

