The most important exercises are marked with an asterisk *.
7.1. Consider two functions $F, G \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$. The Poisson bracket of F and G is defined by

$$
\{F, G\}:=\sum_{j=1}^{n}\left(\frac{\partial F}{\partial x_{j}} \frac{\partial G}{\partial y_{j}}-\frac{\partial F}{\partial y_{j}} \frac{\partial G}{\partial x_{j}}\right) \in C^{\infty}\left(\mathbb{R}^{2 n}\right) .
$$

*(a) Show that $\{F, G\}=\omega_{\text {std }}\left(X^{G}, X^{F}\right)$.
*(b) The function F is called an integral of the Hamiltonian differential equation

$$
\dot{x}(t)=X^{G}(x(t))
$$

if F is constant along its solutions $x(t)$. Show that F is an integral of the Hamiltonian differential equation associated to G if and only if $\{F, G\}=0$.
*(c) Show that a diffeomorphism $\psi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a symplectomorphism if and only if

$$
\{F, G\} \circ \psi=\{F \circ \psi, G \circ \psi\}
$$

for any functions $F, G \in C^{\infty}(M)$.
(d) Let X and Y be two symplectic vector fields. Show that $[X, Y]$ is a Hamiltonian vector field.

Hint: The bracket of two vector fields X and Y is defined by

$$
[X, Y]=\nabla_{X} Y-\nabla_{Y} X
$$

Use the formula $\iota_{[X, Y]} \omega=\mathcal{L}_{X}\left(\iota_{Y} \omega\right)-\iota_{Y}\left(\mathcal{L}_{X} \omega\right)$ to show that $\iota_{[X, Y]} \omega_{\text {std }}$ is exact.
(e) Show that

$$
\left[X^{F}, X^{G}\right]=X^{\{G, F\}}
$$

*7.2. Let c be a symplectic capacity. Define

$$
\check{c}(M, \omega):=\sup \{c(U, \omega) \mid U \subset M \text { open, } \bar{U} \subset M \backslash \partial M\} .
$$

We always have $\check{c} \leq c$. The capacity c is called inner regular if $c=\check{c}$. Show:
(a) Corrected version!!! The measurement č does satisfy the conformality and non-triviality axiom, but it is not necessarily a symplectic capacity.

Remark: Changing the definition of č by taking supremum only over $c(U, \omega)$ where \bar{U} is in addition compact, will result in an actual symplectic capacity.
(b) If d is any inner regular symplectic capacity with $d \leq c$, then $d \leq \check{c}$.
(c) The Gromov-width $D(M, \omega)$ is inner regular.
(d) The Hofer-Zehnder capacity c_{0} is inner regular.
*7.3. What is the biggest symplectic capacity?
7.4. Let $H \in C^{\infty}\left(\mathbb{R} \times \mathbb{R}^{2 n}\right)$ be a Hamiltonian function that is 1-periodic: $H_{t}=H_{t+1}$ for any t. On a loop $z \in C^{\infty}\left(S^{1}, \mathbb{R}^{2 n}\right)$, the action functional takes the value

$$
\mathcal{A}_{H}(z)=\int_{0}^{1} \frac{1}{2}\left\langle-J_{0} \dot{z}(t), z(t)\right\rangle \mathrm{d} t-\int_{0}^{1} H_{t}(z(t)) \mathrm{d} t
$$

Show that this coincides with the physicist's action functional, namely for a loop $z(t)=(x(t), y(t))$ we have

$$
\mathcal{A}_{H}(z)=\int_{0}^{1}\langle y(t), \dot{x}(t)\rangle \mathrm{d} t-\int_{0}^{1} H_{t}(z(t)) \mathrm{d} t .
$$

In other words, $\mathcal{A}_{H}(z)$ is the integral of the action 1-form

$$
\lambda_{H}:=\sum_{j=1}^{n} y_{j} \mathrm{~d} x_{j}-H \mathrm{~d} t
$$

along the loop z.
Hint: Integration by parts.

