The most important exercises are marked with an asterisk *.

12.1. Let (M, ω) be a closed symplectic manifold. Consider

$$M \times M^{-} \coloneqq (M \times M, \ \omega \oplus (-\omega)).$$

Let $j_{\Delta} \colon M \to M \times M^-$ denote the diagonal inclusion j(x) = (x, x).

Let $\psi_t, t \in [0, 1]$, be a symplectic isotopy with $\psi_0 = id$. Show that

 $\operatorname{Flux}(\{\psi_t\}) = -j_{\Delta}^* \operatorname{Flux}(\{\operatorname{id} \times \psi_t\}).$

*12.2. Let $\chi: M \to M$ be a symplectomorphism on a closed symplectic manifold (M, ω) and let $\psi_t, t \in [0, 1]$, be a symplectic isotopy with $\psi_0 = \text{id}$. Show that

 $\operatorname{Flux}(\{\chi^{-1} \circ \psi_t \circ \chi\}) = \chi^*(\operatorname{Flux}(\{\psi_t\}).$

*12.3. Consider the exact symplectic manifold $(T^*Q, d\alpha)$, where $\alpha \in \Omega^1(Q)$ is the canonical 1-form on M. If $\sigma \in \Omega^1(Q)$ is a closed 1-form, there is an associated diffeomorphism $\nu_{\sigma} \colon T^*Q \to T^*Q$ defined by

$$\nu_{\sigma}(q,\xi) = (q,\xi + \sigma_q).$$

(a) Prove that

$$\nu_{\sigma}^* \alpha - \alpha = \pi^* \sigma,$$

where $\pi: T^*Q \to Q$ denotes the canonical projection.

- (b) Prove that ν_{σ} is a symplectomorphism.
- (c) Prove that ν_{σ} is a Hamiltonian diffeomorphism if and only if σ is exact.