This is a sample exam question.

*13.1. Hamiltonian diffeomorphisms

Let (M, ω) be a closed symplectic manifold.

- (a) (3 points) What is a Hamiltonian diffeomorphism on M?
- (b) (4 points) Let $H: [0,1] \times M \to \mathbb{R}$ be a smooth Hamiltonian function and ψ_t^H the corresponding Hamiltonian flow. Let χ be a symplectomorphism on M. Show that $\chi^{-1}\psi_t^H\chi$ is generated by $H_t \circ \chi$.
- (c) (4 points) Consider the 2-sphere $S^2 \subset \mathbb{R}^3$ endowed with the standard symplectic form given by

 $\omega_x(v,w) = x \cdot (v \times w),$

for all $x \in S^2$ and $v, w \in T_x S^2 = \{v \in \mathbb{R}^3 \mid x \cdot v = 0\}$. Let $H: S^2 \to \mathbb{R}$ be the autonomous Hamiltonian function given by

 $(x_1, x_2, x_3) \mapsto x_3.$

Compute the corresponding Hamiltonian flow $\psi_t^H, t \in \mathbb{R}$.