The most important exercises are marked with an asterisk *.

1.1. Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a smooth Hamiltonian function. Suppose H is compactly supported and let Φ_t be the associated Hamiltonian flow.

(a) Consider the Hamiltonian vector field

$$X(q,p) = \begin{pmatrix} \frac{\partial H}{\partial p}(q,p) \\ -\frac{\partial H}{\partial q}(q,p) \end{pmatrix}.$$

Show that $\operatorname{div} X = 0$.

Solution. By definition, the divergence of X is given by

div
$$X := \frac{\partial}{\partial q} X_q + \frac{\partial}{\partial p} X_p.$$

Substituting the definition of X, we get:

div
$$X = \frac{\partial^2 H}{\partial q \partial p} - \frac{\partial^2 H}{\partial p \partial q}.$$

Since H is smooth by assumption, it follows that

$$\frac{\partial^2 H}{\partial q \partial p} = \frac{\partial^2 H}{\partial p \partial q}$$

and thus div X = 0.

(b) Let $Y \colon \mathbb{R}^m \to \mathbb{R}^m$ be any smooth vector field with div Y = 0. Suppose $\Psi_t \colon \mathbb{R}^m \to \mathbb{R}^m$ is its flow, i.e.

$$\forall x \in \mathbb{R}^m : \qquad \frac{\mathrm{d}}{\mathrm{d}t} \Psi_t(x) = Y(\Psi_t(x)), \qquad \Psi_0 = \mathrm{id} \,. \tag{1}$$

Show that

det
$$(d\Psi_t(x)) = 1$$
 for all $x \in \mathbb{R}^m$ and $t \in \mathbb{R}$.

Hint: Jacobi's formula on how to express a derivative of a determinant might be helpful.

Solution. Note that, by definition of a flow, it holds: $\Psi_0 = \text{id.}$ Therefore, $d\Psi_0(x) = \text{id}$ and thus $\det(d\Psi_0) = 1$. The idea now is to show that $\det(d\Psi_t)$ does not change as we change t. We do this by showing that

$$\frac{\mathrm{d}}{\mathrm{d}t}\det(\mathrm{d}\Psi_t) = 0.$$

Last modified: December 16, 2023

 $1/_{5}$

Indeed, by the Jacobi formula, we have:

(c) Deduce from parts (a) and (b) that Φ_t is volume-preserving, i.e. for each bounded open domain $U \subseteq \mathbb{R}^{2n}$

$$\operatorname{vol}(U) = \operatorname{vol}(\Phi_t(U)).$$

This is the Liouville Theorem.

Solution. We will also denote by vol the volume form. We have:

$$\operatorname{vol}(\Phi_t(U)) = \int_{\Phi_t(U)} \operatorname{vol} \qquad \text{(by definition)}$$
$$= \int_U |\det(\mathrm{d}\Phi_t)| \operatorname{vol} \qquad \text{(by change of variables)}$$
$$= \int_U \operatorname{vol} \qquad \text{(by part (b))}$$
$$= \operatorname{vol}(U).$$

This completes the proof.

*1.2. Consider the standard volume form on \mathbb{R}^{2n} :

 $\mathrm{vol} = \mathrm{d}p_1 \wedge \mathrm{d}q_1 \wedge \cdots \wedge \mathrm{d}p_n \wedge \mathrm{d}q_n.$

Show that

$$\operatorname{vol} = \frac{\omega_{\operatorname{std}}^{\wedge n}}{n!},$$

2/5

where

$$\omega_{\rm std} = \sum_{i=1}^n \mathrm{d}p_i \wedge \mathrm{d}q_i.$$

Deduce that any symplectomorphism $\Phi \colon \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is volume-preserving.

Solution. Wedging ω_{std} with itself *n* times, we get:

$$\omega_{\text{std}}^{\wedge n} = \left(\sum_{k_1=1}^n \mathrm{d}p_{k_1} \wedge \mathrm{d}q_{k_1}\right) \wedge \dots \wedge \left(\sum_{k_n=1}^n \mathrm{d}p_{k_n} \wedge \mathrm{d}q_{k_n}\right)$$
$$= \sum_{k_1=1}^n \dots \sum_{k_n=1}^n \mathrm{d}p_{k_1} \wedge \mathrm{d}q_{k_1} \wedge \dots \wedge \mathrm{d}p_{k_n} \wedge \mathrm{d}q_{k_n}$$
$$\stackrel{(\star)}{=} \sum_{\sigma \in S_n} \mathrm{d}p_{\sigma(1)} \wedge \mathrm{d}q_{\sigma(1)} \wedge \dots \wedge \mathrm{d}p_{\sigma(n)} \wedge \mathrm{d}q_{\sigma(n)}$$
$$\stackrel{(\star\star)}{=} \sum_{\sigma \in S_n} (-1)^{2 \cdot \text{sgn}(\sigma)} \cdot \mathrm{d}p_1 \wedge \mathrm{d}q_1 \wedge \dots \wedge \mathrm{d}p_n \wedge \mathrm{d}q_n$$
$$\stackrel{(\star\star\star)}{=} n! \cdot \mathrm{d}p_1 \wedge \mathrm{d}q_1 \wedge \dots \wedge \mathrm{d}p_n \wedge \mathrm{d}q_n$$
$$= n! \text{ vol }.$$

In equality (*) we use the fact that $dp_{k_1} \wedge dq_{k_1} \wedge \cdots \wedge dp_{k_n} \wedge dq_{k_n}$ vanishes if $k_i = k_j$ for some $i \neq j$ and we write the remaining terms in terms of permutations. Here, S_n denotes the set of all permutations of n elements.

To get $(\star\star)$, we use the fact that to go from $dp_{\sigma(1)} \wedge dq_{\sigma(1)} \wedge \cdots \wedge dp_{\sigma(n)} \wedge q_{\sigma(n)}$ to $dp_1 \wedge dq_1 \wedge \cdots \wedge dp_n \wedge dq_n$ for some permutation $\sigma \in S_n$, we need to make an even number of swaps of adjacent terms. This gives us the factor $(-1)^{2 \cdot \operatorname{sgn}(\sigma)}$.

Lastly, we get the factor of n! in $(\star \star \star)$ because there are n! permutations of n elements. This shows vol = $\frac{\omega_{\text{std}}^{\wedge n}}{n!}$.

By definition, if $\Phi \colon \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is a symplectomorphism, then $\Phi^* \omega_{\text{std}} = \omega_{\text{std}}$. By the previous part it thus follows:

$$\Phi^* \operatorname{vol} = \Phi^* \left(\frac{\omega_{\operatorname{std}}^{\wedge n}}{n!} \right) = \frac{1}{n!} \Phi^* \left(\omega_{\operatorname{std}}^{\wedge n} \right) = \frac{1}{n!} \Phi^* \omega_{\operatorname{std}} \wedge \dots \wedge \Phi^* \omega_{\operatorname{std}} = \frac{1}{n!} \omega_{\operatorname{std}}^{\wedge n} = \operatorname{vol}.$$

*1.3. Let $\Sigma \subseteq \mathbb{R}^3$ be a surface, i.e. a smooth 2-dimensional submanifold, and let $\nu \colon \Sigma \to \mathbb{R}^3$ be a co-orientation of Σ , i.e. a smooth unit normal vector field. We define the 2-form ω on Σ by

$$\omega_x(v,w) \coloneqq \nu(x) \cdot (v \times w) \qquad \forall x \in \Sigma, \, v, w \in T_x \Sigma,$$

where \cdot denotes the Euclidean inner product and \times denotes the cross product.

(a) Show that ω is a symplectic form.

Solution. To show that ω is a symplectic form, we need to show it is a closed non-degenerate 2-form.

To show ω is a differential form, we need to show that ω depends smoothly on x and that ω_x it is bilinear and antisymmetric: ν is a smooth function and therefore ω depends smoothly on x; the Euclidean inner product and the cross product are bilinear and thus so is ω_x ; antisymmetry follows from the antisymmetry of the cross product.

We showed that ω is a 2-form. Its exterior derivative is thus of degree 3. Since Σ is 2-dimensional, $d\omega$ vanishes. This shows ω is closed.

To show ω is non-degenerate, we need to show that for any non-zero vector $v \in T_x \Sigma$, there exists another vector $w \in T_x \Sigma$ such that $\omega_x(v, w) \neq 0$. Let $v \in T_x \Sigma$ be a non-zero vector. We claim that $w = \nu(x) \times v$ has the required property. Using the Grassmann identity:

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c,$$

we have:

$$\omega_x(v,\nu(x)\times v) = \nu(x)\cdot(v\cdot(\nu(x)\times v))$$
$$= \nu(x)\cdot((v\times v)\nu(x) - 0)$$
$$= ||v||^2 \neq 0.$$

This shows that ω is non-degenerate and completes the proof that ω is a symplectic form.

(b) Give a formula for ω in the case of the 2-sphere:

$$S^2 \coloneqq \{ x \in \mathbb{R}^3 \mid |x| = 1 \}.$$

Solution. For the 2-sphere S^2 , a unit normal vector field is given by:

$$\nu \colon S^2 \to \mathbb{R}^3, \qquad \nu(x) \coloneqq x.$$

The form ω is therefore given by:

$$\omega_x(v,w) = x \cdot (v \times w) = \det \begin{pmatrix} | & | & | \\ x & v & w \\ | & | & | \end{pmatrix},$$

for all $x \in S^2$ and $v, w \in T_x S^2 = \{v \in \mathbb{R}^3 \mid x \cdot v = 0\}.$

4/5

D-MATH	Symplectic Geometry	ETH Zürich
Dr. Patricia Dietzsch	Sheet 1 Solutions	HS 2023

*1.4. Let (M, ω) be a 2*n*-dimensional symplectic manifold. Show that $\omega^{\wedge n}$ is a volume form, i.e. that $\omega^{\wedge n}$ is a nowhere vanishing form of top degree.

Note that would imply that M is canonically oriented. The form $\frac{\omega^{\wedge n}}{n!}$ is called the symplectic volume.

Solution. Recall that, by definition, for every point $x \in M$ there exists a neighbourhood $U \subset M$ of x and a diffeomorphism $\varphi \colon U \to \varphi(U) \subset \mathbb{R}^{2n}$ such that $\varphi^* \omega_{\text{std}} = \omega$. In Exercise 1.2, we saw that $\omega_{\text{std}}^{\wedge n}$ is a volume form on \mathbb{R}^{2n} . Since φ is a diffeomorphism, it follows that the form

$$\omega^{\wedge n} = (\varphi^* \omega_{\mathrm{std}}) \wedge \dots \wedge (\varphi^* \omega_{\mathrm{std}}) = \varphi^* \big(\omega_{\mathrm{std}}^{\wedge n} \big)$$

is also a volume form on M.