The most important exercises are marked with an asterisk *.
1.1. Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth Hamiltonian function. Suppose H is compactly supported and let Φ_{t} be the associated Hamiltonian flow.
(a) Consider the Hamiltonian vector field

$$
X(q, p)=\binom{\frac{\partial H}{\partial p}(q, p)}{-\frac{\partial H}{\partial q}(q, p)} .
$$

Show that $\operatorname{div} X=0$.
Solution. By definition, the divergence of X is given by

$$
\operatorname{div} X:=\frac{\partial}{\partial q} X_{q}+\frac{\partial}{\partial p} X_{p}
$$

Substituting the definition of X, we get:

$$
\operatorname{div} X=\frac{\partial^{2} H}{\partial q \partial p}-\frac{\partial^{2} H}{\partial p \partial q}
$$

Since H is smooth by assumption, it follows that

$$
\frac{\partial^{2} H}{\partial q \partial p}=\frac{\partial^{2} H}{\partial p \partial q}
$$

and thus $\operatorname{div} X=0$.
(b) Let $Y: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be any smooth vector field with $\operatorname{div} Y=0$. Suppose $\Psi_{t}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is its flow, i.e.

$$
\begin{equation*}
\forall x \in \mathbb{R}^{m}: \quad \frac{\mathrm{d}}{\mathrm{~d} t} \Psi_{t}(x)=Y\left(\Psi_{t}(x)\right), \quad \Psi_{0}=\mathrm{id} \tag{1}
\end{equation*}
$$

Show that

$$
\operatorname{det}\left(\mathrm{d} \Psi_{t}(x)\right)=1 \quad \text { for all } x \in \mathbb{R}^{m} \text { and } t \in \mathbb{R}
$$

Hint: Jacobi's formula on how to express a derivative of a determinant might be helpful.
Solution. Note that, by definition of a flow, it holds: $\Psi_{0}=\mathrm{id}$. Therefore, $\mathrm{d} \Psi_{0}(x)=\mathrm{id}$ and thus $\operatorname{det}\left(\mathrm{d} \Psi_{0}\right)=1$. The idea now is to show that $\operatorname{det}\left(\mathrm{d} \Psi_{t}\right)$ does not change as we change t. We do this by showing that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det}\left(\mathrm{~d} \Psi_{t}\right)=0
$$

Indeed, by the Jacobi formula, we have:

$$
\begin{array}{rlr}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det}\left(\mathrm{~d} \Psi_{t}\right) & =\operatorname{det}\left(\mathrm{d} \Psi_{t}\right) \cdot \operatorname{tr}\left(\left(\mathrm{d} \Psi_{t}\right)^{-1} \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{~d} \Psi_{t}\right)\right) \\
& =\operatorname{det}\left(\mathrm{d} \Psi_{t}\right) \cdot \operatorname{tr}\left(\left(\mathrm{d} \Psi_{t}\right)^{-1} \cdot \mathrm{~d}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \Psi_{t}\right)\right) & \\
& =\operatorname{det}\left(\mathrm{d} \Psi_{t}\right) \cdot \operatorname{tr}\left(\left(\mathrm{d} \Psi_{t}\right)^{-1} \cdot \mathrm{~d}\left(Y\left(\Psi_{t}\right)\right)\right) & \\
& =\operatorname{det}\left(\mathrm{d} \Psi_{t}\right) \cdot \operatorname{tr}\left(\left(\mathrm{d} \Psi_{t}\right)^{-1} \cdot \mathrm{~d} Y\left(\Psi_{t}\right) \cdot \mathrm{d} \Psi_{t}\right) & \\
& =\operatorname{lby} \text { equation (1)) }) \\
& =\operatorname{det}\left(\mathrm{d} \Psi_{t}\right) \cdot \operatorname{tr}\left(\left(\mathrm{d} \Psi_{t}\right) \cdot \operatorname{tr}\left(\mathrm{d} Y\left(\Psi_{t}\right)\right)\right. & \\
& =\operatorname{det}\left(\mathrm{d} \Psi_{t} \cdot \mathrm{~d} Y\left(\Psi_{t}\right)\right) \cdot \operatorname{div} Y\left(\Psi_{t}\right) & \\
& =0 & \operatorname{tr}(A B)=\operatorname{tr}(B A)) \\
& & \\
\text { (since dive) } Y=0)
\end{array}
$$

(c) Deduce from parts (a) and (b) that Φ_{t} is volume-preserving, i.e. for each bounded open domain $U \subseteq \mathbb{R}^{2 n}$

$$
\operatorname{vol}(U)=\operatorname{vol}\left(\Phi_{t}(U)\right)
$$

This is the Liouville Theorem.
Solution. We will also denote by vol the volume form. We have:

$$
\begin{array}{rlr}
\operatorname{vol}\left(\Phi_{t}(U)\right) & =\int_{\Phi_{t}(U)} \operatorname{vol} & \text { (by definition) } \\
& =\int_{U}\left|\operatorname{det}\left(\mathrm{~d} \Phi_{t}\right)\right| \mathrm{vol} & \text { (by change of variables) } \\
& =\int_{U} \operatorname{vol} & \text { (by part (b)) } \\
& =\operatorname{vol}(U) . &
\end{array}
$$

This completes the proof.
*1.2. Consider the standard volume form on $\mathbb{R}^{2 n}$:

$$
\operatorname{vol}=\mathrm{d} p_{1} \wedge \mathrm{~d} q_{1} \wedge \cdots \wedge \mathrm{~d} p_{n} \wedge \mathrm{~d} q_{n} .
$$

Show that

$$
\mathrm{vol}=\frac{\omega_{\mathrm{std}}^{\wedge n}}{n!},
$$

where

$$
\omega_{\mathrm{std}}=\sum_{i=1}^{n} \mathrm{~d} p_{i} \wedge \mathrm{~d} q_{i}
$$

Deduce that any symplectomorphism $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is volume-preserving.
Solution. Wedging $\omega_{\text {std }}$ with itself n times, we get:

$$
\begin{aligned}
\omega_{\text {std }}^{\wedge n} & =\left(\sum_{k_{1}=1}^{n} \mathrm{~d} p_{k_{1}} \wedge \mathrm{~d} q_{k_{1}}\right) \wedge \cdots \wedge\left(\sum_{k_{n}=1}^{n} \mathrm{~d} p_{k_{n}} \wedge \mathrm{~d} q_{k_{n}}\right) \\
& =\sum_{k_{1}=1}^{n} \cdots \sum_{k_{n}=1}^{n} \mathrm{~d} p_{k_{1}} \wedge \mathrm{~d} q_{k_{1}} \wedge \cdots \wedge \mathrm{~d} p_{k_{n}} \wedge \mathrm{~d} q_{k_{n}} \\
& \stackrel{(\star)}{=} \sum_{\sigma \in S_{n}} \mathrm{~d} p_{\sigma(1)} \wedge \mathrm{d} q_{\sigma(1)} \wedge \cdots \wedge \mathrm{d} p_{\sigma(n)} \wedge \mathrm{d} q_{\sigma(n)} \\
& \stackrel{(\star \star)}{=} \sum_{\sigma \in S_{n}}(-1)^{2 \cdot \operatorname{sgn}(\sigma)} \cdot \mathrm{d} p_{1} \wedge \mathrm{~d} q_{1} \wedge \cdots \wedge \mathrm{~d} p_{n} \wedge \mathrm{~d} q_{n} \\
& \stackrel{(\star \star \times)}{=} n!\cdot \mathrm{d} p_{1} \wedge \mathrm{~d} q_{1} \wedge \cdots \wedge \mathrm{~d} p_{n} \wedge \mathrm{~d} q_{n} \\
& =n!\operatorname{vol}
\end{aligned}
$$

In equality (\star) we use the fact that $\mathrm{d} p_{k_{1}} \wedge \mathrm{~d} q_{k_{1}} \wedge \cdots \wedge \mathrm{~d} p_{k_{n}} \wedge \mathrm{~d} q_{k_{n}}$ vanishes if $k_{i}=k_{j}$ for some $i \neq j$ and we write the remaining terms in terms of permutations. Here, S_{n} denotes the set of all permutations of n elements.
To get ($\star \star$), we use the fact that to go from $\mathrm{d} p_{\sigma(1)} \wedge \mathrm{d} q_{\sigma(1)} \wedge \cdots \wedge \mathrm{d} p_{\sigma(n)} \wedge q_{\sigma(n)}$ to $\mathrm{d} p_{1} \wedge \mathrm{~d} q_{1} \wedge \cdots \wedge \mathrm{~d} p_{n} \wedge \mathrm{~d} q_{n}$ for some permutation $\sigma \in S_{n}$, we need to make an even number of swaps of adjacent terms. This gives us the factor $(-1)^{2 \cdot \operatorname{sgn}(\sigma)}$.
Lastly, we get the factor of $n!$ in $(\star \star \star)$ because there are n ! permutations of n elements. This shows vol $=\frac{\omega_{\text {std }}^{\wedge n}}{n!}$.
By definition, if $\Phi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a symplectomorphism, then $\Phi^{*} \omega_{\text {std }}=\omega_{\text {std }}$. By the previous part it thus follows:

$$
\Phi^{*} \operatorname{vol}=\Phi^{*}\left(\frac{\omega_{\text {std }}^{\wedge n}}{n!}\right)=\frac{1}{n!} \Phi^{*}\left(\omega_{\text {std }}^{\wedge n}\right)=\frac{1}{n!} \Phi^{*} \omega_{\text {std }} \wedge \cdots \wedge \Phi^{*} \omega_{\text {std }}=\frac{1}{n!} \omega_{\text {std }}^{\wedge n}=\operatorname{vol}
$$

*1.3. Let $\Sigma \subseteq \mathbb{R}^{3}$ be a surface, i.e. a smooth 2-dimensional submanifold, and let $\nu: \Sigma \rightarrow \mathbb{R}^{3}$ be a co-orientation of Σ, i.e. a smooth unit normal vector field. We define the 2 -form ω on Σ by

$$
\omega_{x}(v, w):=\nu(x) \cdot(v \times w) \quad \forall x \in \Sigma, v, w \in T_{x} \Sigma
$$

where \cdot denotes the Euclidean inner product and \times denotes the cross product.
(a) Show that ω is a symplectic form.

Solution. To show that ω is a symplectic form, we need to show it is a closed non-degenerate 2-form.
To show ω is a differential form, we need to show that ω depends smoothly on x and that ω_{x} it is bilinear and antisymmetric: ν is a smooth function and therefore ω depends smoothly on x; the Euclidean inner product and the cross product are bilinear and thus so is ω_{x}; antisymmetry follows from the antisymmetry of the cross product.

We showed that ω is a 2 -form. Its exterior derivative is thus of degree 3 . Since Σ is 2-dimensional, $\mathrm{d} \omega$ vanishes. This shows ω is closed.

To show ω is non-degenerate, we need to show that for any non-zero vector $v \in T_{x} \Sigma$, there exists another vector $w \in T_{x} \Sigma$ such that $\omega_{x}(v, w) \neq 0$. Let $v \in T_{x} \Sigma$ be a non-zero vector. We claim that $w=\nu(x) \times v$ has the required property. Using the Grassmann identity:

$$
a \times(b \times c)=(a \cdot c) b-(a \cdot b) c
$$

we have:

$$
\begin{aligned}
\omega_{x}(v, \nu(x) \times v) & =\nu(x) \cdot(v \cdot(\nu(x) \times v)) \\
& =\nu(x) \cdot((v \times v) \nu(x)-0) \\
& =\|v\|^{2} \neq 0 .
\end{aligned}
$$

This shows that ω is non-degenerate and completes the proof that ω is a symplectic form.
(b) Give a formula for ω in the case of the 2 -sphere:

$$
S^{2}:=\left\{x \in \mathbb{R}^{3}| | x \mid=1\right\} .
$$

Solution. For the 2 -sphere S^{2}, a unit normal vector field is given by:

$$
\nu: S^{2} \rightarrow \mathbb{R}^{3}, \quad \nu(x):=x
$$

The form ω is therefore given by:

$$
\omega_{x}(v, w)=x \cdot(v \times w)=\operatorname{det}\left(\begin{array}{ccc}
\mid & \mid & \mid \\
x & v & w \\
\mid & \mid & \mid
\end{array}\right)
$$

for all $x \in S^{2}$ and $v, w \in T_{x} S^{2}=\left\{v \in \mathbb{R}^{3} \mid x \cdot v=0\right\}$.
*1.4. Let (M, ω) be a $2 n$-dimensional symplectic manifold. Show that $\omega^{\wedge n}$ is a volume form, i.e. that $\omega^{\wedge n}$ is a nowhere vanishing form of top degree.
Note that would imply that M is canonically oriented. The form $\frac{\omega^{\wedge n}}{n!}$ is called the symplectic volume.
Solution. Recall that, by definition, for every point $x \in M$ there exists a neighbourhood $U \subset M$ of x and a diffeomorphism $\varphi: U \rightarrow \varphi(U) \subset \mathbb{R}^{2 n}$ such that $\varphi^{*} \omega_{\text {std }}=\omega$. In Exercise 1.2, we saw that $\omega_{\text {std }}^{\wedge n}$ is a volume form on $\mathbb{R}^{2 n}$. Since φ is a diffeomorphism, it follows that the form

$$
\omega^{\wedge n}=\left(\varphi^{*} \omega_{\text {std }}\right) \wedge \cdots \wedge\left(\varphi^{*} \omega_{\text {std }}\right)=\varphi^{*}\left(\omega_{\text {std }}^{\wedge n}\right)
$$

is also a volume form on M.

