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The most important exercises are marked with an asterisk *.

*2.1. Let (M,ω) be a closed symplectic manifold of positive dimension. Show that ω
is not exact.

Solution. Assume M is of dimension 2n. We saw that Ω := ω∧n is a volume form on
M and hence does not vanish anywhere. We equip M with the orientation induced
by Ω. It follows that the integral

∫
M ω∧n is positive.

Assume for contradiction that ω is exact and let α be a 1-form such that ω = dα. It
follows from Leibniz rule that

d(α ∧ ω∧(n−1)) = ω∧n.

Stokes theorem now implies that∫
M
ω∧n =

∫
∂M

α ∧ ω∧(n−1),

where ∂M denotes the boundary of M . Since the left-hand side is positive, it follows
that the boundary ∂M is non-empty. This contradicts the assumption that M is a
closed (i.e. compact without boundary) manifold.

*2.2. Let (M,ω) be a symplectic manifold, H,K : [0, 1] × M → R be two smooth
Hamiltonian functions and χ ∈ Symp(M,ω).

(a) Show that ψH
t ◦ ψK

t is generated by

(H#K)t = Ht +Kt ◦ (ψH
t )−1.

Solution. We compute

d (H#K)t = dHt + dKt ◦ d(ψH
t )−1

= −ω(XH
t ,−) − ω

(
XK

t ◦
(
ψH

t

)−1
, d(ψH

t )−1(−)
)

= −ω(XH
t ,−) − ω

(
dψH

t

(
XK

t ◦
(
ψH

t

)−1
)
,−
)

= −ω
(
XH

t +
(
ψH

t

)
∗

(XK
t ),−

)
,
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hence XH#K
t = XH

t +
(
ψH

t

)
∗

(XK
t ). In the third inequality we used that ψH

t is
symplectic. Moreover,

d
dt
(
ψH

t ◦ ψK
t

)
=
(

d
dtψ

H
t

)
◦ ψK

t + dψH
t

(
d
dtψ

K
t

)
= XH

t ◦ ψH
t ◦ ψK

t + dψH
t

(
XK

t ◦ ψK
t

)
= XH#K

t ◦ (ψH
t ◦ ψK

t )

which proves the claim.

(b) Show that
(
ψH

t

)−1
is generated by

H t = −Ht ◦ ψH
t .

Solution. We proceed as before:

dH t = −dHt ◦ dψH
t

= ω
(
XH

t ◦ ψH
t , dψH

t (−)
)

= ω
(

d
(
ψH

t

)−1 (
XH

t ◦ ψH
t

)
,−
)

= ω
((
ψH

t

)∗
(XH

t ),−
)
,

hence XH
t = − (ψt)∗ (XH

t ). On the other hand

0 = d
dt

(
ψH

t ◦
(
ψH

t

)−1
)

=
(

d
dtψ

H
t

)
◦
(
ψH

t

)−1
+ dψH

t

(
d
dt
(
ψH

t

)−1
)

= XH
t + dψH

t

(
d
dt
(
ψH

t

)−1
)
,

hence
d
dt
(
ψH

t

)−1
= −d

(
ψH

t

)−1 (
XH

t

)
= XH

t ◦
(
ψH

t

)−1
.

(c) Show that χ−1ψH
t χ is generated by Ht ◦ χ.

Solution. We compute

d(Ht ◦ χ) = dHt ◦ dχ
= −ω

(
XH

t ◦ χ, dχ(−)
)

= −ω
(
dχ−1

(
XH

t ◦ χ
)
,−
)
,
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hence XH◦χ
t = χ∗(XH

t ). Therefore
d
dt
(
χ−1ψH

t χ
)

= dχ−1
(

d
dtψ

H
t ◦ χ

)

= χ∗
(

d
dtψ

H
t

)
= χ∗(XH

t ◦ ψH
t ) = XH◦χ

t ◦
(
χ−1ψH

t χ
)
.

(d) Deduce from parts (a), (b) and (c) that Ham(M,ω) is a normal subgroup of
Symp(M,ω).

Solution. (a) and (b) show that Ham(M,ω) ⊂ Symp(M) is closed under
composition and inverse. It is therefore a subgroup. (c) shows that Ham(M,ω)
is closed under conjugation by an element in Symp(M,ω). Ham(M,ω) is
therefore normal in Symp(M,ω).

2.3. Find an example of a symplectic manifold (M,ω) (without boundary) and a
smooth function H : [0,+∞) ×M → R such that the domain DH of the Hamiltonian
flow ψH is not equal to [0,+∞) × M . This flow is by definition the flow of the
time-dependent Hamiltonian vector field XHt , which is defined by −dH t = ω(XHt , ·).

Find an example in which ψH
t is not surjective for some t.

Solution. Consider
M := (0,+∞)×R, ω := ω0, H : [0,+∞)×M → R, H(t, q, p) = −p.

We show that the domain of the Hamiltonian flow φH is
DH = {(t, q, p) | t < q}.

Indeed, Hamilton’s equations for H are

q̇ = ∂H

∂p
= −1, ṗ = −∂H

∂q
= 0.

The unique maximal solution of these equations starting at (q, p)(0) = (q0, p0) is
(q, p) : [0, q0) → M, (q, p)(t) = (q0 − t, p0).

Since M is given by M = (0,∞) × R we cannot extend this solution beyond t = q0.

Consider now
M := (0,+∞) ×R, ω := ω0, H : [0,+∞) ×M → R, H(t, q, p) = p.

Then we have
ψH

t : M → M, ψH
t (q0, p0) = (q0 + t, p0).

The map φH
t is not surjective for t > 0.
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*2.4. This problem is intended for students who are not yet familiar with the Lie
derivative and Cartan’s formula. Let I ⊂ R be an open interval, M a closed smooth
manifold and f : I ×M → M a smooth function such that fs ∈ Diff(M) for all s ∈ I.
Let k ≥ 1 and ω ∈ Ωk(M) a differential k-form on M .

The goal of this exercise is to prove Cartan’s formula:

d
dsf

∗
sω = f ∗

s (ιXsdω + dιXsω),

where Xs is the time-dependent vector field on M defined by

d
dsfs = Xs ◦ fs.

For s ∈ I consider the linear map

Ts : Ωk(I ×M) → Ωk−1(M),

defined by

(Tsσ)x(w1, . . . wk−1) = σ(s,x)((1, 0), (0, w1), . . . , (0, wk−1))

for x ∈ M and w1, . . . , wk−1 ∈ TxM . Here we use the decomposition

T(s,x)(I ×M) ∼= TsR ⊕ TxM ∼= R ⊕ TxM.

(a) Let f ∈ C∞(I ×M) and α ∈ Ωk−1(M). Prove that for σ = f ds ∧ π∗α we have

d
dsi

∗
sσ = (Tsd + dTs)σ,

where is : M → I ×M , is(x) = (s, x) and π : I ×M → M , π(s, x) = x.

Solution. We show that both sides of the equality vanish.

Note that for s0 ∈ I, we have i∗s0(ds) = d(s ◦ is0) = ds0 = 0. Therefore

i∗s0σ = (f ◦ is0) d(s ◦ is0) ∧ i∗s0π
∗α = 0

and thus i∗sσ = 0. It follows that

d
dsi

∗
sσ = 0.

To show the right-hand side vanishes, we note that the form ds doesn’t vanish
only if we feed it vectors spanned by (1, 0), whereas π∗α doesn’t vanish at a
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point (s, x) ∈ I × M only on vectors of the form (v, w) for w ∈ TxM , w ̸= 0
(here, v can be any vector in TsI). Therefore:

(Tsdσ)x(w1, . . . , wk)
= dσ(s,x)

(
(1, 0), (0, w1), . . . , (0, wk)

)
= (df ∧ ds ∧ π∗α− fds ∧ π∗dα)(s,x)

(
(1, 0), (0, w1), . . . , (0, wk)

)
(♢)= −(df ∧ π∗α)(s,x)

(
(0, w1), . . . , (0, wk)

)
− (f π∗dα)(s,x)

(
(0, w1), . . . , (0, wk)

)
= −(df ∧ π∗α)(s,x)(dis)x(w1, . . . , wk) − (f π∗dα)(s,x)(dis)x(w1, . . . , wk)
= −

(
d(f ◦ is) ∧ α + (f ◦ is)dα

)
x
(w1, . . . , wk)

We obtained equality (♢) by feeding (1, 0) to ds (this also introduced a minus
sign in the first term, because of the 1-form df in front of ds). In the last
equality, we used π ◦ is = id to get rid of π∗.

Before calculating dTsσ, note that:

(Tsσ)x(w1, . . . , wk−1)
= σs,x

(
(w1, . . . , wk−1)

)
= (f ds ∧ π∗α)(s,x)

(
(1, 0), (0, w1), . . . , (0, wk−1)

)
(♠)= (f π∗α)(s,x)

(
(0, w1), . . . , (0, wk−1)

)
= (f π∗α)(s,x)(dis)x(w1, . . . , wk−1)
(♣)= ((f ◦ is) α)x(w1, . . . , wk−1),

where in (♠) we fed (1, 0) to ds as above, and in (♣) we used π ◦ is = id. In the
last equality, f became f ◦ is because in the end we switched from calculating
the form at the point (s, x) ∈ I ×M to the point x ∈ M (and recall that f is a
function on I ×M). Taking the exterior derivative of Tsσ and using the above
calculation, we get:

dTsσ = d
(
(f ◦ is) α

)
= d(f ◦ is) ∧ α + (f ◦ is)dα = −Tsdσ.

In particular, both sides of the claimed equality are 0.

(b) Let f ∈ C∞(I ×M) and β ∈ Ωk(M). Prove that for σ = f π∗β, we have

d
dsi

∗
sσ = (Tsd + dTs)σ.
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Solution. Firstly, note that since π ◦ is = id, we have i∗sσ = (i∗sf)(π ◦ is)∗β =
(f ◦ is)β. Therefore, if we denote fs := f ◦ is, we get

d
dsi

∗
sσ =

(
d
dsfs

)
β.

On the one hand, β is a form on M and thus Tsσ = Ts(f π∗β) vanishes if we
feed it the vector (1, 0). Thus we have Tsσ = 0, and consequently dTsσ = 0.

On the other hand, we have

dσ = df ∧ π∗β + fπ∗dβ

and applying Ts to dσ, we get:

(Tsdσ)x(w1, . . . , wk)
=
(
df ∧ π∗β + fπ∗dβ

)
(s,x)

(
(1, 0), (0, w1), . . . , (0, wk)

)
(♡)= df(s,x)

(
(1, 0)

) (
π∗β

)
(s,x)

(
(0, w1), . . . , (0, wk)

)
+ (fπ∗dβ)(s,x)

(
(1, 0), (0, w1), . . . , (0, wk)

)
= df(s,x)

(
(1, 0)

) (
π∗β

)
(s,x)

(
(0, w1), . . . , (0, wk)

)
= df(s,x)

(
(1, 0)

)
βx(w1, . . . , wk)

(▲)= df(s,x)

(
∂

∂s

)
βx(w1, . . . , wk)

= d
dsf(s, x) βx(w1, . . . , wk)

= d
ds(f ◦ is)(x) βx(w1, . . . , wk)

= d
dsfs(x) βx(w1, . . . , wk)

=
((

d
dsfs

)
β

)
x

(w1, . . . , wk)

where, in (♡) we fed the vector (1, 0) to df because, after writing out the
definition of the wedge product and applying it to the given vectors, in all the
other terms we would be feeding (1, 0) to π∗β and in that case:

π∗β
(
(1, 0), . . .

)
= β

(
dπ(1, 0), . . .

)
= β(0, . . . ) = 0.
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The second term in equality (♡) vanishes for the same reason, i.e. since
dπ((1, 0)) = 0. In equality (▲), we rewrote the vector (1, 0) as ∂

∂s
and then used

the definition of the differential:

df(s,x)

(
∂

∂s

)
= d

dsf(s, x).

The result follows.

(c) Deduce from parts (a) and (b) that

d
dsi

∗
sσ = (Tsd + dTs)σ

for every σ ∈ Ωk(I ×M).

Solution. Every k-form σ on I × M is a linear combination of forms of the
type f ds ∧ π∗α as in (a) and forms of the type f π∗β as in (b). The formula
follows from the previous steps and linearity.

(d) Prove Cartan’s formula.

Solution. Note that now f : I ×M → M denotes a smooth function such that
fs = f ◦ is ∈ Diff(M) for all s ∈ I. We still denote by is : M → I ×M the map
given by is(x) = (s, x).

Using the previous part of the exercise, we get:(
d
dsf

∗
sω

)
x

(w1, . . . , wk)

=
(

d
ds(f ◦ is)∗ω

)
x

(w1, . . . , wk)

=
(

d
dsi

∗
sf

∗ω

)
x

(w1, . . . , wk)

=
(
(Tsd + dTs)f ∗ω

)
x
(w1, . . . , wk) (1)

For the first term in line (1), using the definition of Ts, rewriting (1, 0) as ∂
∂s
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and using the definition of a differential as in the previous part, we get:

(Tsdf ∗ω)x(w1, . . . , wk)
= (f ∗dω)(s,x)

(
(1, 0), (0, w1), . . . (0, wk)

)
= (dω)f(s,x)

(
df((1, 0)), df((0, w1)), . . . , df((0, wk))

)
= (dω)f(s,x)

(
d
dsf, df((0, w1)), . . . , df((0, wk))

)

= (dω)fs(x)

(
d
dsfs, dfs(w1), . . . , dfs(wk)

)
= (dω)fs(x)

(
Xs ◦ fs, df(w1), . . . , df(wk)

)
=
(
ιXsdω

)
fs(x)

(
df(w1), . . . , df(wk)

)
=
(
f ∗

s (ιXsdω)
)

x
(w1, . . . , wk).

In the following calculation of second term in line (1), by the notation ŵi, we
mean that the vector field wi is omitted. Using the definition of the exterior
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derivative and same steps in the above calculations, we obtain:(
dTsf

∗ω
)

x
(w1, . . . , wk)

=
k∑

i=1
(−1)iwi

(
(Tsf

∗ω)x(w1, . . . , ŵi, . . . , wk)
)

+
∑

1≤i<j≤k

(−1)i+j(Tsf
∗ω)x

(
[wi, wj], w1, . . . , ŵi, . . . , wk

)

=
k∑

i=1
(−1)iwi

(
(f ∗ω)(s,x)

(
(1, 0), (0, w1), . . . , ˆ(0, wi), . . . , (0, wk)

))
+

∑
1≤i<j≤k

(−1)i+j(f ∗ω)(s,x)
(
(1, 0), (0, [wi, wj]), (0, w1), . . . , ˆ(0, wi), . . . , (0, wk)

)

=
k∑

i=1
(−1)iwi

(
ωf(s,x)

(
df(1, 0), df(0, w1), . . . , ˆdf(0, wi), . . . , df(0, wk)

))
+

∑
1≤i<j≤k

(−1)i+jωf(s,x)
(
df(1, 0), df(0, [wi, wj]), df(0, w1), . . . , ˆdf(0, wi), . . . , df(0, wk)

)

=
k∑

i=1
(−1)iwi

ωfs(x)

(
d
dsfs, dfs(w1), . . . , ˆdfs(wi), . . . , dfs(wk)

)
+

∑
1≤i<j≤k

(−1)i+jωfs(x)

(
d
dsfs, dfs([wi, wj]), dfs(w1), . . . , ˆdfs(wi), . . . , dfs(wk)

)

=
k∑

i=1
(−1)iwi

ωfs(x)
(
Xs ◦ fs, dfs(w1), . . . , ˆdfs(wi), . . . , dfs(wk)

)
+

∑
1≤i<j≤k

(−1)i+jωfs(x)
(
Xs ◦ fs, dfs([wi, wj]), dfs(w1), . . . , ˆdfs(wi), . . . , dfs(wk)

)

=
k∑

i=1
(−1)iwi

ιXsωfs(x)
(
dfs(w1), . . . , ˆdfs(wi), . . . , dfs(wk)

)
+

∑
1≤i<j≤k

(−1)i+jιXsωfs(x)
(
dfs([wi, wj]), dfs(w1), . . . , ˆdfs(wi), . . . , dfs(wk)

)

=
k∑

i=1
(−1)iwi

(f ∗
s ιXsω)x (w1, . . . , ŵi, . . . , wk)


+

∑
1≤i<j≤k

(−1)i+j(f ∗
s ιXsω)x ([wi, wj], w1, . . . , ŵi, . . . , wk)

= (df ∗
s ιXsω)x(w1, . . . , wk).

Finally, putting everything together and using commutativity of exterior deriva-
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tive with pullbacks, we get:

d
dsf

∗
sω = (Tsd + dTs)f ∗ω = f ∗

s (ιXsdω) + df ∗
s ιXsω = f ∗

s (ιXsdω + dιXsω).

This completes the proof.

(e) Let X ∈ Γ(TM) be a smooth vector field on M and let ψt be its flow. The Lie
derivative LXω ∈ Ωk(M) is defined by

LXω = d
dt

∣∣∣∣∣
t=0
ψ∗

tω.

Show that

LXω = ιXdω + dιXω.

Solution. This follows directly from Cartan’s formula for fs = ψs, Xs = X
and s = 0.
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