The most important exercises are marked with an asterisk *.
*2.1. Let (M, ω) be a closed symplectic manifold of positive dimension. Show that ω is not exact.

Solution. Assume M is of dimension $2 n$. We saw that $\Omega:=\omega^{\wedge n}$ is a volume form on M and hence does not vanish anywhere. We equip M with the orientation induced by Ω. It follows that the integral $\int_{M} \omega^{\wedge n}$ is positive.

Assume for contradiction that ω is exact and let α be a 1 -form such that $\omega=\mathrm{d} \alpha$. It follows from Leibniz rule that

$$
\mathrm{d}\left(\alpha \wedge \omega^{\wedge(n-1)}\right)=\omega^{\wedge n}
$$

Stokes theorem now implies that

$$
\int_{M} \omega^{\wedge n}=\int_{\partial M} \alpha \wedge \omega^{\wedge(n-1)}
$$

where ∂M denotes the boundary of M. Since the left-hand side is positive, it follows that the boundary ∂M is non-empty. This contradicts the assumption that M is a closed (i.e. compact without boundary) manifold.
*2.2. Let (M, ω) be a symplectic manifold, $H, K:[0,1] \times M \rightarrow \mathbb{R}$ be two smooth Hamiltonian functions and $\chi \in \operatorname{Symp}(M, \omega)$.
(a) Show that $\psi_{t}^{H} \circ \psi_{t}^{K}$ is generated by

$$
(H \# K)_{t}=H_{t}+K_{t} \circ\left(\psi_{t}^{H}\right)^{-1} .
$$

Solution. We compute

$$
\begin{aligned}
\mathrm{d}(H \# K)_{t} & =\mathrm{d} H_{t}+\mathrm{d} K_{t} \circ \mathrm{~d}\left(\psi_{t}^{H}\right)^{-1} \\
& =-\omega\left(X_{t}^{H},-\right)-\omega\left(X_{t}^{K} \circ\left(\psi_{t}^{H}\right)^{-1}, \mathrm{~d}\left(\psi_{t}^{H}\right)^{-1}(-)\right) \\
& =-\omega\left(X_{t}^{H},-\right)-\omega\left(\mathrm{d} \psi_{t}^{H}\left(X_{t}^{K} \circ\left(\psi_{t}^{H}\right)^{-1}\right),-\right) \\
& =-\omega\left(X_{t}^{H}+\left(\psi_{t}^{H}\right)_{*}\left(X_{t}^{K}\right),-\right),
\end{aligned}
$$

hence $X_{t}^{H \# K}=X_{t}^{H}+\left(\psi_{t}^{H}\right)_{*}\left(X_{t}^{K}\right)$. In the third inequality we used that ψ_{t}^{H} is symplectic. Moreover,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\psi_{t}^{H} \circ \psi_{t}^{K}\right) & =\left(\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}^{H}\right) \circ \psi_{t}^{K}+\mathrm{d} \psi_{t}^{H}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{t}^{K}\right) \\
& =X_{t}^{H} \circ \psi_{t}^{H} \circ \psi_{t}^{K}+\mathrm{d} \psi_{t}^{H}\left(X_{t}^{K} \circ \psi_{t}^{K}\right) \\
& =X_{t}^{H \# K} \circ\left(\psi_{t}^{H} \circ \psi_{t}^{K}\right)
\end{aligned}
$$

which proves the claim.
(b) Show that $\left(\psi_{t}^{H}\right)^{-1}$ is generated by

$$
\bar{H}_{t}=-H_{t} \circ \psi_{t}^{H} .
$$

Solution. We proceed as before:

$$
\begin{aligned}
\mathrm{d} \bar{H}_{t} & =-\mathrm{d} H_{t} \circ \mathrm{~d} \psi_{t}^{H} \\
& =\omega\left(X_{t}^{H} \circ \psi_{t}^{H}, \mathrm{~d} \psi_{t}^{H}(-)\right) \\
& =\omega\left(\mathrm{d}\left(\psi_{t}^{H}\right)^{-1}\left(X_{t}^{H} \circ \psi_{t}^{H}\right),-\right) \\
& =\omega\left(\left(\psi_{t}^{H}\right)^{*}\left(X_{t}^{H}\right),-\right),
\end{aligned}
$$

hence $X_{t}^{\bar{H}}=-\left(\psi_{t}\right)^{*}\left(X_{t}^{H}\right)$. On the other hand

$$
\begin{aligned}
0 & =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\psi_{t}^{H} \circ\left(\psi_{t}^{H}\right)^{-1}\right) \\
& =\left(\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}^{H}\right) \circ\left(\psi_{t}^{H}\right)^{-1}+\mathrm{d} \psi_{t}^{H}\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\psi_{t}^{H}\right)^{-1}\right) \\
& =X_{t}^{H}+\mathrm{d} \psi_{t}^{H}\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\psi_{t}^{H}\right)^{-1}\right),
\end{aligned}
$$

hence

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\psi_{t}^{H}\right)^{-1}=-\mathrm{d}\left(\psi_{t}^{H}\right)^{-1}\left(X_{t}^{H}\right)=X_{t}^{\bar{H}} \circ\left(\psi_{t}^{H}\right)^{-1}
$$

(c) Show that $\chi^{-1} \psi_{t}^{H} \chi$ is generated by $H_{t} \circ \chi$.

Solution. We compute

$$
\begin{aligned}
\mathrm{d}\left(H_{t} \circ \chi\right) & =\mathrm{d} H_{t} \circ \mathrm{~d} \chi \\
& =-\omega\left(X_{t}^{H} \circ \chi, \mathrm{~d} \chi(-)\right) \\
& =-\omega\left(\mathrm{d} \chi^{-1}\left(X_{t}^{H} \circ \chi\right),-\right),
\end{aligned}
$$

hence $X_{t}^{H \circ \chi}=\chi^{*}\left(X_{t}^{H}\right)$. Therefore

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\chi^{-1} \psi_{t}^{H} \chi\right) & =\mathrm{d} \chi^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{t}^{H} \circ \chi\right) \\
& =\chi^{*}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{t}^{H}\right)=\chi^{*}\left(X_{t}^{H} \circ \psi_{t}^{H}\right)=X_{t}^{H \circ \chi} \circ\left(\chi^{-1} \psi_{t}^{H} \chi\right)
\end{aligned}
$$

(d) Deduce from parts (a), (b) and (c) that $\operatorname{Ham}(M, \omega)$ is a normal subgroup of $\operatorname{Symp}(M, \omega)$.

Solution. (a) and (b) show that $\operatorname{Ham}(M, \omega) \subset \operatorname{Symp}(M)$ is closed under composition and inverse. It is therefore a subgroup. (c) shows that $\operatorname{Ham}(M, \omega)$ is closed under conjugation by an element in $\operatorname{Symp}(M, \omega) . \operatorname{Ham}(M, \omega)$ is therefore normal in $\operatorname{Symp}(M, \omega)$.
2.3. Find an example of a symplectic manifold (M, ω) (without boundary) and a smooth function $H:[0,+\infty) \times M \rightarrow \mathbb{R}$ such that the domain \mathcal{D}_{H} of the Hamiltonian flow ψ^{H} is not equal to $[0,+\infty) \times M$. This flow is by definition the flow of the time-dependent Hamiltonian vector field $X^{H_{t}}$, which is defined by $-\mathrm{d} H^{t}=\omega\left(X^{H_{t}}, \cdot\right)$. Find an example in which ψ_{t}^{H} is not surjective for some t.

Solution. Consider

$$
M:=(0,+\infty) \times \mathbb{R}, \quad \omega:=\omega_{0}, \quad H:[0,+\infty) \times M \rightarrow \mathbb{R}, \quad H(t, q, p)=-p
$$

We show that the domain of the Hamiltonian flow φ_{H} is

$$
\mathcal{D}_{H}=\{(t, q, p) \mid t<q\} .
$$

Indeed, Hamilton's equations for H are

$$
\dot{q}=\frac{\partial H}{\partial p}=-1, \quad \dot{p}=-\frac{\partial H}{\partial q}=0 .
$$

The unique maximal solution of these equations starting at $(q, p)(0)=\left(q_{0}, p_{0}\right)$ is

$$
(q, p):\left[0, q_{0}\right) \rightarrow M, \quad(q, p)(t)=\left(q_{0}-t, p_{0}\right)
$$

Since M is given by $M=(0, \infty) \times \mathbb{R}$ we cannot extend this solution beyond $t=q_{0}$.
Consider now

$$
M:=(0,+\infty) \times \mathbb{R}, \quad \omega:=\omega_{0}, \quad H:[0,+\infty) \times M \rightarrow \mathbb{R}, \quad H(t, q, p)=p
$$

Then we have

$$
\psi_{t}^{H}: \mathcal{M} \rightarrow M, \quad \psi_{t}^{H}\left(q_{0}, p_{0}\right)=\left(q_{0}+t, p_{0}\right) .
$$

The map φ_{t}^{H} is not surjective for $t>0$.
*2.4. This problem is intended for students who are not yet familiar with the Lie derivative and Cartan's formula. Let $I \subset \mathbb{R}$ be an open interval, M a closed smooth manifold and $f: I \times M \rightarrow M$ a smooth function such that $f_{s} \in \operatorname{Diff}(M)$ for all $s \in I$. Let $k \geq 1$ and $\omega \in \Omega^{k}(M)$ a differential k-form on M.
The goal of this exercise is to prove Cartan's formula:

$$
\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}^{*} \omega=f_{s}^{*}\left(\iota_{X_{s}} \mathrm{~d} \omega+d \iota_{X_{s}} \omega\right)
$$

where X_{s} is the time-dependent vector field on M defined by

$$
\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}=X_{s} \circ f_{s} .
$$

For $s \in I$ consider the linear map

$$
T_{s}: \Omega^{k}(I \times M) \rightarrow \Omega^{k-1}(M),
$$

defined by

$$
\left(T_{s} \sigma\right)_{x}\left(w_{1}, \ldots w_{k-1}\right)=\sigma_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k-1}\right)\right)
$$

for $x \in M$ and $w_{1}, \ldots, w_{k-1} \in T_{x} M$. Here we use the decomposition

$$
T_{(s, x)}(I \times M) \cong T_{s} \mathbb{R} \oplus T_{x} M \cong \mathbb{R} \oplus T_{x} M .
$$

(a) Let $f \in C^{\infty}(I \times M)$ and $\alpha \in \Omega^{k-1}(M)$. Prove that for $\sigma=f \mathrm{~d} s \wedge \pi^{*} \alpha$ we have

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) \sigma,
$$

where $i_{s}: M \rightarrow I \times M, i_{s}(x)=(s, x)$ and $\pi: I \times M \rightarrow M, \pi(s, x)=x$.
Solution. We show that both sides of the equality vanish.
Note that for $s_{0} \in I$, we have $i_{s_{0}}^{*}(\mathrm{~d} s)=\mathrm{d}\left(s \circ i_{s_{0}}\right)=\mathrm{d} s_{0}=0$. Therefore

$$
i_{s_{0}}^{*} \sigma=\left(f \circ i_{s_{0}}\right) \mathrm{d}\left(s \circ i_{s_{0}}\right) \wedge i_{s_{0}}^{*} \pi^{*} \alpha=0
$$

and thus $i_{s}^{*} \sigma=0$. It follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=0
$$

To show the right-hand side vanishes, we note that the form $\mathrm{d} s$ doesn't vanish only if we feed it vectors spanned by $(1,0)$, whereas $\pi^{*} \alpha$ doesn't vanish at a
point $(s, x) \in I \times M$ only on vectors of the form (v, w) for $w \in T_{x} M, w \neq 0$ (here, v can be any vector in $T_{s} I$). Therefore:

$$
\begin{aligned}
&\left(T_{s} \mathrm{~d} \sigma\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& \quad=\mathrm{d} \sigma_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
& \quad=\left(\mathrm{d} f \wedge \mathrm{~d} s \wedge \pi^{*} \alpha-f \mathrm{~d} s \wedge \pi^{*} \mathrm{~d} \alpha\right)_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
& \quad \stackrel{(\diamond)}{=}-\left(\mathrm{d} f \wedge \pi^{*} \alpha\right)_{(s, x)}\left(\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right)-\left(f \pi^{*} \mathrm{~d} \alpha\right)_{(s, x)}\left(\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
& \quad=-\left(\mathrm{d} f \wedge \pi^{*} \alpha\right)_{(s, x)}\left(\mathrm{d} i_{s}\right)_{x}\left(w_{1}, \ldots, w_{k}\right)-\left(f \pi^{*} \mathrm{~d} \alpha\right)_{(s, x)}\left(\mathrm{d} i_{s}\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
&=-\left(\mathrm{d}\left(f \circ i_{s}\right) \wedge \alpha+\left(f \circ i_{s}\right) \mathrm{d} \alpha\right)_{x}\left(w_{1}, \ldots, w_{k}\right)
\end{aligned}
$$

We obtained equality (\diamond) by feeding $(1,0)$ to $\mathrm{d} s$ (this also introduced a minus sign in the first term, because of the 1 -form $\mathrm{d} f$ in front of $\mathrm{d} s$). In the last equality, we used $\pi \circ i_{s}=$ id to get rid of π^{*}.

Before calculating $\mathrm{d} T_{s} \sigma$, note that:

$$
\begin{aligned}
\left(T_{s} \sigma\right)_{x} & \left(w_{1}, \ldots, w_{k-1}\right) \\
& =\sigma_{s, x}\left(\left(w_{1}, \ldots, w_{k-1}\right)\right) \\
& =\left(f \mathrm{~d} s \wedge \pi^{*} \alpha\right)_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k-1}\right)\right) \\
& \stackrel{(\stackrel{\bullet}{*})}{=}\left(f \pi^{*} \alpha\right)_{(s, x)}\left(\left(0, w_{1}\right), \ldots,\left(0, w_{k-1}\right)\right) \\
& =\left(f \pi^{*} \alpha\right)_{(s, x)}\left(\mathrm{d} i_{s}\right)_{x}\left(w_{1}, \ldots, w_{k-1}\right)
\end{aligned}
$$

$$
\stackrel{\left(\mathfrak{*}^{*}\right)}{=}\left(\left(f \circ i_{s}\right) \alpha\right)_{x}\left(w_{1}, \ldots, w_{k-1}\right),
$$

where in $(\boldsymbol{\uparrow})$ we fed $(1,0)$ to $\mathrm{d} s$ as above, and in ($\boldsymbol{\infty}$) we used $\pi \circ i_{s}=\mathrm{id}$. In the last equality, f became $f \circ i_{s}$ because in the end we switched from calculating the form at the point $(s, x) \in I \times M$ to the point $x \in M$ (and recall that f is a function on $I \times M)$. Taking the exterior derivative of $T_{s} \sigma$ and using the above calculation, we get:

$$
\mathrm{d} T_{s} \sigma=\mathrm{d}\left(\left(f \circ i_{s}\right) \alpha\right)=\mathrm{d}\left(f \circ i_{s}\right) \wedge \alpha+\left(f \circ i_{s}\right) \mathrm{d} \alpha=-T_{s} \mathrm{~d} \sigma .
$$

In particular, both sides of the claimed equality are 0 .
(b) Let $f \in C^{\infty}(I \times M)$ and $\beta \in \Omega^{k}(M)$. Prove that for $\sigma=f \pi^{*} \beta$, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) \sigma
$$

Solution. Firstly, note that since $\pi \circ i_{s}=\mathrm{id}$, we have $i_{s}^{*} \sigma=\left(i_{s}^{*} f\right)\left(\pi \circ i_{s}\right)^{*} \beta=$ $\left(f \circ i_{s}\right) \beta$. Therefore, if we denote $f_{s}:=f \circ i_{s}$, we get

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}\right) \beta
$$

On the one hand, β is a form on M and thus $T_{s} \sigma=T_{s}\left(f \pi^{*} \beta\right)$ vanishes if we feed it the vector $(1,0)$. Thus we have $T_{s} \sigma=0$, and consequently $\mathrm{d} T_{s} \sigma=0$.

On the other hand, we have

$$
\mathrm{d} \sigma=\mathrm{d} f \wedge \pi^{*} \beta+f \pi^{*} \mathrm{~d} \beta
$$

and applying T_{s} to $\mathrm{d} \sigma$, we get:

$$
\begin{aligned}
&\left(T_{s} \mathrm{~d} \sigma\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
&=\left(\mathrm{d} f \wedge \pi^{*} \beta+f \pi^{*} \mathrm{~d} \beta\right)_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
& \stackrel{(\mathcal{O})}{=} \mathrm{d} f_{(s, x)}((1,0))\left(\pi^{*} \beta\right)_{(s, x)}\left(\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
& \quad+\left(f \pi^{*} \mathrm{~d} \beta\right)_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
&= \mathrm{d} f_{(s, x)}((1,0))\left(\pi^{*} \beta\right)_{(s, x)}\left(\left(0, w_{1}\right), \ldots,\left(0, w_{k}\right)\right) \\
&= \mathrm{d} f_{(s, x)}((1,0)) \beta_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& \stackrel{(\boldsymbol{\Delta})}{=} \mathrm{d} f_{(s, x)}\left(\frac{\partial}{\partial s}\right) \beta_{x}\left(w_{1}, \ldots, w_{k}\right) \\
&= \frac{\mathrm{d}}{\mathrm{~d} s} f(s, x) \beta_{x}\left(w_{1}, \ldots, w_{k}\right) \\
&= \frac{\mathrm{d}}{\mathrm{~d} s}\left(f \circ i_{s}\right)(x) \beta_{x}\left(w_{1}, \ldots, w_{k}\right) \\
&= \frac{\mathrm{d}}{\mathrm{~d} s} f_{s}(x) \beta_{x}\left(w_{1}, \ldots, w_{k}\right) \\
&=\left(\left(\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}\right) \beta\right)_{x}\left(w_{1}, \ldots, w_{k}\right)
\end{aligned}
$$

where, in (Ω) we fed the vector $(1,0)$ to $\mathrm{d} f$ because, after writing out the definition of the wedge product and applying it to the given vectors, in all the other terms we would be feeding $(1,0)$ to $\pi^{*} \beta$ and in that case:

$$
\pi^{*} \beta((1,0), \ldots)=\beta(\mathrm{d} \pi(1,0), \ldots)=\beta(0, \ldots)=0 .
$$

The second term in equality (Ω) vanishes for the same reason, i.e. since $\mathrm{d} \pi((1,0))=0$. In equality $(\mathbf{\Delta})$, we rewrote the vector $(1,0)$ as $\frac{\partial}{\partial s}$ and then used the definition of the differential:

$$
\mathrm{d} f_{(s, x)}\left(\frac{\partial}{\partial s}\right)=\frac{\mathrm{d}}{\mathrm{~d} s} f(s, x)
$$

The result follows.
(c) Deduce from parts (a) and (b) that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} \sigma=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) \sigma
$$

for every $\sigma \in \Omega^{k}(I \times M)$.
Solution. Every k-form σ on $I \times M$ is a linear combination of forms of the type $f \mathrm{~d} s \wedge \pi^{*} \alpha$ as in (a) and forms of the type $f \pi^{*} \beta$ as in (b). The formula follows from the previous steps and linearity.
(d) Prove Cartan's formula.

Solution. Note that now $f: I \times M \rightarrow M$ denotes a smooth function such that $f_{s}=f \circ i_{s} \in \operatorname{Diff}(M)$ for all $s \in I$. We still denote by $i_{s}: M \rightarrow I \times M$ the map given by $i_{s}(x)=(s, x)$.

Using the previous part of the exercise, we get:

$$
\begin{align*}
\left(\frac{\mathrm{d}}{\mathrm{~d} s}\right. & \left.f_{s}^{*} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& =\left(\frac{\mathrm{d}}{\mathrm{~d} s}\left(f \circ i_{s}\right)^{*} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& =\left(\frac{\mathrm{d}}{\mathrm{~d} s} i_{s}^{*} f^{*} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& =\left(\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) f^{*} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \tag{1}
\end{align*}
$$

For the first term in line (1), using the definition of T_{s}, rewriting $(1,0)$ as $\frac{\partial}{\partial s}$

$$
7 / 10
$$

and using the definition of a differential as in the previous part, we get:

$$
\begin{aligned}
\left(T_{s} \mathrm{~d}\right. & \left.f^{*} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& =\left(f^{*} \mathrm{~d} \omega\right)_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots\left(0, w_{k}\right)\right) \\
& =(\mathrm{d} \omega)_{f(s, x)}\left(\mathrm{d} f((1,0)), \mathrm{d} f\left(\left(0, w_{1}\right)\right), \ldots, \mathrm{d} f\left(\left(0, w_{k}\right)\right)\right) \\
& =(\mathrm{d} \omega)_{f(s, x)}\left(\frac{\mathrm{d}}{\mathrm{~d} s} f, \mathrm{~d} f\left(\left(0, w_{1}\right)\right), \ldots, \mathrm{d} f\left(\left(0, w_{k}\right)\right)\right) \\
& =(\mathrm{d} \omega)_{f_{s}(x)}\left(\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}, \mathrm{~d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right) \\
& =(\mathrm{d} \omega)_{f_{s}(x)}\left(X_{s} \circ f_{s}, \mathrm{~d} f\left(w_{1}\right), \ldots, \mathrm{d} f\left(w_{k}\right)\right) \\
& =\left(\iota_{X_{s}} \mathrm{~d} \omega\right)_{f_{s}(x)}\left(\mathrm{d} f\left(w_{1}\right), \ldots, \mathrm{d} f\left(w_{k}\right)\right) \\
& =\left(f_{s}^{*}\left(\iota_{X_{s}} \mathrm{~d} \omega\right)\right)_{x}\left(w_{1}, \ldots, w_{k}\right) .
\end{aligned}
$$

In the following calculation of second term in line (1), by the notation \hat{w}_{i}, we mean that the vector field w_{i} is omitted. Using the definition of the exterior
derivative and same steps in the above calculations, we obtain:

$$
\begin{aligned}
& \left(\mathrm{d} T_{s} f^{*} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \\
& =\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\left(T_{s} f^{*} \omega\right)_{x}\left(w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{k}\right)\right) \\
& +\sum_{1 \leq i<j \leq k}(-1)^{i+j}\left(T_{s} f^{*} \omega\right)_{x}\left(\left[w_{i}, w_{j}\right], w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{k}\right) \\
& =\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\left(f^{*} \omega\right)_{(s, x)}\left((1,0),\left(0, w_{1}\right), \ldots,\left(0, \hat{w_{i}}\right), \ldots,\left(0, w_{k}\right)\right)\right) \\
& +\sum_{1 \leq i<j \leq k}(-1)^{i+j}\left(f^{*} \omega\right)_{(s, x)}\left((1,0),\left(0,\left[w_{i}, w_{j}\right]\right),\left(0, w_{1}\right), \ldots,\left(0, \hat{w}_{i}\right), \ldots,\left(0, w_{k}\right)\right) \\
& =\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\omega_{f(s, x)}\left(\mathrm{d} f(1,0), \mathrm{d} f\left(0, w_{1}\right), \ldots, \mathrm{d} f\left(\hat{0}, w_{i}\right), \ldots, \mathrm{d} f\left(0, w_{k}\right)\right)\right) \\
& +\sum_{1 \leq i<j \leq k}(-1)^{i+j} \omega_{f(s, x)}\left(\mathrm{d} f(1,0), \mathrm{d} f\left(0,\left[w_{i}, w_{j}\right]\right), \mathrm{d} f\left(0, w_{1}\right), \ldots, \mathrm{d} f\left(\hat{0}, w_{i}\right), \ldots, \mathrm{d} f\left(0, w_{k}\right)\right) \\
& \left.=\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\omega_{f_{s}(x)}\left(\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}, \mathrm{~d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} f_{s} \hat{(} w_{i}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right)\right) \\
& +\sum_{1 \leq i<j \leq k}(-1)^{i+j} \omega_{f_{s}(x)}\left(\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}, \mathrm{~d} f_{s}\left(\left[w_{i}, w_{j}\right]\right), \mathrm{d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} f_{s}\left(w_{i}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right) \\
& \left.=\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\omega_{f_{s}(x)}\left(X_{s} \circ f_{s}, \mathrm{~d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} f_{s} \hat{(} w_{i}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right)\right) \\
& \left.+\sum_{1 \leq i<j \leq k}(-1)^{i+j} \omega_{f_{s}(x)}\left(X_{s} \circ f_{s}, \mathrm{~d} f_{s}\left(\left[w_{i}, w_{j}\right]\right), \mathrm{d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} \hat{f_{s}} \hat{(} w_{i}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right) \\
& \left.=\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\iota_{X_{s}} \omega_{f_{s}(x)}\left(\mathrm{d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} f_{s} \hat{(} w_{i}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right)\right) \\
& \left.+\sum_{1 \leq i<j \leq k}(-1)^{i+j} \iota_{X_{s}} \omega_{f_{s}(x)}\left(\mathrm{d} f_{s}\left(\left[w_{i}, w_{j}\right]\right), \mathrm{d} f_{s}\left(w_{1}\right), \ldots, \mathrm{d} \hat{f_{s}} \hat{\left(w_{i}\right.}\right), \ldots, \mathrm{d} f_{s}\left(w_{k}\right)\right) \\
& =\sum_{i=1}^{k}(-1)^{i} w_{i}\left(\left(f_{s}^{*} \iota_{X_{s}} \omega\right)_{x}\left(w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{k}\right)\right) \\
& +\sum_{1 \leq i<j \leq k}(-1)^{i+j}\left(f_{s}^{*} \iota_{X_{s}} \omega\right)_{x}\left(\left[w_{i}, w_{j}\right], w_{1}, \ldots, \hat{w}_{i}, \ldots, w_{k}\right) \\
& =\left(\mathrm{d} f_{s}^{*} \iota_{X_{s}} \omega\right)_{x}\left(w_{1}, \ldots, w_{k}\right) \text {. }
\end{aligned}
$$

Finally, putting everything together and using commutativity of exterior deriva-
tive with pullbacks, we get:

$$
\frac{\mathrm{d}}{\mathrm{~d} s} f_{s}^{*} \omega=\left(T_{s} \mathrm{~d}+\mathrm{d} T_{s}\right) f^{*} \omega=f_{s}^{*}\left(\iota_{X_{s}} \mathrm{~d} \omega\right)+\mathrm{d} f_{s}^{*} \iota_{X_{s}} \omega=f_{s}^{*}\left(\iota_{X_{s}} \mathrm{~d} \omega+\mathrm{d} \iota_{X_{s}} \omega\right) .
$$

This completes the proof.
(e) Let $X \in \Gamma(T M)$ be a smooth vector field on M and let ψ_{t} be its flow. The Lie derivative $\mathcal{L}_{X} \omega \in \Omega^{k}(M)$ is defined by

$$
\mathcal{L}_{X} \omega=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \psi_{t}^{*} \omega .
$$

Show that

$$
\mathcal{L}_{X} \omega=\iota_{X} \mathrm{~d} \omega+\mathrm{d} \iota_{X} \omega .
$$

Solution. This follows directly from Cartan's formula for $f_{s}=\psi_{s}, X_{s}=X$ and $s=0$.

