
d-math
Dr. Patricia Dietzsch

Symplectic Geometry
Sheet 3 Solutions

ETH Zürich
HS 2023

The most important exercises are marked with an asterisk *.

*3.1.

(a) Find a symplectic manifold and a symplectomorphism on M that is not isotopic
to the identity. (In particular, such a symplectomorphism is not a Hamiltonian
diffeomorphism.)

Solution. Let T2 = R2/Z2 be the 2-torus. The standard symplectic form on
T2 is the unique 2-form ω ∈ Ω2(T2) satisfying π∗ω = ωstd for the projection
π : R2 → T2. Let

φ : T2 → T2, φ(x+ Z, y + Z) = (−x+ Z,−y + Z),

where x, y ∈ R.

First note that the map φ is a symplectomorphism:

π∗φ∗ω = (φ ◦ π)∗ω

= ω(d(φ ◦ π)(−), d(φ ◦ π)(−))
= ω(−dπ(−),−dπ(−))
= ω(dπ(−), dπ(−))
= π∗ω = ωstd

hence φ∗ω = ω.

We claim that the map φ is not isotopic to the identity. Indeed, if it were, then
the loops

x+Z 7→ id(x+Z, 0) = (x+Z, 0) and x+Z 7→ φ(x+Z, 0) = (−x+Z, 0)

would be homotopic. Here we think of x+ Z as as element of the circle R/Z.
The second loop in exactly the reverse of the first loop and these loops are not
homotopic in T2(see Algebraic Topology).

(b) Find a symplectic manifold and a symplectomorphism on M that is isotopic to
the identity through symplectomorphisms, but is not a Hamiltonian diffeomor-
phism.

Hint: Consider translations on a cylinder.

Solution. Let Σ = T ∗S1 = S1 ×R be a cylinder with coordinates (q, p) and let
ω = dp ∧ dq = dλ, where λ = pdq. We define

φ : [0, 1] × Σ → Σ, φt(q, p) = (q, p+ t).
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We claim that φt is a symplectic isotopy. Indeed,

(φ∗
tλ)(q,p) (ξ, η) = λ(q,p+t)(ξ, η) = (p+ t)ξ,

hence φ∗
tλ(q,p) = (p+ t)dq. Thus

φ∗
tω = dφ∗λ = d(p+ t) ∧ dq = dp ∧ dq = ω.

We now have to show that φ = φ1 is not a Hamiltonian diffeomorphism. We do
so by showing that all Hamiltonian diffeomorphisms have to satisfy equation
(1) below, whereas φ does not.

Let ψH
t be a Hamiltonian diffeomorphism generated by a Hamiltonian H ∈

C∞([0, 1] × Σ). Let j : S1 → S1 × R, j(z) = (z, 0). Then

d
dt

∫
S1
j∗
(
ψH

t

)∗
λ =

∫
S1
j∗ d

dt
(
ψH

t

)∗
λ

=
∫

S1
j∗
(
ψH

t

)∗ (
−dHt + dιXH

t
λ
)

=
∫

S1
dj∗

(
ψH

t

)∗ (
−Ht + ιXH

t
λ
)

= 0.

It follows that∫
S1
j∗
(
ψH

1

)∗
λ =

∫
S1
j∗
(
ψH

0

)∗
λ =

∫
S1
j∗λ = 0. (1)

However,∫
S1
j∗φ∗λ =

∫
S1

dq = 1 ̸= 0.

This completes the proof.

(c) Does there exist a non-Hamiltonian symplectomorphism on S2 equipped with
the standard symplectic form, that is isotopic to the identity through symplec-
tomorphisms?

Solution. No. Suppose φt is a symplectic isotopy. Then dιXtω = 0, as we’ve
seen in the lecture. Since H1(S2;R) = 0, it follows that all closed 1-forms (in
particular ιXtω) are also exact. As shown in the lecture, there exists a smooth
function Ht : S2 → R, smoothly depending on t, such that ιXtω = dHt. This
shows that φt is a Hamiltonian isotopy.

3.2. This exercise covers two useful facts from differential geometry and algebraic
topology.
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(a) Let ωt ∈ Ωk(M) be a differential k-form and φt a smooth isotopy of diffeomor-
phisms. Prove that

d
dtφ

∗
tωt = φ∗

t

(
LXtωt + d

dtωt

)
,

where Xt is the vector field defined by

d
dtφt = Xt ◦ φt.

Solution. If f(x, y) is a real function of two variables, then

d
dtf(t, t) = d

dxf(x, t)
∣∣∣
x=t

+ d
dyf(t, y)

∣∣∣
y=t
.

Therefore, we have

d
dtφ

∗
tωt = d

dxφ
∗
xωt

∣∣∣
x=t

+ d
dyφ

∗
tωy

∣∣∣
y=t

= φ∗
xLXxωt

∣∣∣
x=t

+ φ∗
t

(
d
dyωy

∣∣∣
y=t

)

= φ∗
t

(
LXtωt + d

dtωt

)
.

(b) Let d ≥ 1 and α ∈ Ωd(Rn) be a closed d-form, i.e. dα = 0. Show that α is exact,
i.e. there exists λ ∈ Ωd−1(Rn) such that α = dλ. In other words, Hd(Rn;R) = 0.

Hint: Use the retraction ft(x) = tx and the strategy we used in the lecture to
show that “strongly isotopic” implies “isotopic”.

Solution. For t ∈ [0, 1] consider the map ft(x) = tx on Rn. This is a
diffeomorphism for t ̸= 0. We have f0 ≡ 0 and f1 = id. For t ∈ (0, 1], let Xt be
the smooth vector field associated to ft, i.e.

d
dtft = Xt ◦ ft.

Then, as we show below, for all 0 < t0 < t1 < 1, we have

f ∗
t1α− f ∗

t0α = dQα +Qdα

where

Q : Ωd−1(Rn) → Ωd(Rn), Qα =
∫ t1

t0
f ∗

t (ιXtα)dt.
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Indeed,

dQα +Qdα = d
∫ t1

t0
f ∗

t (ιXtα)dt+
∫ t1

t0
f ∗

t (ιXt(dα))dt

=
∫ t1

t0
f ∗

t (dιXtα + ιXt(dα)) dt

=
∫ t1

t0
f ∗

t (LXtα) dt

(⋆)=
∫ t1

t0

d
dtf

∗
t α dt

= f ∗
t1α− f ∗

t0α.

In equality (⋆), we used Cartan’s formula from Exercise 2.4; in the last equality,
we used the Fundamental Theorem of Analysis. Using closedness of α and
taking limits t0 → 0, t1 → 1, we conclude that

α = f ∗
1α− f ∗

0α = d
∫ 1

0
f ∗

t (ιXtα)dt.

is exact.

*3.3. In this exercise, we prove Moser stability for volume forms. Let M be a closed
smooth manifold of dimension m.

(a) Suppose µt ∈ Ωm(M), t ∈ [0, 1], is a smooth family of volume forms on M such
that

(i) µt is a volume form for each t,

(ii) d
dt
µt is exact for all t ∈ [0, 1].

Prove that there exists a smooth isotopy φt : M → M of diffeomorphisms on
M satisfying φ∗

tµt = µ0 for all t ∈ [0, 1].

Solution. Let βt ∈ Ωn−1(M) be an (n− 1)-form depending smoothly on t and
satisfying

µ̇t = −dβt.

The fact that βt can chosen to depend smoothly on t is again non-trivial,
similarly to what we’ve seen in Moser stability of symplectic forms.

The assumption that all µt are volume forms allows us to define a vector field
Xt by

ιXtµt = βt.
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Let φt be its flow (which exists because M is closed). Then

d
dtφ

∗
tµt = φ∗

t (LXtµt + µ̇t)

= φ∗
t (ιXtdµt + dιXtµt − dβt)

= 0.

Hence φ∗
tµt = µ0 for all t.

(b) Let µ0, µ1 ∈ Ωm(M) be two volume forms on M such that∫
M
µ0 =

∫
M
µ1.

Prove that there exists a diffeomorphism φ : M → M , isotopic to id, satisfying
φ∗µ1 = µ0.

Solution. Consider µt = (1 − t)µ0 + tµ1. Then µt is a volume form for all t
and [µt] is constant. Therefore part (a) applies.

3.4. Let (Σ, σ) and (Σ′, σ′) be two closed connected symplectic surfaces. Suppose Σ
has total area 1 and Σ′ has total area c. Let a ∈ R\0. Endow the product manifold
Σ × Σ′ with the symplectic form ωa = aσ ⊕ a−1σ′.

(a) Show that (M,ωa) all have the same volume.

Solution. By definition, ωa = aσ ⊕ a−1σ′ = π∗σ + π′∗σ′, where π : Σ ⊕ Σ′ → Σ
and π′ : Σ ⊕ Σ′ → Σ′ are the projections. Hence

ω∧2
a =

(
π∗(aσ) + π′∗(a−1σ′)

)∧2

= π∗(a2σ∧2) + 2π∗(aσ) ∧ π′∗(a−1σ′) + π∗(a−2σ′∧2)
= 2π∗σ ∧ π′∗σ′ = ω∧2

1

is independent of a. In particular,

vol(M,ωa) = 1
2!

∫
M
ω∧2

a = 1
2!

∫
M
ω∧2

1 = vol(M,ω1)

(b) Show that there exist a such that (M,ω1) and (M,ωa) are not symplectomorphic.

Hint: The Degree Theorem from Algebraic Topology tells us the following. Let
X and Y be compact oriented manifolds of same dimension and let f : X → Y
be a smooth map. Then every top degree form Ω satisfies∫

X
f ∗Ω = deg f

∫
Y

Ω
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Since in Exercise 3.4 (a) we saw that all (M,ωa) have the same volume, try
instead using the Degree Theorem to compare volumes of the projections on Σ
of ωa calculated directly and as φ∗ω1 for φ a symplectomorphism.

Solution. Suppose (M,ω1) and (M,ωa) are symplectomorphic. Choose a
diffeomorphism φ : M → M such that ωa = φ∗ω1. Fix z′

0 ∈ Σ′ and consider
j : Σ → M, z 7→ (z, z′

0).

Note that if ωa = φ∗ω1, then also j∗ωa = j∗φ∗ω1 and in particular it must hold
that: ∫

Σ
j∗ωa =

∫
Σ
j∗φ∗ω1. (2)

We now calculate the integrals. For the first one, we first note

j∗ωa = j∗
(
π∗(aσ) + π′∗(a−1σ′)

)
= (π ◦ j)∗(aσ) + (π′ ◦ j)∗(a−1σ)
= id∗(aσ) + (cz′

0
)∗(a−1σ)

= aσ

and hence∫
Σ
j∗ωa =

∫
Σ
aσ = a

∫
Σ
σ = a.

On the other hand, using the Degree Theorem, for the second integral we get:∫
Σ
j∗φ∗ω1 =

∫
Σ
j∗φ∗(σ ⊕ σ′)

=
∫

Σ
(π ◦ φ ◦ j)∗σ + (π′ ◦ φ ◦ j)∗σ′

= deg(π ◦ φ ◦ j)
∫

X
σ + deg(π′ ◦ φ ◦ j)

∫
X′
σ′

= deg(π ◦ φ ◦ j) + deg(π′ ◦ φ ◦ j)c ∈ Z + cZ.

Substituting these back into equation (2), we see that a ∈ Z+ cZ. In particular,
for a /∈ Z + cZ the two symplectic manifolds (M,ω1) and (M,ωa) are not
symplectomorphic.
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