The most important exercises are marked with an asterisk *.

*3.1.

(a) Find a symplectic manifold and a symplectomorphism on *M* that **is not** isotopic to the identity. (In particular, such a symplectomorphism is not a Hamiltonian diffeomorphism.)

Solution. Let $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the 2-torus. The standard symplectic form on \mathbb{T}^2 is the unique 2-form $\omega \in \Omega^2(\mathbb{T}^2)$ satisfying $\pi^*\omega = \omega_{\text{std}}$ for the projection $\pi \colon \mathbb{R}^2 \to \mathbb{T}^2$. Let

$$\varphi \colon \mathbb{T}^2 \to \mathbb{T}^2, \qquad \varphi(x + \mathbb{Z}, y + \mathbb{Z}) = (-x + \mathbb{Z}, -y + \mathbb{Z}),$$

where $x, y \in \mathbb{R}$.

First note that the map φ is a symplectomorphism:

$$\pi^* \varphi^* \omega = (\varphi \circ \pi)^* \omega$$

= $\omega(d(\varphi \circ \pi)(-), d(\varphi \circ \pi)(-))$
= $\omega(-d\pi(-), -d\pi(-))$
= $\omega(d\pi(-), d\pi(-))$
= $\pi^* \omega = \omega_{std}$

hence $\varphi^* \omega = \omega$.

We claim that the map φ is not isotopic to the identity. Indeed, if it were, then the loops

$$x + \mathbb{Z} \mapsto \operatorname{id}(x + \mathbb{Z}, 0) = (x + \mathbb{Z}, 0)$$
 and $x + \mathbb{Z} \mapsto \varphi(x + \mathbb{Z}, 0) = (-x + \mathbb{Z}, 0)$

would be homotopic. Here we think of $x + \mathbb{Z}$ as as element of the circle \mathbb{R}/\mathbb{Z} . The second loop in exactly the reverse of the first loop and these loops are not homotopic in \mathbb{T}^2 (see Algebraic Topology).

(b) Find a symplectic manifold and a symplectomorphism on M that is isotopic to the identity through symplectomorphisms, but is not a Hamiltonian diffeomorphism.

Hint: Consider translations on a cylinder.

Solution. Let $\Sigma = T^*S^1 = S^1 \times \mathbb{R}$ be a cylinder with coordinates (q, p) and let $\omega = dp \wedge dq = d\lambda$, where $\lambda = pdq$. We define

$$\varphi \colon [0,1] \times \Sigma \to \Sigma, \qquad \varphi_t(q,p) = (q,p+t).$$

Last modified: October 27, 2023

1/6

We claim that φ_t is a symplectic isotopy. Indeed,

$$(\varphi_t^*\lambda)_{(q,p)}(\xi,\eta) = \lambda_{(q,p+t)}(\xi,\eta) = (p+t)\xi,$$

hence $\varphi_t^* \lambda_{(q,p)} = (p+t) dq$. Thus

$$\varphi_t^* \omega = \mathrm{d}\varphi^* \lambda = \mathrm{d}(p+t) \wedge \mathrm{d}q = \mathrm{d}p \wedge \mathrm{d}q = \omega.$$

We now have to show that $\varphi = \varphi_1$ is not a Hamiltonian diffeomorphism. We do so by showing that all Hamiltonian diffeomorphisms have to satisfy equation (1) below, whereas φ does not.

Let ψ_t^H be a Hamiltonian diffeomorphism generated by a Hamiltonian $H \in C^{\infty}([0,1] \times \Sigma)$. Let $j: S^1 \to S^1 \times \mathbb{R}, j(z) = (z,0)$. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{S^1} j^* \left(\psi_t^H\right)^* \lambda = \int_{S^1} j^* \frac{\mathrm{d}}{\mathrm{d}t} \left(\psi_t^H\right)^* \lambda$$
$$= \int_{S^1} j^* \left(\psi_t^H\right)^* \left(-\mathrm{d}H_t + \mathrm{d}\iota_{X_t^H}\lambda\right)$$
$$= \int_{S^1} \mathrm{d}j^* \left(\psi_t^H\right)^* \left(-H_t + \iota_{X_t^H}\lambda\right)$$
$$= 0.$$

It follows that

$$\int_{S^1} j^* \left(\psi_1^H\right)^* \lambda = \int_{S^1} j^* \left(\psi_0^H\right)^* \lambda = \int_{S^1} j^* \lambda = 0.$$
(1)

However,

$$\int_{S^1} j^* \varphi^* \lambda = \int_{S^1} \mathrm{d}q = 1 \neq 0.$$

This completes the proof.

(c) Does there exist a non-Hamiltonian symplectomorphism on S^2 equipped with the standard symplectic form, that is isotopic to the identity through symplectomorphisms?

Solution. No. Suppose φ_t is a symplectic isotopy. Then $d\iota_{X_t}\omega = 0$, as we've seen in the lecture. Since $H^1(S^2; \mathbb{R}) = 0$, it follows that all closed 1-forms (in particular $\iota_{X_t}\omega$) are also exact. As shown in the lecture, there exists a smooth function $H_t: S^2 \to \mathbb{R}$, smoothly depending on t, such that $\iota_{X_t}\omega = dH_t$. This shows that φ_t is a Hamiltonian isotopy.

3.2. This exercise covers two useful facts from differential geometry and algebraic topology.

(a) Let $\omega_t \in \Omega^k(M)$ be a differential k-form and φ_t a smooth isotopy of diffeomorphisms. Prove that

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t^*\omega_t = \varphi_t^*\left(\mathcal{L}_{X_t}\omega_t + \frac{\mathrm{d}}{\mathrm{d}t}\omega_t\right),\,$$

where X_t is the vector field defined by

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t = X_t \circ \varphi_t.$$

Solution. If f(x, y) is a real function of two variables, then

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t,t) = \frac{\mathrm{d}}{\mathrm{d}x}f(x,t)\Big|_{x=t} + \frac{\mathrm{d}}{\mathrm{d}y}f(t,y)\Big|_{y=t}.$$

Therefore, we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t^*\omega_t = \frac{\mathrm{d}}{\mathrm{d}x}\varphi_x^*\omega_t\Big|_{x=t} + \frac{\mathrm{d}}{\mathrm{d}y}\varphi_t^*\omega_y\Big|_{y=t}$$
$$= \varphi_x^*\mathcal{L}_{X_x}\omega_t\Big|_{x=t} + \varphi_t^*\left(\frac{\mathrm{d}}{\mathrm{d}y}\omega_y\Big|_{y=t}\right)$$
$$= \varphi_t^*\left(\mathcal{L}_{X_t}\omega_t + \frac{\mathrm{d}}{\mathrm{d}t}\omega_t\right).$$

(b) Let $d \ge 1$ and $\alpha \in \Omega^d(\mathbb{R}^n)$ be a closed *d*-form, i.e. $d\alpha = 0$. Show that α is exact, i.e. there exists $\lambda \in \Omega^{d-1}(\mathbb{R}^n)$ such that $\alpha = d\lambda$. In other words, $\mathrm{H}^d(\mathbb{R}^n; \mathbb{R}) = 0$.

Hint: Use the retraction $f_t(x) = tx$ and the strategy we used in the lecture to show that "strongly isotopic" implies "isotopic".

Solution. For $t \in [0, 1]$ consider the map $f_t(x) = tx$ on \mathbb{R}^n . This is a diffeomorphism for $t \neq 0$. We have $f_0 \equiv 0$ and $f_1 = \text{id}$. For $t \in (0, 1]$, let X_t be the smooth vector field associated to f_t , i.e.

$$\frac{\mathrm{d}}{\mathrm{d}t}f_t = X_t \circ f_t.$$

Then, as we show below, for all $0 < t_0 < t_1 < 1$, we have

$$f_{t_1}^* \alpha - f_{t_0}^* \alpha = \mathrm{d}Q\alpha + Q\mathrm{d}\alpha$$

where

$$Q\colon \Omega^{d-1}(\mathbb{R}^n) \to \Omega^d(\mathbb{R}^n), \qquad Q\alpha = \int_{t_0}^{t_1} f_t^*(\iota_{X_t}\alpha) \mathrm{d}t.$$

3/6

Indeed,

$$dQ\alpha + Qd\alpha = d \int_{t_0}^{t_1} f_t^*(\iota_{X_t}\alpha) dt + \int_{t_0}^{t_1} f_t^*(\iota_{X_t}(d\alpha)) dt$$

$$= \int_{t_0}^{t_1} f_t^* (d\iota_{X_t}\alpha + \iota_{X_t}(d\alpha)) dt$$

$$= \int_{t_0}^{t_1} f_t^* (\mathcal{L}_{X_t}\alpha) dt$$

$$\stackrel{(\star)}{=} \int_{t_0}^{t_1} \frac{d}{dt} f_t^* \alpha dt$$

$$= f_{t_1}^* \alpha - f_{t_0}^* \alpha.$$

In equality (*), we used Cartan's formula from Exercise 2.4; in the last equality, we used the Fundamental Theorem of Analysis. Using closedness of α and taking limits $t_0 \to 0, t_1 \to 1$, we conclude that

$$\alpha = f_1^* \alpha - f_0^* \alpha = \mathrm{d} \int_0^1 f_t^*(\iota_{X_t} \alpha) \mathrm{d} t.$$

is exact.

*3.3. In this exercise, we prove Moser stability for volume forms. Let M be a closed smooth manifold of dimension m.

- (a) Suppose $\mu_t \in \Omega^m(M), t \in [0, 1]$, is a smooth family of volume forms on M such that
 - (i) μ_t is a volume form for each t,
 - (ii) $\frac{\mathrm{d}}{\mathrm{d}t}\mu_t$ is exact for all $t \in [0, 1]$.

Prove that there exists a smooth isotopy $\varphi_t \colon M \to M$ of diffeomorphisms on M satisfying $\varphi_t^* \mu_t = \mu_0$ for all $t \in [0, 1]$.

Solution. Let $\beta_t \in \Omega^{n-1}(M)$ be an (n-1)-form depending smoothly on t and satisfying

 $\dot{\mu_t} = -\mathrm{d}\beta_t.$

The fact that β_t can chosen to depend smoothly on t is again non-trivial, similarly to what we've seen in Moser stability of symplectic forms.

The assumption that all μ_t are volume forms allows us to define a vector field X_t by

$$\iota_{X_t}\mu_t = \beta_t.$$

Let φ_t be its flow (which exists because M is closed). Then

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t^* \mu_t &= \varphi_t^* \left(\mathcal{L}_{X_t} \mu_t + \dot{\mu}_t \right) \\ &= \varphi_t^* \left(\iota_{X_t} \mathrm{d}\mu_t + \mathrm{d}\iota_{X_t} \mu_t - \mathrm{d}\beta_t \right) \\ &= 0. \end{aligned}$$

Hence $\varphi_t^* \mu_t = \mu_0$ for all t.

(b) Let $\mu_0, \mu_1 \in \Omega^m(M)$ be two volume forms on M such that

$$\int_M \mu_0 = \int_M \mu_1.$$

Prove that there exists a diffeomorphism $\varphi \colon M \to M$, isotopic to id, satisfying $\varphi^* \mu_1 = \mu_0$.

Solution. Consider $\mu_t = (1 - t)\mu_0 + t\mu_1$. Then μ_t is a volume form for all t and $[\mu_t]$ is constant. Therefore part (a) applies.

3.4. Let (Σ, σ) and (Σ', σ') be two closed connected symplectic surfaces. Suppose Σ has total area 1 and Σ' has total area *c*. Let $a \in \mathbb{R} \setminus 0$. Endow the product manifold $\Sigma \times \Sigma'$ with the symplectic form $\omega_a = a\sigma \oplus a^{-1}\sigma'$.

(a) Show that (M, ω_a) all have the same volume.

Solution. By definition, $\omega_a = a\sigma \oplus a^{-1}\sigma' = \pi^*\sigma + \pi'^*\sigma'$, where $\pi \colon \Sigma \oplus \Sigma' \to \Sigma$ and $\pi' \colon \Sigma \oplus \Sigma' \to \Sigma'$ are the projections. Hence

$$\begin{split} \omega_a^{\wedge 2} &= \left(\pi^*(a\sigma) + \pi'^*(a^{-1}\sigma')\right)^{\wedge 2} \\ &= \pi^*(a^2\sigma^{\wedge 2}) + 2\pi^*(a\sigma) \wedge \pi'^*(a^{-1}\sigma') + \pi^*(a^{-2}\sigma'^{\wedge 2}) \\ &= 2\pi^*\sigma \wedge \pi'^*\sigma' = \omega_1^{\wedge 2} \end{split}$$

is independent of a. In particular,

$$\operatorname{vol}(M,\omega_a) = \frac{1}{2!} \int_M \omega_a^{\wedge 2} = \frac{1}{2!} \int_M \omega_1^{\wedge 2} = \operatorname{vol}(M,\omega_1)$$

(b) Show that there exist a such that (M, ω_1) and (M, ω_a) are not symplectomorphic.

Hint: The Degree Theorem from Algebraic Topology tells us the following. Let X and Y be compact oriented manifolds of same dimension and let $f: X \to Y$ be a smooth map. Then every top degree form Ω satisfies

$$\int_X f^* \Omega = \deg f \int_Y \Omega$$

Solution. Suppose (M, ω_1) and (M, ω_a) are symplectomorphic. Choose a diffeomorphism $\varphi \colon M \to M$ such that $\omega_a = \varphi^* \omega_1$. Fix $z'_0 \in \Sigma'$ and consider $j \colon \Sigma \to M, z \mapsto (z, z'_0)$.

Note that if $\omega_a = \varphi^* \omega_1$, then also $j^* \omega_a = j^* \varphi^* \omega_1$ and in particular it must hold that:

$$\int_{\Sigma} j^* \omega_a = \int_{\Sigma} j^* \varphi^* \omega_1.$$
⁽²⁾

We now calculate the integrals. For the first one, we first note

$$j^*\omega_a = j^* \left(\pi^*(a\sigma) + \pi'^*(a^{-1}\sigma') \right)$$

= $(\pi \circ j)^*(a\sigma) + (\pi' \circ j)^*(a^{-1}\sigma)$
= $\mathrm{id}^*(a\sigma) + (c_{z'_0})^*(a^{-1}\sigma)$
= $a\sigma$

and hence

$$\int_{\Sigma} j^* \omega_a = \int_{\Sigma} a\sigma = a \int_{\Sigma} \sigma = a.$$

On the other hand, using the Degree Theorem, for the second integral we get:

$$\begin{split} \int_{\Sigma} j^* \varphi^* \omega_1 &= \int_{\Sigma} j^* \varphi^* (\sigma \oplus \sigma') \\ &= \int_{\Sigma} (\pi \circ \varphi \circ j)^* \sigma + (\pi' \circ \varphi \circ j)^* \sigma' \\ &= \deg(\pi \circ \varphi \circ j) \int_X \sigma + \deg(\pi' \circ \varphi \circ j) \int_{X'} \sigma' \\ &= \deg(\pi \circ \varphi \circ j) + \deg(\pi' \circ \varphi \circ j) c \in \mathbb{Z} + c\mathbb{Z}. \end{split}$$

Substituting these back into equation (2), we see that $a \in \mathbb{Z} + c\mathbb{Z}$. In particular, for $a \notin \mathbb{Z} + c\mathbb{Z}$ the two symplectic manifolds (M, ω_1) and (M, ω_a) are not symplectomorphic.