The most important exercises are marked with an asterisk *.
*4.1. Let $\operatorname{Sp}(2 n)$ be the group of symplectic matrices

$$
\mathrm{Sp}(2 n)=\left\{A \in \mathrm{GL}(2 n, \mathbb{R}) \mid A^{T} J_{0} A=J_{0}\right\}
$$

where

$$
J_{0}=\left(\begin{array}{cc}
0 & \mathrm{id}_{n} \\
-\mathrm{id}_{n} & 0
\end{array}\right)
$$

(a) Show that if $\Psi \in \operatorname{Sp}(2 n)$ then $\Psi^{-1} \in \operatorname{Sp}(2 n)$ and $\Psi^{T} \in \operatorname{Sp}(2 n)$.

Solution. First we show that Ψ^{-1} is symplectic:

$$
\Psi^{-T} J_{0} \Psi^{-1}=\Psi^{-T}\left(\Psi^{T} J_{0} \Psi\right) \Psi^{-1}=J_{0} \Longrightarrow \Psi^{-1} \in \operatorname{Sp}(2 n)
$$

Taking the inverse of $\Psi^{T} J_{0} \Psi=J_{0}$ we get

$$
\begin{aligned}
&-\Psi^{-1} J_{0} \Psi^{-T}=\Psi^{-1} J_{0}^{-1} \Psi^{-T}=J_{0}^{-1}=-J_{0} \\
& \Longrightarrow \Psi^{-1} J_{0} \Psi^{-T}=J_{0} \\
& \Longrightarrow J_{0}=\Psi J_{0} \Psi^{T}=\left(\Psi^{T}\right)^{T} J_{0} \Psi^{T} \\
& \Longrightarrow \Psi^{T} \in \operatorname{Sp}(2 n) .
\end{aligned}
$$

(b) Show that if $P \in \operatorname{Sp}(2 n)$ is a symmetric, positive definite symplectic matrix, then $P^{\alpha} \in \operatorname{Sp}(2 n)$ for every $\alpha \geq 0, \alpha \in \mathbb{R}$.

Solution. To see that we can define a power of P we decompose $\mathbb{R}^{2 n}$ into the eigenspaces of P :

$$
\mathbb{R}^{2 n}=\oplus_{i=1}^{k} E_{i}, E_{i}=\operatorname{ker}\left(\lambda_{i} \mathrm{id}-P\right)
$$

where $\lambda_{1}, \ldots, \lambda_{k}>0$ are the eigenvalues of P. Let $\alpha \geq 0$. The power P^{α} is defined by $P^{\alpha}(v)=\lambda_{i}^{p} v$ for $v \in E_{i}$. Let $v \in E_{i}$ and $w \in E_{j}$. Then, since P is a symplectic matrix,

$$
\omega_{\mathrm{std}}(v, w)=\omega_{\mathrm{std}}(P v, P w)=\lambda_{i} \lambda_{j} \omega_{\mathrm{std}}(v, w)
$$

In particular, either $\lambda_{i} \lambda_{j}=1$ or $\omega_{\text {std }}(v, w)=0$. This implies

$$
\omega_{\mathrm{std}}\left(P^{\alpha} v, P^{\alpha} w\right)=\omega_{\mathrm{std}}\left(\lambda_{i}^{\alpha} v, \lambda_{j}^{\alpha} w\right)=\left(\lambda_{i} \lambda_{j}\right)^{\alpha} \omega_{\mathrm{std}}(v, w)=\omega_{\mathrm{std}}(v, w)
$$

Therefore, P^{α} is symplectic.
(c) Show that $\operatorname{Sp}(2 n) \cap \mathrm{O}(2 n)=\mathrm{U}(n)$ and that the inclusion $\mathrm{U}(n) \subset \mathrm{Sp}(2 n)$ is a homotopy equivalence.

Hint: Consider the homotopy $f_{t}(\Psi)=\Psi\left(\Psi^{T} \Psi\right)^{-\frac{t}{2}}, t \in[0,1]$.
Solution. A direct calculation shows that the subgroup $\operatorname{Sp}(2 n) \cap O(2 n)$ consists of those matrices

$$
\Psi=\left(\begin{array}{cc}
X & -Y \\
Y & X
\end{array}\right) \in \mathrm{GL}(2 n, \mathbb{R})
$$

which satisfy $X^{T} Y=Y^{T} X$ and $X^{T} X+Y^{T} Y=$ id. This is precisely the condition for the complex matrix $U:=X+i Y$ to be unitary. This shows $\mathrm{Sp}(2 n) \cap \mathrm{O}(2 n)=\mathrm{U}(n)$.

Let $\Psi \in \operatorname{Sp}(2 n)$. By part (a), $P:=\Psi^{T} \Psi$ is a symplectic matrix. Moreover, P is symmetric and positive definite. Therefore we can apply part (b) to P and thus

$$
\left(\Psi^{T} \Psi\right)^{-\frac{t}{2}} \in \operatorname{Sp}(2 n)
$$

In particular, $f_{t}: \mathrm{Sp}(2 n) \rightarrow \mathrm{Sp}(2 n)$ defined as in the hint is well-defined and takes values in $\mathrm{Sp}(2 n)$.

We claim that $r: \operatorname{Sp}(2 n) \rightarrow \mathrm{U}(n), r(\Psi)=f_{1}(\Psi)$ is a homotopy inverse to the inclusion $i: \mathrm{U}(n) \hookrightarrow \mathrm{Sp}(2 n)$. Indeed, $f_{1}(\Psi) \in \mathrm{Sp}(2 n) \cap \mathrm{O}(n)=\mathrm{U}(n)$ because

$$
\begin{aligned}
f_{1}(\Psi) f_{1}(\Psi)^{T} & =\Psi\left(\Psi^{T} \Psi\right)^{-\frac{1}{2}}\left(\left(\Psi^{T} \Psi\right)^{-\frac{1}{2}}\right)^{T} \Psi^{T} \\
& =\Psi\left(\Psi^{T} \Psi\right)^{-1} \Psi^{T} \\
& =\Psi \Psi^{-1} \Psi^{-T} \Psi^{T} \\
& =\mathrm{id}
\end{aligned}
$$

hence r is well-defined. Moreover, f_{t} is a homotopy from $f_{0}=$ id to $f_{1}=i \circ r$. For the converse composition, $r \circ i=\mathrm{id}$ because if $\Psi \in \mathrm{U}(n)$, then $\Psi^{T} \Psi=\mathrm{id}$ and thus $r(\Psi)=f_{1}(\Psi)=\Psi$.

4.2.

(a) Let $\Omega\left(\mathbb{R}^{2 n}\right)$ denote the space of linear symplectic forms on $\mathbb{R}^{2 n}$. Show that

$$
\Omega\left(\mathbb{R}^{2 n}\right) \cong \operatorname{GL}(2 n, \mathbb{R}) / \operatorname{Sp}(2 n)
$$

Solution. Consider the map

$$
\Psi: \mathrm{GL}(2 n, \mathbb{R}) \rightarrow \Omega\left(\mathbb{R}^{2 n}\right), \Psi(A):=A^{*} \omega_{\mathrm{std}}
$$

We've seen in the lecture that this map is surjective. The kernel of Ψ is precisely the group $\operatorname{Sp}(2 n)$. The claimed isomorphism follows.
(b) Deduce that $\Omega\left(\mathbb{R}^{2 n}\right)$ is homotopy equivalent to $\mathrm{O}(2 n) / \mathrm{U}(n)$.

Hint: Use a similar strategy as in Exercise 4.1 (c).
Solution. Consider the map

$$
j: \mathrm{O}(2 n) / \mathrm{U}(2 n) \rightarrow \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{Sp}(2 n)
$$

induced by the inclusion $\mathrm{O}(2 n) \hookrightarrow \mathrm{GL}(2 n, \mathbb{R})$. We show that this is a homotopy equivalence. As in Exercise 4.1, we consider the homotopy

$$
f_{t}(\Psi)=\Psi\left(\Psi^{T} \Psi\right)^{-\frac{t}{2}}, t \in[0,1]
$$

This time we view it as an automorphism on $\operatorname{GL}(2 n, \mathbb{R})$. Since $f_{t}(\operatorname{Sp}(2 n)) \subset$ $\mathrm{Sp}(2 n)$ as shown in Exercise 4.1, the map f_{t} descends to a map

$$
F_{t}: \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{Sp}(2 n) \rightarrow \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{Sp}(2 n), F_{t}([\Psi])=\left[f_{t}(\Psi)\right]
$$

Moreover, $f_{1}(\Psi) \in \mathrm{O}(2 n)$ and $f_{1}(\mathrm{Sp}(2 n)) \subset \mathrm{U}(n)$ and therefore F_{1} defines a $\operatorname{map} R: \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{Sp}(2 n) \rightarrow \mathrm{O}(2 n) / \mathrm{U}(n), R([\Psi])=\left[f_{1}(\Psi)\right]$.

The map F_{t} is a homotopy from $F_{0}=\mathrm{id}$ to $F_{1}=j \circ R$. Finally $R \circ j=\mathrm{id}$ and hence R is a homotopy inverse to j.
(c) Let $\mathcal{J}\left(\mathbb{R}^{2 n}\right)$ denote the space of linear complex structures on $\mathbb{R}^{2 n}$. Show that

$$
\mathcal{J}\left(\mathbb{R}^{2 n}\right) \cong \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C})
$$

Solution. Consider the map

$$
\Phi: \mathrm{GL}(2 n, \mathbb{R}) \rightarrow \mathcal{J}\left(\mathbb{R}^{2 n}\right), \Phi(A):=A J_{0} A^{-1}
$$

We've seen in the lecture that this map is surjective. The kernel of Φ is precisely the group $\mathrm{GL}(n, \mathbb{C})$. The claimed isomorphism follows.
(d) Show that $\mathrm{GL}(n, \mathbb{C}) \cap \mathrm{O}(2 n)=\mathrm{U}(n)$ and that $\mathcal{J}\left(\mathbb{R}^{2 n}\right)$ is homotopy equivalent to $\mathrm{O}(2 n) / \mathrm{U}(n)$. In particular, $\Omega\left(\mathbb{R}^{2 n}\right)$ and $\mathcal{J}\left(\mathbb{R}^{2 n}\right)$ are homotopy equivalent.

Solution. Let $\Psi \in \operatorname{GL}(2 n, \mathbb{R})$. Then

$$
\Psi \in \mathrm{GL}(n, \mathbb{C}) \Longrightarrow \Psi J_{0}=J_{0} \Psi
$$

If $\Psi \in \operatorname{GL}(n, \mathbb{C}) \cap \mathrm{O}(2 n)$, then

$$
\Psi^{T} J_{0} \Psi=\Psi^{T} \Psi J_{0}=J_{0}
$$

It follows that $\Psi \in \operatorname{Sp}(2 n)$. If $\Psi \in \operatorname{Sp}(2 n) \cap \mathrm{O}(2 n)$, then

$$
\Psi J_{0}=\Psi\left(\Psi^{T} J_{0} \Psi\right)=J_{0} \Psi
$$

hence $\Psi \in \operatorname{GL}(n, \mathbb{C})$. Putting these two observations together shows

$$
\mathrm{GL}(n, \mathbb{C}) \cap \mathrm{O}(2 n)=\mathrm{Sp}(2 n) \cap \mathrm{O}(2 n)
$$

and the first claim follows from Exercise 4.1 (c).
We now show that $\mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C})$ is homotopy equivalent to $\mathrm{O}(2 n) / \mathrm{U}(n)$. For this, consider the map

$$
k: \mathrm{O}(2 n) / \mathrm{U}(n) \rightarrow \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C})
$$

induced by inclusion. We will again make use of the homotopy f_{t} defined in the hint to Exercise 4.1 (c). As a preparation, we show a complex analogue of Exercise 4.1 (b):

Claim 1. Let $P \in \operatorname{GL}(n, \mathbb{C})$ be a symmetric positive definite matrix and $\alpha \geq 0$. Then $P^{\alpha} \in \operatorname{GL}(n, \mathbb{C})$.

Proof. Let E_{i} be the eigenspaces of P and $\lambda_{i}>0$ the eigenvalues as in Exercise 4.1.(b). Since J_{0} commutes with P, it follows that J_{0} preserves the eigenspaces. Let $v \in E_{i}$. Then

$$
P^{\alpha}\left(J_{0}(z)\right)=\lambda_{i}^{\alpha}\left(J_{0}(z)\right)=J_{0}\left(\lambda_{i}^{\alpha} z\right)=J_{0}\left(P^{\alpha}(z)\right) .
$$

Therefore, $P^{\alpha} J_{0}=J_{0} P^{\alpha}$ and thus $P^{\alpha} \in \mathrm{GL}(n, \mathbb{C})$.
Let $\Psi \in \mathrm{GL}(n, \mathbb{C})$. We apply the claim to the symmetric positive definite matrix $P=\Psi^{T} \Psi$. It follows that $f_{t}(\Psi) \in \mathrm{GL}(n, \mathbb{C})$. In particular, f_{t} induces a map

$$
\tilde{F}_{t}: \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C}), \tilde{F}_{t}([\Psi])=\left[f_{t}(\Psi)\right]
$$

Moreover, $f_{1}(\Psi) \in \mathrm{O}(2 n)$ and $f_{1}(\mathrm{GL}(n, \mathbb{C})) \subset \mathrm{GL}(n, \mathbb{C}) \cap \mathrm{O}(2 n)=\mathrm{U}(n)$. Therefore \tilde{F}_{1} defines a map $\tilde{R}: \mathrm{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathrm{O}(2 n) / \mathrm{U}(n), \tilde{R}([\Psi])=$ $\left[f_{1}(\Psi)\right]$.
The map \tilde{F}_{t} is a homotopy from $\tilde{F}_{0}=\mathrm{id}$ to $\tilde{F}_{1}=k \circ \tilde{R}$. Finally $\tilde{R} \circ k=\mathrm{id}$ and hence \tilde{R} is a homotopy inverse to k.

*4.3.

(a) Show that any co-oriented hypersurface $\Sigma \subset \mathbb{R}^{3}$ inherits an almost complex structure from the vector product as follows. Let $\nu: \Sigma \rightarrow S^{2}$ be the Gauss map. Then

$$
J_{x}(u):=\nu(x) \times u
$$

is an almost complex structure.
Solution. We compute J_{x}^{2} :

$$
\begin{aligned}
J_{x}\left(J_{x}(u)\right) & =J_{x}(\nu(x) \times u) \\
& =\nu(x) \times(\nu(x) \times u) \\
& =\nu(x)(u \cdot \nu(x))-u(\nu(x) \cdot \nu(x) \\
& =-u,
\end{aligned}
$$

where the last identity follows from the formula

$$
a \times(b \times c)=b(c \cdot a)-c(a \cdot b)
$$

and the fact that $\nu(x)$ is a unit normal vector (i.e. $u \cdot \nu(x)=0$ and $\nu(x) \cdot \nu(x)=1$). It follows that $J_{x}^{2}=-\mathrm{id}$ and J_{x} is a linear complex structure for each x. Hence J is an almost complex structure on Σ.
(b) Show that J is compatible with the symplectic form

$$
\omega_{x}(v, w)=\nu(x) \cdot(v \times w)
$$

(see Exercise 1.3).
Solution. For $v, w \in T_{x} \Sigma$ we compute

$$
\begin{aligned}
\omega_{x}\left(v, J_{x} w\right) & =\nu(x) \cdot(v \times(\nu(x) \times w)) \\
& =\nu(x) \cdot(\nu(x)(w \cdot v)-w(v \cdot \nu(x))) \\
& =w \cdot v
\end{aligned}
$$

Hence $\omega_{x}\left(-, J_{x}-\right)$ is the standard scalar product on $T_{x} \Sigma$. In partiucular, J and ω are compatible.
(c) Show that every co-oriented hypersurface $M \subset \mathbb{R}^{7}$ also carries an almost complex structure.

Solution. Since \mathbb{R}^{7} also carries a vector product, the exact same proof as in (a) shows that any co-oriented hypersurface $M \subset \mathbb{R}^{7}$ carries an almost complex structure.
(d) Give an example of an almost complex manifold that does not admit a symplectic structure.

Solution. The sphere $S^{6} \subset \mathbb{R}^{7}$ admits an almost complex structure by part (c). However, since $H^{2}\left(S^{6}\right)=0$, it does not admit a symplectic structure.

Remark: There is a non-degenerate 2 -form ω on S^{6} given by the same formula as in (b). J is also compatible with this 2 -form. However, ω is not closed.

