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The most important exercises are marked with an asterisk *.

*4.1. Let Sp(2n) be the group of symplectic matrices

Sp(2n) =
{
A ∈ GL(2n,R) | AT J0A = J0

}
,

where

J0 =
(

0 idn

− idn 0

)
.

(a) Show that if Ψ ∈ Sp(2n) then Ψ−1 ∈ Sp(2n) and ΨT ∈ Sp(2n).

Solution. First we show that Ψ−1 is symplectic:

Ψ−T J0Ψ−1 = Ψ−T (ΨT J0Ψ)Ψ−1 = J0 =⇒ Ψ−1 ∈ Sp(2n).

Taking the inverse of ΨT J0Ψ = J0 we get

−Ψ−1J0Ψ−T = Ψ−1J−1
0 Ψ−T = J−1

0 = −J0

=⇒ Ψ−1J0Ψ−T = J0

=⇒ J0 = ΨJ0ΨT = (ΨT )T J0ΨT

=⇒ ΨT ∈ Sp(2n).

(b) Show that if P ∈ Sp(2n) is a symmetric, positive definite symplectic matrix,
then P α ∈ Sp(2n) for every α ≥ 0, α ∈ R.

Solution. To see that we can define a power of P we decompose R2n into the
eigenspaces of P :

R2n = ⊕k
i=1Ei, Ei = ker(λi id −P ),

where λ1, . . . , λk > 0 are the eigenvalues of P . Let α ≥ 0. The power P α is
defined by P α(v) = λp

i v for v ∈ Ei. Let v ∈ Ei and w ∈ Ej. Then, since P is a
symplectic matrix,

ωstd(v, w) = ωstd(Pv, Pw) = λiλjωstd(v, w).

In particular, either λiλj = 1 or ωstd(v, w) = 0. This implies

ωstd(P αv, P αw) = ωstd(λα
i v, λα

j w) = (λiλj)αωstd(v, w) = ωstd(v, w).

Therefore, P α is symplectic.
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(c) Show that Sp(2n) ∩ O(2n) = U(n) and that the inclusion U(n) ⊂ Sp(2n) is a
homotopy equivalence.

Hint: Consider the homotopy ft(Ψ) = Ψ
(
ΨT Ψ

)− t
2 , t ∈ [0, 1].

Solution. A direct calculation shows that the subgroup Sp(2n)∩O(2n) consists
of those matrices

Ψ =
(

X −Y
Y X

)
∈ GL(2n,R)

which satisfy XT Y = Y T X and XT X + Y T Y = id. This is precisely the
condition for the complex matrix U := X + iY to be unitary. This shows
Sp(2n) ∩ O(2n) = U(n).

Let Ψ ∈ Sp(2n). By part (a), P := ΨT Ψ is a symplectic matrix. Moreover, P is
symmetric and positive definite. Therefore we can apply part (b) to P and thus

(
ΨT Ψ

)− t
2 ∈ Sp(2n).

In particular, ft : Sp(2n) → Sp(2n) defined as in the hint is well-defined and
takes values in Sp(2n).

We claim that r : Sp(2n) → U(n), r(Ψ) = f1(Ψ) is a homotopy inverse to the
inclusion i : U(n) ↪→ Sp(2n). Indeed, f1(Ψ) ∈ Sp(2n) ∩ O(n) = U(n) because

f1(Ψ)f1(Ψ)T = Ψ
(
ΨT Ψ

)− 1
2
((

ΨT Ψ
)− 1

2
)T

ΨT

= Ψ
(
ΨT Ψ

)−1
ΨT

= ΨΨ−1Ψ−T ΨT

= id,

hence r is well-defined. Moreover, ft is a homotopy from f0 = id to f1 = i ◦ r.
For the converse composition, r ◦ i = id because if Ψ ∈ U(n), then ΨT Ψ = id
and thus r(Ψ) = f1(Ψ) = Ψ.

4.2.

(a) Let Ω(R2n) denote the space of linear symplectic forms on R2n. Show that

Ω(R2n) ∼= GL(2n,R)/ Sp(2n).
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Solution. Consider the map

Ψ: GL(2n,R) → Ω(R2n), Ψ(A) := A∗ωstd.

We’ve seen in the lecture that this map is surjective. The kernel of Ψ is precisely
the group Sp(2n). The claimed isomorphism follows.

(b) Deduce that Ω(R2n) is homotopy equivalent to O(2n)/ U(n).

Hint: Use a similar strategy as in Exercise 4.1 (c).

Solution. Consider the map

j : O(2n)/ U(2n) → GL(2n,R)/ Sp(2n)

induced by the inclusion O(2n) ↪→ GL(2n,R). We show that this is a homotopy
equivalence. As in Exercise 4.1, we consider the homotopy

ft(Ψ) = Ψ
(
ΨT Ψ

)− t
2 , t ∈ [0, 1].

This time we view it as an automorphism on GL(2n,R). Since ft(Sp(2n)) ⊂
Sp(2n) as shown in Exercise 4.1, the map ft descends to a map

Ft : GL(2n,R)/ Sp(2n) → GL(2n,R)/ Sp(2n), Ft([Ψ]) = [ft(Ψ)].

Moreover, f1(Ψ) ∈ O(2n) and f1(Sp(2n)) ⊂ U(n) and therefore F1 defines a
map R : GL(2n,R)/ Sp(2n) → O(2n)/ U(n), R([Ψ]) = [f1(Ψ)].

The map Ft is a homotopy from F0 = id to F1 = j ◦ R. Finally R ◦ j = id and
hence R is a homotopy inverse to j.

(c) Let J (R2n) denote the space of linear complex structures on R2n. Show that

J (R2n) ∼= GL(2n,R)/ GL(n,C).

Solution. Consider the map

Φ: GL(2n,R) → J (R2n), Φ(A) := AJ0A
−1.

We’ve seen in the lecture that this map is surjective. The kernel of Φ is precisely
the group GL(n,C). The claimed isomorphism follows.
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(d) Show that GL(n,C) ∩ O(2n) = U(n) and that J (R2n) is homotopy equivalent
to O(2n)/ U(n). In particular, Ω(R2n) and J (R2n) are homotopy equivalent.

Solution. Let Ψ ∈ GL(2n,R). Then

Ψ ∈ GL(n,C) =⇒ ΨJ0 = J0Ψ.

If Ψ ∈ GL(n,C) ∩ O(2n), then

ΨT J0Ψ = ΨT ΨJ0 = J0.

It follows that Ψ ∈ Sp(2n). If Ψ ∈ Sp(2n) ∩ O(2n), then

ΨJ0 = Ψ(ΨT J0Ψ) = J0Ψ,

hence Ψ ∈ GL(n,C). Putting these two observations together shows

GL(n,C) ∩ O(2n) = Sp(2n) ∩ O(2n)

and the first claim follows from Exercise 4.1 (c).

We now show that GL(2n,R)/ GL(n,C) is homotopy equivalent to O(2n)/ U(n).
For this, consider the map

k : O(2n)/ U(n) → GL(2n,R)/ GL(n,C)

induced by inclusion. We will again make use of the homotopy ft defined in
the hint to Exercise 4.1 (c). As a preparation, we show a complex analogue of
Exercise 4.1 (b):

Claim 1. Let P ∈ GL(n,C) be a symmetric positive definite matrix and α ≥ 0.
Then P α ∈ GL(n,C).

Proof. Let Ei be the eigenspaces of P and λi > 0 the eigenvalues as in Exercise
4.1.(b). Since J0 commutes with P , it follows that J0 preserves the eigenspaces.
Let v ∈ Ei. Then

P α(J0(z)) = λα
i (J0(z)) = J0(λα

i z) = J0(P α(z)).

Therefore, P αJ0 = J0P
α and thus P α ∈ GL(n,C).

Let Ψ ∈ GL(n,C). We apply the claim to the symmetric positive definite matrix
P = ΨT Ψ. It follows that ft(Ψ) ∈ GL(n,C). In particular, ft induces a map

F̃t : GL(2n,R)/ GL(n,C) → GL(2n,R)/ GL(n,C), F̃t([Ψ]) = [ft(Ψ)].
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Moreover, f1(Ψ) ∈ O(2n) and f1(GL(n,C)) ⊂ GL(n,C) ∩ O(2n) = U(n).
Therefore F̃1 defines a map R̃ : GL(2n,R)/ GL(n,C) → O(2n)/ U(n), R̃([Ψ]) =
[f1(Ψ)].

The map F̃t is a homotopy from F̃0 = id to F̃1 = k ◦ R̃. Finally R̃ ◦ k = id and
hence R̃ is a homotopy inverse to k.

*4.3.

(a) Show that any co-oriented hypersurface Σ ⊂ R3 inherits an almost complex
structure from the vector product as follows. Let ν : Σ → S2 be the Gauss map.
Then

Jx(u) := ν(x) × u

is an almost complex structure.

Solution. We compute J2
x :

Jx(Jx(u)) = Jx(ν(x) × u)
= ν(x) × (ν(x) × u)
= ν(x)(u · ν(x)) − u(ν(x) · ν(x)
= −u,

where the last identity follows from the formula

a × (b × c) = b(c · a) − c(a · b).

and the fact that ν(x) is a unit normal vector (i.e. u·ν(x) = 0 and ν(x)·ν(x) = 1).
It follows that J2

x = − id and Jx is a linear complex structure for each x. Hence
J is an almost complex structure on Σ.

(b) Show that J is compatible with the symplectic form

ωx(v, w) = ν(x) · (v × w)

(see Exercise 1.3).

Solution. For v, w ∈ TxΣ we compute

ωx(v, Jxw) = ν(x) · (v × (ν(x) × w))
= ν(x) · (ν(x)(w · v) − w(v · ν(x)))
= w · v.

Hence ωx(−, Jx−) is the standard scalar product on TxΣ. In partiucular, J and
ω are compatible.
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(c) Show that every co-oriented hypersurface M ⊂ R7 also carries an almost complex
structure.

Solution. Since R7 also carries a vector product, the exact same proof as in
(a) shows that any co-oriented hypersurface M ⊂ R7 carries an almost complex
structure.

(d) Give an example of an almost complex manifold that does not admit a symplectic
structure.

Solution. The sphere S6 ⊂ R7 admits an almost complex structure by part
(c). However, since H2(S6) = 0, it does not admit a symplectic structure.

Remark: There is a non-degenerate 2-form ω on S6 given by the same formula
as in (b). J is also compatible with this 2-form. However, ω is not closed.
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