The most important exercises are marked with an asterisk *.

*4.1. Let Sp(2n) be the group of symplectic matrices

$$\operatorname{Sp}(2n) = \left\{ A \in \operatorname{GL}(2n, \mathbb{R}) \, | \, A^T J_0 A = J_0 \right\},\,$$

where

$$J_0 = \begin{pmatrix} 0 & \mathrm{id}_n \\ -\mathrm{id}_n & 0 \end{pmatrix}.$$

(a) Show that if $\Psi \in \operatorname{Sp}(2n)$ then $\Psi^{-1} \in \operatorname{Sp}(2n)$ and $\Psi^T \in \operatorname{Sp}(2n)$.

Solution. First we show that Ψ^{-1} is symplectic:

$$\Psi^{-T} J_0 \Psi^{-1} = \Psi^{-T} (\Psi^T J_0 \Psi) \Psi^{-1} = J_0 \Longrightarrow \Psi^{-1} \in \operatorname{Sp}(2n).$$

Taking the inverse of $\Psi^T J_0 \Psi = J_0$ we get

$$-\Psi^{-1}J_0\Psi^{-T} = \Psi^{-1}J_0^{-1}\Psi^{-T} = J_0^{-1} = -J_0$$
$$\implies \Psi^{-1}J_0\Psi^{-T} = J_0$$
$$\implies J_0 = \Psi J_0\Psi^T = (\Psi^T)^T J_0\Psi^T$$
$$\implies \Psi^T \in \operatorname{Sp}(2n).$$

(b) Show that if $P \in \text{Sp}(2n)$ is a symmetric, positive definite symplectic matrix, then $P^{\alpha} \in \text{Sp}(2n)$ for every $\alpha \geq 0, \alpha \in \mathbb{R}$.

Solution. To see that we can define a power of P we decompose \mathbb{R}^{2n} into the eigenspaces of P:

$$\mathbb{R}^{2n} = \bigoplus_{i=1}^{k} E_i, \ E_i = \ker(\lambda_i \operatorname{id} - P),$$

where $\lambda_1, \ldots, \lambda_k > 0$ are the eigenvalues of P. Let $\alpha \ge 0$. The power P^{α} is defined by $P^{\alpha}(v) = \lambda_i^p v$ for $v \in E_i$. Let $v \in E_i$ and $w \in E_j$. Then, since P is a symplectic matrix,

$$\omega_{\rm std}(v, w) = \omega_{\rm std}(Pv, Pw) = \lambda_i \lambda_j \omega_{\rm std}(v, w).$$

In particular, either $\lambda_i \lambda_j = 1$ or $\omega_{\text{std}}(v, w) = 0$. This implies

$$\omega_{\rm std}(P^{\alpha}v, P^{\alpha}w) = \omega_{\rm std}(\lambda_i^{\alpha}v, \lambda_j^{\alpha}w) = (\lambda_i\lambda_j)^{\alpha}\omega_{\rm std}(v, w) = \omega_{\rm std}(v, w).$$

Therefore, P^{α} is symplectic.

Last modified: December 6, 2023

1/6

(c) Show that $\operatorname{Sp}(2n) \cap \operatorname{O}(2n) = \operatorname{U}(n)$ and that the inclusion $\operatorname{U}(n) \subset \operatorname{Sp}(2n)$ is a homotopy equivalence.

Hint: Consider the homotopy $f_t(\Psi) = \Psi \left(\Psi^T \Psi \right)^{-\frac{t}{2}}, t \in [0, 1].$

Solution. A direct calculation shows that the subgroup $\operatorname{Sp}(2n) \cap O(2n)$ consists of those matrices

$$\Psi = \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \in \operatorname{GL}(2n, \mathbb{R})$$

which satisfy $X^T Y = Y^T X$ and $X^T X + Y^T Y = id$. This is precisely the condition for the complex matrix $U \coloneqq X + iY$ to be unitary. This shows $\operatorname{Sp}(2n) \cap \operatorname{O}(2n) = \operatorname{U}(n)$.

Let $\Psi \in \text{Sp}(2n)$. By part (a), $P \coloneqq \Psi^T \Psi$ is a symplectic matrix. Moreover, P is symmetric and positive definite. Therefore we can apply part (b) to P and thus

$$\left(\Psi^T\Psi\right)^{-\frac{t}{2}} \in \operatorname{Sp}(2n).$$

In particular, $f_t: \operatorname{Sp}(2n) \to \operatorname{Sp}(2n)$ defined as in the hint is well-defined and takes values in $\operatorname{Sp}(2n)$.

We claim that $r: \operatorname{Sp}(2n) \to \operatorname{U}(n), r(\Psi) = f_1(\Psi)$ is a homotopy inverse to the inclusion $i: \operatorname{U}(n) \hookrightarrow \operatorname{Sp}(2n)$. Indeed, $f_1(\Psi) \in \operatorname{Sp}(2n) \cap \operatorname{O}(n) = \operatorname{U}(n)$ because

$$f_1(\Psi)f_1(\Psi)^T = \Psi \left(\Psi^T \Psi\right)^{-\frac{1}{2}} \left(\left(\Psi^T \Psi\right)^{-\frac{1}{2}}\right)^T \Psi^T$$
$$= \Psi \left(\Psi^T \Psi\right)^{-1} \Psi^T$$
$$= \Psi \Psi^{-1} \Psi^{-T} \Psi^T$$
$$= \mathrm{id},$$

hence r is well-defined. Moreover, f_t is a homotopy from $f_0 = \text{id to } f_1 = i \circ r$. For the converse composition, $r \circ i = \text{id}$ because if $\Psi \in U(n)$, then $\Psi^T \Psi = \text{id}$ and thus $r(\Psi) = f_1(\Psi) = \Psi$.

4.2.

(a) Let $\Omega(\mathbb{R}^{2n})$ denote the space of linear symplectic forms on \mathbb{R}^{2n} . Show that

$$\Omega(\mathbb{R}^{2n}) \cong \operatorname{GL}(2n,\mathbb{R})/\operatorname{Sp}(2n).$$

2/6

Solution. Consider the map

 $\Psi \colon \operatorname{GL}(2n,\mathbb{R}) \to \Omega(\mathbb{R}^{2n}), \ \Psi(A) := A^* \omega_{\operatorname{std}}.$

We've seen in the lecture that this map is surjective. The kernel of Ψ is precisely the group Sp(2n). The claimed isomorphism follows.

(b) Deduce that $\Omega(\mathbb{R}^{2n})$ is homotopy equivalent to O(2n)/U(n).

Hint: Use a similar strategy as in Exercise 4.1 (c).

Solution. Consider the map

 $j: \operatorname{O}(2n)/\operatorname{U}(2n) \to \operatorname{GL}(2n, \mathbb{R})/\operatorname{Sp}(2n)$

induced by the inclusion $O(2n) \hookrightarrow GL(2n, \mathbb{R})$. We show that this is a homotopy equivalence. As in Exercise 4.1, we consider the homotopy

$$f_t(\Psi) = \Psi \left(\Psi^T \Psi \right)^{-\frac{t}{2}}, t \in [0, 1].$$

This time we view it as an automorphism on $\operatorname{GL}(2n,\mathbb{R})$. Since $f_t(\operatorname{Sp}(2n)) \subset \operatorname{Sp}(2n)$ as shown in Exercise 4.1, the map f_t descends to a map

 $F_t: \operatorname{GL}(2n, \mathbb{R})/\operatorname{Sp}(2n) \to \operatorname{GL}(2n, \mathbb{R})/\operatorname{Sp}(2n), F_t([\Psi]) = [f_t(\Psi)].$

Moreover, $f_1(\Psi) \in O(2n)$ and $f_1(\operatorname{Sp}(2n)) \subset U(n)$ and therefore F_1 defines a map R: $\operatorname{GL}(2n, \mathbb{R})/\operatorname{Sp}(2n) \to O(2n)/U(n), R([\Psi]) = [f_1(\Psi)].$

The map F_t is a homotopy from $F_0 = id$ to $F_1 = j \circ R$. Finally $R \circ j = id$ and hence R is a homotopy inverse to j.

(c) Let $\mathcal{J}(\mathbb{R}^{2n})$ denote the space of linear complex structures on \mathbb{R}^{2n} . Show that

$$\mathcal{J}(\mathbb{R}^{2n}) \cong \operatorname{GL}(2n, \mathbb{R}) / \operatorname{GL}(n, \mathbb{C}).$$

Solution. Consider the map

 $\Phi \colon \operatorname{GL}(2n,\mathbb{R}) \to \mathcal{J}(\mathbb{R}^{2n}), \ \Phi(A) \coloneqq AJ_0A^{-1}.$

We've seen in the lecture that this map is surjective. The kernel of Φ is precisely the group $\operatorname{GL}(n, \mathbb{C})$. The claimed isomorphism follows.

(d) Show that $\operatorname{GL}(n, \mathbb{C}) \cap \operatorname{O}(2n) = \operatorname{U}(n)$ and that $\mathcal{J}(\mathbb{R}^{2n})$ is homotopy equivalent to $\operatorname{O}(2n)/\operatorname{U}(n)$. In particular, $\Omega(\mathbb{R}^{2n})$ and $\mathcal{J}(\mathbb{R}^{2n})$ are homotopy equivalent.

Solution. Let $\Psi \in \operatorname{GL}(2n, \mathbb{R})$. Then

 $\Psi \in \mathrm{GL}(n,\mathbb{C}) \Longrightarrow \Psi J_0 = J_0 \Psi.$

If $\Psi \in \mathrm{GL}(n,\mathbb{C}) \cap \mathrm{O}(2n)$, then

$$\Psi^T J_0 \Psi = \Psi^T \Psi J_0 = J_0.$$

It follows that $\Psi \in \text{Sp}(2n)$. If $\Psi \in \text{Sp}(2n) \cap O(2n)$, then

 $\Psi J_0 = \Psi(\Psi^T J_0 \Psi) = J_0 \Psi,$

hence $\Psi \in \mathrm{GL}(n, \mathbb{C})$. Putting these two observations together shows

$$\operatorname{GL}(n, \mathbb{C}) \cap \operatorname{O}(2n) = \operatorname{Sp}(2n) \cap \operatorname{O}(2n)$$

and the first claim follows from Exercise 4.1 (c).

We now show that $\operatorname{GL}(2n, \mathbb{R})/\operatorname{GL}(n, \mathbb{C})$ is homotopy equivalent to $\operatorname{O}(2n)/\operatorname{U}(n)$. For this, consider the map

$$k: \operatorname{O}(2n)/\operatorname{U}(n) \to \operatorname{GL}(2n, \mathbb{R})/\operatorname{GL}(n, \mathbb{C})$$

induced by inclusion. We will again make use of the homotopy f_t defined in the hint to Exercise 4.1 (c). As a preparation, we show a complex analogue of Exercise 4.1 (b):

Claim 1. Let $P \in GL(n, \mathbb{C})$ be a symmetric positive definite matrix and $\alpha \geq 0$. Then $P^{\alpha} \in GL(n, \mathbb{C})$.

Proof. Let E_i be the eigenspaces of P and $\lambda_i > 0$ the eigenvalues as in Exercise 4.1.(b). Since J_0 commutes with P, it follows that J_0 preserves the eigenspaces. Let $v \in E_i$. Then

$$P^{\alpha}(J_0(z)) = \lambda_i^{\alpha}(J_0(z)) = J_0(\lambda_i^{\alpha} z) = J_0(P^{\alpha}(z)).$$

Therefore, $P^{\alpha}J_0 = J_0P^{\alpha}$ and thus $P^{\alpha} \in \mathrm{GL}(n, \mathbb{C})$.

Let $\Psi \in \mathrm{GL}(n, \mathbb{C})$. We apply the claim to the symmetric positive definite matrix $P = \Psi^T \Psi$. It follows that $f_t(\Psi) \in \mathrm{GL}(n, \mathbb{C})$. In particular, f_t induces a map

$$\tilde{F}_t$$
: $\operatorname{GL}(2n, \mathbb{R}) / \operatorname{GL}(n, \mathbb{C}) \to \operatorname{GL}(2n, \mathbb{R}) / \operatorname{GL}(n, \mathbb{C}), \ \tilde{F}_t([\Psi]) = [f_t(\Psi)].$

Moreover, $f_1(\Psi) \in O(2n)$ and $f_1(\operatorname{GL}(n,\mathbb{C})) \subset \operatorname{GL}(n,\mathbb{C}) \cap O(2n) = \operatorname{U}(n)$. Therefore \tilde{F}_1 defines a map \tilde{R} : $\operatorname{GL}(2n,\mathbb{R})/\operatorname{GL}(n,\mathbb{C}) \to O(2n)/\operatorname{U}(n)$, $\tilde{R}([\Psi]) = [f_1(\Psi)]$.

The map \tilde{F}_t is a homotopy from $\tilde{F}_0 = \text{id}$ to $\tilde{F}_1 = k \circ \tilde{R}$. Finally $\tilde{R} \circ k = \text{id}$ and hence \tilde{R} is a homotopy inverse to k.

*4.3.

(a) Show that any co-oriented hypersurface $\Sigma \subset \mathbb{R}^3$ inherits an almost complex structure from the vector product as follows. Let $\nu \colon \Sigma \to S^2$ be the Gauss map. Then

 $J_x(u) := \nu(x) \times u$

is an almost complex structure.

Solution. We compute J_x^2 :

$$J_x(J_x(u)) = J_x(\nu(x) \times u)$$

= $\nu(x) \times (\nu(x) \times u)$
= $\nu(x)(u \cdot \nu(x)) - u(\nu(x) \cdot \nu(x))$
= $-u$,

where the last identity follows from the formula

 $a \times (b \times c) = b(c \cdot a) - c(a \cdot b).$

and the fact that $\nu(x)$ is a unit normal vector (i.e. $u \cdot \nu(x) = 0$ and $\nu(x) \cdot \nu(x) = 1$). It follows that $J_x^2 = -$ id and J_x is a linear complex structure for each x. Hence J is an almost complex structure on Σ .

(b) Show that J is compatible with the symplectic form

$$\omega_x(v,w) = \nu(x) \cdot (v \times w)$$

(see Exercise 1.3).

Solution. For $v, w \in T_x \Sigma$ we compute

$$\omega_x(v, J_x w) = \nu(x) \cdot (v \times (\nu(x) \times w))$$

= $\nu(x) \cdot (\nu(x)(w \cdot v) - w(v \cdot \nu(x)))$
= $w \cdot v$.

Hence $\omega_x(-, J_x-)$ is the standard scalar product on $T_x\Sigma$. In particular, J and ω are compatible.

5/6

(c) Show that every co-oriented hypersurface $M \subset \mathbb{R}^7$ also carries an almost complex structure.

Solution. Since \mathbb{R}^7 also carries a vector product, the exact same proof as in (a) shows that any co-oriented hypersurface $M \subset \mathbb{R}^7$ carries an almost complex structure.

(d) Give an example of an almost complex manifold that does not admit a symplectic structure.

Solution. The sphere $S^6 \subset \mathbb{R}^7$ admits an almost complex structure by part (c). However, since $H^2(S^6) = 0$, it does not admit a symplectic structure.

Remark: There is a non-degenerate 2-form ω on S^6 given by the same formula as in (b). J is also compatible with this 2-form. However, ω is not closed.