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The most important exercises are marked with an asterisk *.

*4.1. Let Sp(2n) be the group of symplectic matrices
Sp(2n) = {A € GL(2n,R) | ATJoA = Jo},

where

0 id,
ho= (—idn 0 )

(a) Show that if ¥ € Sp(2n) then ¥~ € Sp(2n) and ¥T € Sp(2n).
Solution. First we show that ¥~! is symplectic:
T gt =0T (Wl )t = Jy = U € Sp(2n).
Taking the inverse of U7 Jy¥ = J, we get

U T = T = gt = -
—= U =
= Jo = U JUT = ()T J,u’
= U’ € Sp(2n).

(b) Show that if P € Sp(2n) is a symmetric, positive definite symplectic matrix,
then P“ € Sp(2n) for every a > 0, a € R.

Solution. To see that we can define a power of P we decompose R?" into the
eigenspaces of P:

R* = @F E;, E; = ker(\;id —P),

where A1, ..., A\x > 0 are the eigenvalues of P. Let a > 0. The power P® is
defined by P*(v) = XNv for v € E;. Let v € E; and w € E;. Then, since P is a
symplectic matrix,

Wstd (U, W) = wspa (Pv, Pw) = A\ jwsea (v, w).
In particular, either \;\; =1 or wgq(v, w) = 0. This implies
wstd (PY0, PPw) = waa (A0, Afw) = (M) weta (v, w) = wira (v, w).

Therefore, P* is symplectic.
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(c) Show that Sp(2n) N O(2n) = U(n) and that the inclusion U(n) C Sp(2n) is a

4.2.

homotopy equivalence.

|+

Hint: Consider the homotopy f;(V) = ¥ (\I/T\I/)i ,t€[0,1].

Solution. A direct calculation shows that the subgroup Sp(2n)NO(2n) consists
of those matrices

X -Y
U= <Y X) € GL(2n,R)

which satisfy XY = YTX and XX + YTY = id. This is precisely the
condition for the complex matrix U = X + ¢Y to be unitary. This shows

Sp(2n) N O(2n) = U(n).

Let ¥ € Sp(2n). By part (a), P = U1V is a symplectic matrix. Moreover, P is
symmetric and positive definite. Therefore we can apply part (b) to P and thus
(¥"w) * e Sp(2n).

In particular, f;: Sp(2n) — Sp(2n) defined as in the hint is well-defined and

takes values in Sp(2n).

We claim that r: Sp(2n) — U(n), (V) = f1(¥) is a homotopy inverse to the
inclusion ¢: U(n) < Sp(2n). Indeed, f1(¥) € Sp(2n) N O(n) = U(n) because

_1 _I\T
AW A = (V1) 2 ((xquf) > o7
= v (V') ot
= vy ly Tyl
= id,
hence r is well-defined. Moreover, f; is a homotopy from fy =id to f{ =ior.

For the converse composition, r o i = id because if ¥ € U(n), then ¥7¥ = id

and thus r(V) = (V) = V.

(a) Let Q(R?") denote the space of linear symplectic forms on R?". Show that

Q(R*") = GL(2n,R)/ Sp(2n).
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(b)

(c)

Solution. Consider the map
U: GL(2n,R) — Q(R?), U(A) == A*wgq.

We've seen in the lecture that this map is surjective. The kernel of W is precisely
the group Sp(2n). The claimed isomorphism follows.

Deduce that Q(R?") is homotopy equivalent to O(2n)/ U(n).
Hint: Use a similar strategy as in Exercise 4.1 (c).
Solution. Consider the map

j: O(2n)/U(2n) — GL(2n,R)/ Sp(2n)

induced by the inclusion O(2n) < GL(2n,R). We show that this is a homotopy
equivalence. As in Exercise 4.1, we consider the homotopy

fi0) =0 (WT0) 7 e 0,1)

This time we view it as an automorphism on GL(2n,R). Since f;(Sp(2n)) C
Sp(2n) as shown in Exercise 4.1, the map f; descends to a map

F,: GL(2n,R)/Sp(2n) — GL(2n,R)/ Sp(2n), F([¥]) = [£,()].

Moreover, f1(V) € O(2n) and f1(Sp(2n)) C U(n) and therefore Fi defines a
map R: GL(2n,R)/Sp(2n) — O(2n)/ U(n), R(¥]) = [f2(V)].

The map F; is a homotopy from Fy =id to F} = jo R. Finally Ro j =id and
hence R is a homotopy inverse to j.

Let J(R?*") denote the space of linear complex structures on R?*". Show that

J(R?) = GL(2n,R)/ GL(n, C).

Solution. Consider the map
®: GL(2n,R) — J(R*™), ®(A) := AJyA™".

We've seen in the lecture that this map is surjective. The kernel of ® is precisely
the group GL(n,C). The claimed isomorphism follows.
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(d) Show that GL(n,C) N O(2n) = U(n) and that J(R?") is homotopy equivalent

to O(2n)/ U(n). In particular, Q(R?") and J(R?") are homotopy equivalent.
Solution. Let ¥ € GL(2n,R). Then

¥ € GL(n,C) = WJ, = JyU.
If ¥ € GL(n,C)NO(2n), then
UL J v = 9vTw g, = J,.
It follows that ¥ € Sp(2n). If ¥ € Sp(2n) N O(2n), then
UJy = WUl Jy0) = JyU,
hence ¥ € GL(n,C). Putting these two observations together shows
GL(n,C) N O(2n) = Sp(2n) N O(2n)

and the first claim follows from Exercise 4.1 (c).

We now show that GL(2n,R)/ GL(n, C) is homotopy equivalent to O(2n)/ U(n).
For this, consider the map

k: O(2n)/ U(n) — GL(2n,R)/ GL(n,C)

induced by inclusion. We will again make use of the homotopy f; defined in

the hint to Exercise 4.1 (c). As a preparation, we show a complex analogue of
Exercise 4.1 (b):

Claim 1. Let P € GL(n,C) be a symmetric positive definite matriz and o > 0.
Then P* € GL(n,C).

Proof. Let E; be the eigenspaces of P and \; > 0 the eigenvalues as in Exercise

4.1.(b). Since Jy commutes with P, it follows that Jy preserves the eigenspaces.
Let v € E;. Then

P(Jo(2)) = A7 (Jo(2)) = Jo(A'2) = Jo(P?(2))-
Therefore, P*Jy = JoP® and thus P* € GL(n,C). O

Let ¥ € GL(n,C). We apply the claim to the symmetric positive definite matrix
P =UT¥. Tt follows that f;(¥) € GL(n,C). In particular, f; induces a map

F,: GL(2n,R)/GL(n,C) — GL(2n,R)/ GL(n, C), F,([¥]) = [f.()].
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*4.3.

(b)

Moreover, fi(¥) € O(2n) and fi(GL(n,C)) C GL(n,C) N O(2n) = U(n).
Therefore Fy defines a map R: GL(2n,R)/ GL(n,C) — O(2n)/ U(n), R([¥]) =
[f1(W)].

The map F} is a homotopy from Fy = id to ), = ko R. Finally Ro k = id and
hence R is a homotopy inverse to k.

Show that any co-oriented hypersurface ¥ C R? inherits an almost complex
structure from the vector product as follows. Let v: ¥ — S? be the Gauss map.
Then

Jo(u) :=v(x) X u
is an almost complex structure.

Solution. We compute J2:

Jo(Je(u)) = Jo(v(2) X u)

where the last identity follows from the formula
ax (bxc)=0b(c-a)—cla-b).

and the fact that v(z) is a unit normal vector (i.e. u-v(z) = 0and v(z)-v(z) = 1).
It follows that J? = —id and J, is a linear complex structure for each x. Hence
J is an almost complex structure on .

Show that J is compatible with the symplectic form
we(v,w) = v(x) - (v X w)

(see Exercise 1.3).

Solution. For v, w € T, we compute

X (v(z) x w))

)(w - v) —w(v-v(z)))

we (v, Jyw) =v(x) - (v
. l/(

v(x) - (

w

Hence w,(—, J,—) is the standard scalar product on T, %. In partiucular, J and
w are compatible.
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(c)

(d)

Show that every co-oriented hypersurface M C R” also carries an almost complex
structure.

Solution. Since R” also carries a vector product, the exact same proof as in
(a) shows that any co-oriented hypersurface M C R carries an almost complex
structure.

Give an example of an almost complex manifold that does not admit a symplectic
structure.

Solution. The sphere S¢ C R” admits an almost complex structure by part
(c). However, since H%(S®) = 0, it does not admit a symplectic structure.

Remark: There is a non-degenerate 2-form w on S° given by the same formula
as in (b). J is also compatible with this 2-form. However, w is not closed.



