The most important exercises are marked with an asterisk *.
5.1. Let $\omega \in \Omega^{2}(M)$ be a non-degenerate 2-form and $J \in \mathcal{J}_{c}(M, \omega)$. Let ∇ denote the Levi-Civita connection associated to the Riemannian metric $g_{J}(v, w):=\omega(v, J w)$.
(a) Show that for any $X \in \Gamma(T M)$, we have

$$
\left(\nabla_{X} J\right) J+J\left(\nabla_{X} J\right)=0
$$

Solution. Since the map J can be thought of as a section of the Hom-bundle $\operatorname{Hom}(T M, T M) \rightarrow M$, the connection applied to J is given by

$$
\left(\nabla_{X} J\right) Y=\nabla_{X}(J Y)-J \nabla_{X} Y
$$

We thus have:

$$
\begin{aligned}
\left(\nabla_{X} J\right) J Y+J\left(\left(\nabla_{X} J\right) Y\right) & =\nabla_{X}\left(J^{2} Y\right)-J \nabla_{X}(J Y)+J \nabla_{X}(J Y)-J^{2} \nabla_{X} Y \\
& =\nabla_{X}(-Y)-\left(-\nabla_{X} Y\right) \\
& =-\nabla_{X} Y+\nabla_{X} Y=0 .
\end{aligned}
$$

(b) Let $X, Y, Z \in \Gamma(T M)$ be three vector fields. Show that

$$
g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(Y,\left(\nabla_{X} J\right) Z\right)=0 .
$$

Solution. Recall that, since ∇ is a Levi-Civita connection, it satisfies the Ricci identity:

$$
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right)
$$

Note that

$$
g_{J}(J Y, Z)+g_{J}(Y, J Z)=\omega(J Y, J Z)+\omega(Y,-Z)=0
$$

Differentiating the above identity in direction of X, we get

$$
\begin{aligned}
0= & X\left(g_{J}(J Y, Z)+g_{J}(Y, J Z)\right) \\
= & g_{J}\left(\nabla_{X}(J Y), Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right)+g_{J}\left(\nabla_{X} Y, J Z\right)+g_{J}\left(Y, \nabla_{X}(J Z)\right) \\
= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(J \nabla_{X} Y, Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right)+g_{J}\left(\nabla_{X} Y, J Z\right) \\
& \quad+g_{J}\left(Y,\left(\nabla_{X} J\right) Z\right)+g_{J}\left(Y, J \nabla_{X} Z\right) \\
= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(J \nabla_{X} Y, Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right)-g_{J}\left(J \nabla_{X} Y, Z\right) \\
& \quad+g_{J}\left(Y,\left(\nabla_{X} J\right) Z\right)-g_{J}\left(J Y, \nabla_{X} Z\right) \\
= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(Y,\left(\nabla_{X} J\right) Z\right)
\end{aligned}
$$

(c) Show that

$$
\mathrm{d} \omega=g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(\left(\nabla_{Y} J\right) Z, X\right)+g_{J}\left(\left(\nabla_{Z} J\right) X, Y\right) .
$$

Solution. We use the identity

$$
\begin{aligned}
\mathrm{d} \omega(X, Y, Z)= & \nabla_{X}(\omega(Y, Z))+\nabla_{Y}(\omega(Z, X))+\nabla_{Z}(\omega(X, Y)) \\
& -\omega([X, Y], Z)-\omega([Y, Z], X)-\omega([Z, X], Y),
\end{aligned}
$$

where $[X, Y]=\nabla_{X} Y-\nabla_{Y} X$. Plugging in $\omega(v, w)=g_{J}(J v, w)$ we get

$$
\begin{aligned}
\nabla_{X}(\omega(Y, Z))-\omega([X, Y], Z)= & \nabla_{X}\left(g_{J}(J Y, Z)\right)-g_{J}\left(J\left(\nabla_{X} Y-\nabla_{Y} X\right), Z\right) \\
= & g_{J}\left(\nabla_{X}(J Y), Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right) \\
& -g_{J}\left(J \nabla_{X} Y, Z\right)+g_{J}\left(J \nabla_{Y} X, Z\right) \\
= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right)+g_{J}\left(J \nabla_{Y} X, Z\right) .
\end{aligned}
$$

Similarly we treat the other terms in (c). We therefore get

$$
\begin{aligned}
\mathrm{d} \omega(X, Y, Z)= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right)+g_{J}\left(J \nabla_{Y} X, Z\right) \\
& g_{J}\left(\left(\nabla_{Y} J\right) Z, X\right)+g_{J}\left(J Z, \nabla_{Y} X\right)+g_{J}\left(J \nabla_{Z} Y, X\right) \\
& g_{J}\left(\left(\nabla_{Z} J\right) X, Y\right)+g_{J}\left(J X, \nabla_{Z} Y\right)+g_{J}\left(J \nabla_{X} Z, Y\right) \\
= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(J Y, \nabla_{X} Z\right)-g_{J}\left(\nabla_{Y} X, J Z\right) \\
& g_{J}\left(\left(\nabla_{Y} J\right) Z, X\right)+g_{J}\left(J Z, \nabla_{Y} X\right)-g_{J}\left(\nabla_{Z} Y, J X\right) \\
& g_{J}\left(\left(\nabla_{Z} J\right) X, Y\right)+g_{J}\left(J X, \nabla_{Z} Y\right)-g_{J}\left(\nabla_{X} Z, J Y\right) \\
= & g_{J}\left(\left(\nabla_{X} J\right) Y, Z\right)+g_{J}\left(\left(\nabla_{Y} J\right) Z, X\right)+g_{J}\left(\left(\nabla_{Z} J\right) X, Y\right) .
\end{aligned}
$$

5.2. Let $\omega \in \Omega^{2}(M), J \in \mathcal{J}_{c}(M, \omega), g_{J}$ and ∇ be as above. Show that the following are equivalent:
(i) $\nabla J=0$
(ii) J is integrable and ω is closed.

Solution. If $\nabla J=0$, then $\mathrm{d} \omega=0$ follows from 5.1.(c). To show that J is integrable, we expand the Nijenhuis tensor:

$$
\begin{aligned}
N_{J}(X, Y)= & {[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y] } \\
= & \nabla_{J X}(J Y)-\nabla_{J Y}(J X)-J \nabla_{J X} Y+J \nabla_{Y}(J X) \\
& -J \nabla_{X}(J Y)+J \nabla_{J Y} X-\nabla_{X} Y+\nabla_{Y} X \\
= & \left(\nabla_{J X} J\right) Y+J \nabla_{J X} Y-\left(\nabla_{J Y} J\right) X-J \nabla_{J Y} X \\
& -J \nabla_{J X} Y+J\left(\nabla_{Y} J\right) X+J^{2} \nabla_{Y} X \\
& -J\left(\nabla_{X} J\right) Y-J^{2} \nabla_{X} Y+J \nabla_{J Y} X-\nabla_{X} Y+\nabla_{Y} X \\
= & \left(\nabla_{J X} J\right) Y-\left(\nabla_{J Y} J\right) X+\left(\nabla_{X} J\right) J Y-\left(\nabla_{Y} J\right) J X,
\end{aligned}
$$

where in the last equality we used 5.1.(a). Hence $N_{J}=0$ if $\nabla J=0$. We conclude that J is integrable by the Newlander-Nirenberg Theorem.

Conversely, suppose J is integrable and ω is closed. Using the above calculation we see that

$$
\begin{aligned}
& g_{J}\left(N_{J}(X, Y), Z\right)= g_{J}\left(\left(\nabla_{J X} J\right) Y-\left(\nabla_{J Y} J\right) X+\left(\nabla_{X} J\right) J Y-\left(\nabla_{Y} J\right) J X, Z\right) \\
&\left.\stackrel{5.1 .(b)}{=} g_{J}\left(\left(\nabla_{J X} J\right) Y, Z\right)+g_{J}\left(X,\left(\nabla_{J Y} J\right) Z\right)+g_{J}\left(\nabla_{X} J\right) J Y, Z\right)+g_{J}\left(J X,\left(\nabla_{Y} J\right) Z\right) \\
& \stackrel{5.1 .(a)}{=} g_{J}\left(\left(\nabla_{J X} J\right) Y, Z\right)+g_{J}\left(\left(\nabla_{Y} J\right) Z, J X\right)+g_{J}\left(\left(\nabla_{Z} J\right) J X, Y\right) \\
&+g_{J}\left(\left(\nabla_{X} J\right) J Y, Z\right)+g_{J}\left(\left(\nabla_{J Y} J\right) Z, X\right)+g_{J}\left(\left(\nabla_{Z} J\right) X, J Y\right) \\
&+2 g_{J}\left(J\left(\nabla_{Z} J\right) X, Y\right) \\
& \stackrel{\text { 5.1.(c) }}{=} \mathrm{d} \omega(J X, Y, Z)+\mathrm{d} \omega(X, J Y, Z)+2 g_{J}\left(J\left(\nabla_{Z} J\right) X, Y\right) .
\end{aligned}
$$

We conclude that if $N_{J}=0$ and $\mathrm{d} \omega=0$, then the term $g_{J}\left(J\left(\nabla_{Z} J\right) X, Y\right)$ has to vanish for all X, Y, Z and thus $\nabla_{Z} J=0$ for all Z.
*5.3. Let $B(r) \subset \mathbb{R}^{2}$ denote the open disc of radius r. We use the coordinates $x_{1}, y_{1}, x_{2}, y_{2}$ and the symplectic form $\mathrm{d} y_{1} \wedge \mathrm{~d} x_{1}+\mathrm{d} y_{2} \wedge \mathrm{~d} x_{2}$ on \mathbb{R}^{4}. Consider the product $B(r) \times B\left(\frac{1}{r}\right) \subset \mathbb{R}^{4}$.
(a) Show that there exists a volume preserving diffeomorphism

$$
\psi: B(1) \times B(1) \rightarrow B(r) \times B\left(\frac{1}{r}\right)
$$

for any $r>0$.
Solution. The map

$$
\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\left(r x_{1}, \ldots, r x_{n}, \frac{1}{r} y_{1}, \ldots, \frac{1}{r} y_{n}\right)
$$

is a volume-preserving map on $\mathbb{R}^{2 n}$ restricting do a diffeomorphism from $B(1) \times B(1)$ to $B(r) \times B\left(\frac{1}{r}\right)$.
(b) Let c be symplectic capacity in dimension 4 . Show that

$$
c\left(B(r) \times B\left(\frac{1}{r}\right), \omega_{\mathrm{std}}\right) \rightarrow 0
$$

as $r \rightarrow 0$.

Solution. For any $r>0$ we can symplectically embed $B(r) \times B\left(\frac{1}{r}\right)$ into the cylinder $Z(r)$ by the standard inclusion. In particular,

$$
0<c\left(B(r) \times B\left(\frac{1}{r}\right)\right) \leq c(Z(r))=\pi r^{2} .
$$

So clearly $c\left(B(r) \times B\left(\frac{1}{r}\right)\right) \rightarrow 0$ as $r \rightarrow 0$.
(c) Let $0<r_{1} \leq r_{2}$ and $0<s_{1} \leq s_{2}$. Show that there exists a symplectic diffeomorphism

$$
\varphi: B\left(r_{1}\right) \times B\left(r_{2}\right) \rightarrow B\left(s_{1}\right) \times B\left(s_{2}\right)
$$

if and only if $r_{1}=s_{1}$ and $r_{2}=s_{2}$.
Hint: You may use the fact that a symplectic capacity exists.
Solution. Suppose φ is a symplectic diffeomorphism. Consider the symplectic embedding

$$
B^{4}\left(r_{1}\right) \rightarrow B\left(r_{1}\right) \times B\left(r_{2}\right) \xrightarrow{\varphi} B\left(s_{1}\right) \times B\left(s_{2}\right) \rightarrow B\left(s_{1}\right) \times \mathbb{R}^{2}=Z\left(s_{1}\right) .
$$

It follows from monotonicity of a symplectic capacity c that

$$
\pi r_{1}^{2} \leq c\left(B^{4}\left(r_{1}\right)\right) \leq c\left(Z\left(s_{1}\right)\right)=\pi s_{1}^{2}
$$

hence $r_{1} \leq s_{1}$. Applying the same argument to φ^{-1} yields $s_{1} \leq r_{1}$, thus $r_{1}=s_{1}$. Now φ is also volume-preserving, hence $r_{1} r_{2}=s_{1} s_{2}$. The result follows.

Remark: The generalization of (c) to the product of n open symplectic 2-balls in $\mathbb{R}^{2 n}$ is true. The proof is more subtle and needs more machinery (e.g. symplectic homology).
*5.4. Given a linear subspace $W \subset \mathbb{R}^{2 n}$, its symplectic complement is defined by $W^{\perp}=\left\{v \in \mathbb{R}^{2 n} \mid \omega_{\text {std }}(v, w)=0\right.$ for all $\left.w \in W\right\}$.
The subspace W is called isotropic if $W \subset W^{\perp}$.
(a) Show that $\left(W^{\perp}\right)^{\perp}=W$ and $\operatorname{dim} W^{\perp}=\operatorname{dim} \mathbb{R}^{2 n}-\operatorname{dim} W$.

Solution. Define the linear map

$$
\iota_{\omega}: \mathbb{R}^{2 n} \rightarrow W^{*}, w \mapsto \omega_{\mathrm{std}}(-, w) .
$$

This has W^{\perp} as kernel and it is surjective because $\omega_{\text {std }}$ is non-degenerate. Therefore

$$
\operatorname{dim} \mathbb{R}^{2 n}=\operatorname{dim} \operatorname{ker} \iota_{\omega}+\operatorname{dimim} \iota_{\omega}=\operatorname{dim} W^{\perp}+\operatorname{dim} W^{*}=\operatorname{dim} W^{\perp}+\operatorname{dim} W
$$

$\left(W^{\perp}\right)^{\perp}=W$ is a direct calculation.
(b) Show that if W is isotropic then $\operatorname{dim} W \leq n$.

Solution. By the previous exercise we have

$$
2 n=\operatorname{dim} \mathbb{R}^{2 n}=\operatorname{dim} W+\operatorname{dim} W^{\perp} \geq 2 \operatorname{dim} W
$$

where we used $\operatorname{dim} W \leq \operatorname{dim} W^{\perp}$ for isotropic W. Thus $n \geq \operatorname{dim} W$.
(c) Let c be a symplectic capacity. Let $\Omega \subset \mathbb{R}^{2 n}$ be an open bounded set containing 0 and $W \subset \mathbb{R}^{2 n}$ a linear subspace of codimension 2 . Show that

$$
c(\Omega+W)=+\infty
$$

if W^{\perp} is isotropic. Here,

$$
\Omega+W=\left\{x+w \in \mathbb{R}^{2 n} \mid x \in \Omega, w \in W\right\}
$$

Solution. Since codim $W=2$ it follows from part (a) that $\operatorname{dim} W^{\perp}=2$. Since ω vanishes on W^{\perp} we can assume that

$$
W=\left\{(x, y) \mid x_{1}=x_{2}=0\right\} .
$$

Indeed, we claim that for any s-dimensional subspace $S \subset V$ of an $2 n$ dimensional vector space V such that $\left.\omega\right|_{S}=0$ a basis $\left\{a_{1}, \ldots, a_{s}\right\}$ of S can be extended to a symplectic basis of V. To prove the claim, we argue as follows. If $s=n$, we have a Lagrangian subspace and we saw this case in lectures. If $s<n$, then the system

$$
\omega\left(a_{1}, v\right)=0, \quad \omega\left(a_{2}, v\right)=0, \quad \ldots \quad \omega\left(a_{s}, v\right)=0 \quad \text { for } v \in V
$$

consists of s linearly independent equations. Since $\operatorname{dim} V=2 n$, the system has $2 n-s$ independent solutions. There will thus exist some $a_{s+1} \in V$ that is linearly independent of $\left\{a_{1}, \ldots, a_{s}\right\}$ and that satisfies the system above. This process can be repeated until we get a set $\left\{a_{1}, \ldots, a_{n}\right\}$ of linearly independent vectors satisfying $\omega\left(a_{i}, a_{j}\right)=0$ for $1 \leq i, j \leq n$.

Using non-degenerecy of ω we can find vectors c_{i} for $1 \leq i \leq n$ such that $\omega\left(a_{i}, c_{j}\right)=\delta_{i j}$ and such that the $2 n$ vectors a_{i} and c_{j} are linearly independent. We are not yet done because $\omega\left(c_{i}, c_{j}\right) \neq 0$. To fix this, set $b_{i}=c_{j}+\sum_{j=1}^{n} s_{i j} a_{j}$. To get the constants $s_{i j}$, we solve $\omega\left(b^{i}, b^{j}\right)=0$. This concludes the proof of our claim.

Now applying the claim to $V=\mathbb{R}^{2 n}$ and $S=W^{\perp}$, we get a symplectic basis such that $W^{\perp}=\operatorname{span}\left\{a_{1}, a_{2}\right\}$. We can then apply linear symplectic transformation
to send a_{1}, \ldots, a_{s} to e_{1}, \ldots, e_{s}, where $\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ is the standard symplectic basis.

We show that any ball can be symplectically embedded into $\Omega+W$. To see this, define the linear symplectic map

$$
\varphi(x, y) \mapsto\left(\epsilon x, \frac{1}{\epsilon} y\right)
$$

For small enough ϵ, the map φ restricts to a symplectic embedding of $B(R) \rightarrow$ $\Omega+W$. By monotonicity

$$
\pi R^{2}=c(B(R)) \leq c(\Omega+W)
$$

Since $R>0$ was arbitrary, it follows that $c(\Omega+W)=+\infty$.
(d) Let $\Omega \subset \mathbb{R}^{2 n}$ and $W \subset \mathbb{R}^{2 n}$ be as above. Show that

$$
0<c(\Omega+W)<+\infty
$$

if W^{\perp} is not isotropic.
Solution. Since W^{\perp} has dimension 2 and is not isotropic, it is actually symplectic, i.e. $\left.\omega\right|_{W^{\perp}}$ is non-degenerate. Indeed, let $u \in W^{\perp}$. We claim there exists $v \in W^{\perp}$ that is linearly independent from u and such that $\omega(u, v) \neq 0$. If such a v did not exist, then we would have $\omega(u, v)=0$, which would imply $v \in W$ by the definition of W^{\perp} and the fact that $u \in W^{\perp}$. But similarly, since $v \in W^{\perp}$, we would have that $\omega(v, u)=0$, which implies $u \in W$. In other words, $W^{\perp} \subset W$. This contradicts our assumption that W^{\perp} is not isotropic. Therefore W^{\perp} must be symplectic and disjoint (except at the origin) from W. In other words, $\mathbb{R}^{2 n}=W^{\perp} \oplus W$.
Choosing a symplectic basis $\left(e_{1}, f_{1}\right)$ in W^{\perp} we can assume, by a linear change of coordinates, that

$$
W=\left\{(x, y) \mid x_{1}=y_{1}=0\right\}
$$

Since Ω is bounded, there exists a real number N such that for $z=(x, y) \in \Omega+W$, $x_{1}^{2}+y_{1}^{2}<N^{2}$. That is, $\Omega+W \subset Z(N)$. Hence

$$
c(\Omega+W) \leq c(Z(N))=\pi N^{2}<\infty .
$$

The inequality $c>0$ is always true, as we can always symplectically embed a small enough ball by Darboux's theorem.

