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The most important exercises are marked with an asterisk *.

5.1. Let w € Q*(M) be a non-degenerate 2-form and J € J.(M,w). Let V denote
the Levi-Civita connection associated to the Riemannian metric g; (v, w) = w(v, Jw).

(a) Show that for any X € I'(T'M), we have
(VxJ)J + J(VxJ)=0.
Solution. Since the map J can be thought of as a section of the Hom-bundle
Hom (T M, TM) — M, the connection applied to J is given by
(VxJ)Y =Vx(JY) - JVxY.

We thus have:
(Vx)JY + J(VxJ)Y) =Vx(J?Y) = JVx(JY) + JVx(JY) — J*VxY
= Vx(=Y) = (=VxY)
= VY +VxY =0.

(b) Let X,Y,Z € I'(TM) be three vector fields. Show that
9,(Vx )Y, Z) 4+ 9,(Y,(VxJ)Z) = 0.
Solution. Recall that, since V is a Levi-Civita connection, it satisfies the Ricci
identity:
X(g(Y,2)) = g(VxY, Z) + g(Y,VxZ).

Note that
91(JY. Z) + gs(Y. T Z) = w(JY, T Z) + w(Y,~Z) = 0.
Differentiating the above identity in direction of X, we get

0=X(9s(JY, Z) + g;(Y, J2))
=gs(Vx(JY), Z) + 9;,(JY,VxZ) + 9,(VxY,JZ) + g;(Y,Vx(JZ))
=g,(Vx )Y, Z) +9;(JVxY, Z) 4+ g;(JY,VxZ) + 9;(VxY, JZ)
+ 95V, (Vx ) Z) + g;(Y, IV x Z)
= g;(Vx )Y, Z) + g;(IVxY,Z) + g;(JY,VxZ) — g;(JVxY, Z)
+ 9,V (VxJ)Z) — g;(JY,VxZ)
=9,(Vx )Y, Z)+ 9,(Y,(VxJ)Z)
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(c) Show that
dw = gJ<<ij)Y, Z) + gJ((VyJ)Z, X) +9J((VZJ)X, Y)

Solution. We use the identity
dw(X,Y,Z2) =Vx(w(Y,2)) + Vy(w(Z,X)) + Vz(w(X,Y))
—w([X, Y], Z) —w([Y, Z], X) —w([Z, X].Y),
where [X,Y] = VxY — VyX. Plugging in w(v,w) = g;(Jv,w) we get
V(Y. 2)) — (X, Y], Z) = Vi (0s(JY. 2)) — ,(J(VxY — VyX),2)
=g9/(Vx(JY),Z)+ g;(JY,VxZ)
— 9,(JVXY, Z2) + g;(JVy X, Z)
= 9;(Vx )Y, Z) + 9;,(JY,VxZ) + g,(JVy X, Z).
Similarly we treat the other terms in (c¢). We therefore get
dw(X,Y,Z) = g;,(VxJ)Y, Z) + g;(JY,VxZ) + g;(JVy X, Z)
9, (Vy D) Z, X) + 9,(JZ,VyX) + g,(JV 7Y, X)
95(Vz)X,Y) + 9,(JX,V2Y) + g;,(JVxZ,Y)
= 9;(Vx )Y, Z) + 9;(JY,VxZ) — g,(Vy X, JZ)
9, (Vy D) Z,X) + 9,(JZ,VyX) — g,(V2zY, JX)
95(Vz )X, Y) +9,(JX, VYY) — g,(VxZ,JY)
= 9,(Vx )Y, Z) + 9,((Vy )) 2, X) + 9, (V2J) X, Y).

5.2. Letw e Q*(M), J € J.(M,w), g5 and V be as above. Show that the following
are equivalent:

(i) VJ=0
(ii) J is integrable and w is closed.

Solution. If VJ = 0, then dw = 0 follows from 5.1.(c). To show that J is integrable,
we expand the Nijenhuis tensor:
N;(X,)Y)=[JX,JY]|-JJX,Y] - JX,JY] - [X,Y]
=Vx(JY) =V (JX)—JV;xY + JVy(JX)
—JVx(JY)+ JVy X —VxY +VyX
=(Vyx)Y +JV;xY — (Vv J)X — IV v X
— JVxY + J(Vy )X + J*Vy X
— J(VxJ)Y — IPVxY + JV,y X — VxY + Vy X
= (VyxJ)Y = (Vyy )X + (VxJ)JY — (VyJ)JX,
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where in the last equality we used 5.1.(a). Hence N; = 0 if V.J = 0. We conclude
that J is integrable by the Newlander—Nirenberg Theorem.

Conversely, suppose J is integrable and w is closed. Using the above calculation we
see that

gJ(NJ(Xa Y)» Z) = QJ((VJXJ)Y - (VJYJ)X + (VXJ)JY - (VYJ)JX, Z)
T G (Vax )Y, Z) + 95X, (Vv 1) Z) + 95(V 5 J)JY, Z) + g, (TX, (Vy J) Z)

LD (Vax DY, Z) + gs(Vy D)2, TX) + g5(V2J)IX, Y)
+9,(VxD)JY, Z) 4+ g,(Voy J)Z, X) + 9;((VzJ) X, JY)
+295(J(V2)X,Y)

L) 4W(IX,Y, Z) + dw(X, Y, Z) + 29,(J (V2 1) X, Y).

We conclude that if N; = 0 and dw = 0, then the term g;(J(VzJ)X,Y) has to vanish
for all X,Y,Z and thus VzJ = 0 for all Z.

*5.3. Let B(r) C R? denote the open disc of radius r. We use the coordinates

T1, Y1, T, Y2 and the symplectic form dy; A dzy + dys A dze on R Consider the
product B(r) x B (%) C R

(a) Show that there exists a volume preserving diffeomorphism

v: B(1) x B(1) = B(r) x B (1>

r
for any r > 0.
Solution. The map

1 1
¢(xl>"'axnay17"'ayn> = (Txlaarxna;ylaa;yn)

is a volume-preserving map on R?" restricting do a diffeomorphism from

B(1) x B(1) to B(r) x B (2).

(b) Let ¢ be symplectic capacity in dimension 4. Show that

c <B(r) X B <1ln) ,wstd) —0

as r — 0.
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(c)

Solution. For any r > 0 we can symplectically embed B(r) x B (%) into the
cylinder Z(r) by the standard inclusion. In particular,

0<c (B(r) x B (1>> <c(Z(r)) = mr’.

r

So clearly ¢ (B(T) x B (%)) —0asr—0.

Let 0 < < rygand 0 < s; < s9. Show that there exists a symplectic
diffeomorphism

@: B(r1) x B(rg) — B(s1) x B(s2)
if and only if r; = s; and 79 = ss.
Hint: You may use the fact that a symplectic capacity exists.

Solution. Suppose ¢ is a symplectic diffeomorphism. Consider the symplectic
embedding

B*(r1) — B(r1) x B(ry) & B(s1) x B(sy) = B(s1) x R? = Z(s).
It follows from monotonicity of a symplectic capacity ¢ that
12 < e(BY(r)) < o(Z(s1)) = 757,

hence m < s1. Applying the same argument to ¢ ~! yields s; < rq, thus 7| = s;.
Now ¢ is also volume-preserving, hence r7ry = s155. The result follows.

Remark: The generalization of (c¢) to the product of n open symplectic 2-balls in
R?" is true. The proof is more subtle and needs more machinery (e.g. symplectic
homology).

*5.4.

Given a linear subspace W C R?", its symplectic complement is defined by

W+ = {v € R |wgq(v,w) = 0 for all w € W}.

The subspace W is called isotropic if W C W+,

(a)

Show that (W+4)+ =W and dim W+ = dim R*" — dim W'.
Solution. Define the linear map
Lo R = W* w = wya(—, w).

This has W+ as kernel and it is surjective because wgq is non-degenerate.
Therefore

dim R?" = dim ker ¢, + dim im ¢, = dim W+ + dim W* = dim W+ + dim W.

(WH)t =W is a direct calculation.



D-MATH Symplectic Geometry ETH Ziirich
Dr. Patricia Dietzsch Sheet 5 Solutions HS 2023

(b)

(c)

Show that if W is isotropic then dim W < n.

Solution. By the previous exercise we have
2n = dimR?" = dim W + dim W+ > 2dim W,

where we used dim W < dim W+ for isotropic W. Thus n > dim W.

Let ¢ be a symplectic capacity. Let Q C R?" be an open bounded set containing
0 and W C R?" a linear subspace of codimension 2. Show that

c(Q+W) =400
if W+ is isotropic. Here,

Q+W={r+weR"|zcQuwecW}

Solution. Since codim W = 2 it follows from part (a) that dim W+ = 2. Since
w vanishes on W+ we can assume that

W ={(z,y) | xr1 = 2o = 0}.

Indeed, we claim that for any s-dimensional subspace S C V of an 2n-
dimensional vector space V such that w|s = 0 a basis {a,...,as} of S can be
extended to a symplectic basis of V. To prove the claim, we argue as follows.
If s = n, we have a Lagrangian subspace and we saw this case in lectures. If
s < n, then the system

w(ai,v) =0, w(ag,v) =0, . w(as,v) =0 forveV

consists of s linearly independent equations. Since dimV = 2n, the system
has 2n — s independent solutions. There will thus exist some as,1 € V that is
linearly independent of {ay,...,as} and that satisfies the system above. This
process can be repeated until we get a set {ay,...,a,} of linearly independent
vectors satisfying w(a;,a;) =0 for 1 <i,j <n.

Using non-degenerecy of w we can find vectors ¢; for 1 < ¢ < n such that
w(a;, ¢j) = 6;; and such that the 2n vectors a; and c¢; are linearly independent.
We are not yet done because w(c;, ¢;) # 0. To fix this, set b; = ¢; + X7, sija;.
To get the constants s;;, we solve w(b’,b) = 0. This concludes the proof of our
claim.

Now applying the claim to V' = R?” and S = W+, we get a symplectic basis such
that W+ = span{a, as}. We can then apply linear symplectic transformation
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(d)

to send ay,...,as to ey,...,es, where {ey,... e, f1,..., fn} is the standard
symplectic basis.

We show that any ball can be symplectically embedded into 24+ W. To see this,
define the linear symplectic map

ez, y) = (ex, 1y> :

For small enough ¢, the map ¢ restricts to a symplectic embedding of B(R) —
Q2 + W. By monotonicity

TR* = ¢(B(R)) < c(Q+ W).

Since R > 0 was arbitrary, it follows that ¢(Q 4+ W) = +o0.
Let Q C R*™ and W C R*" be as above. Show that

0<c(Q+W) < 400

if W+ is not isotropic.

Solution. Since W+ has dimension 2 and is not isotropic, it is actually
symplectic, i.e. w|y L is non-degenerate. Indeed, let u € W+, We claim there
exists v € W+ that is linearly independent from u and such that w(u,v) # 0.
If such a v did not exist, then we would have w(u,v) = 0, which would imply
v € W by the definition of W+ and the fact that v € W+. But similarly, since
v € W+, we would have that w(v,u) = 0, which implies v € W. In other words,
W+ c W. This contradicts our assumption that W+ is not isotropic. Therefore
W+ must be symplectic and disjoint (except at the origin) from W. In other
words, R =W+ @ W.

Choosing a symplectic basis (e, f1) in W we can assume, by a linear change
of coordinates, that

W =A{(z,y)[21 =y = 0}

Since Q is bounded, there exists a real number N such that for z = (z,y) € Q+W,
r? 4y} < N?. That is, Q + W C Z(N). Hence

c(Q+ W) <e(Z(N)) =7N? < 0.

The inequality ¢ > 0 is always true, as we can always symplectically embed a
small enough ball by Darboux’s theorem.



