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The most important exercises are marked with an asterisk *.

5.1. Let ω ∈ Ω2(M) be a non-degenerate 2-form and J ∈ Jc(M,ω). Let ∇ denote
the Levi-Civita connection associated to the Riemannian metric gJ(v, w) := ω(v, Jw).

(a) Show that for any X ∈ Γ(TM), we have

(∇XJ)J + J(∇XJ) = 0.

Solution. Since the map J can be thought of as a section of the Hom-bundle
Hom(TM, TM) → M , the connection applied to J is given by

(∇XJ)Y = ∇X(JY ) − J∇XY.

We thus have:
(∇XJ)JY + J((∇XJ)Y ) = ∇X(J2Y ) − J∇X(JY ) + J∇X(JY ) − J2∇XY

= ∇X(−Y ) − (−∇XY )
= −∇XY + ∇XY = 0.

(b) Let X, Y, Z ∈ Γ(TM) be three vector fields. Show that

gJ((∇XJ)Y, Z) + gJ(Y, (∇XJ)Z) = 0.

Solution. Recall that, since ∇ is a Levi-Civita connection, it satisfies the Ricci
identity:

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

Note that

gJ(JY, Z) + gJ(Y, JZ) = ω(JY, JZ) + ω(Y,−Z) = 0.

Differentiating the above identity in direction of X, we get

0 = X(gJ(JY, Z) + gJ(Y, JZ))
= gJ(∇X(JY ), Z) + gJ(JY,∇XZ) + gJ(∇XY, JZ) + gJ(Y,∇X(JZ))
= gJ((∇XJ)Y, Z) + gJ(J∇XY, Z) + gJ(JY,∇XZ) + gJ(∇XY, JZ)

+ gJ(Y, (∇XJ)Z) + gJ(Y, J∇XZ)
= gJ((∇XJ)Y, Z) + gJ(J∇XY, Z) + gJ(JY,∇XZ) − gJ(J∇XY, Z)

+ gJ(Y, (∇XJ)Z) − gJ(JY,∇XZ)
= gJ((∇XJ)Y, Z) + gJ(Y, (∇XJ)Z)
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(c) Show that
dω = gJ((∇XJ)Y, Z) + gJ((∇Y J)Z,X) + gJ((∇ZJ)X, Y ).

Solution. We use the identity
dω(X, Y, Z) = ∇X(ω(Y, Z)) + ∇Y (ω(Z,X)) + ∇Z(ω(X, Y ))

− ω([X, Y ], Z) − ω([Y, Z], X) − ω([Z,X], Y ),
where [X, Y ] = ∇XY − ∇YX. Plugging in ω(v, w) = gJ(Jv, w) we get

∇X(ω(Y, Z)) − ω([X, Y ], Z) = ∇X(gJ(JY, Z)) − gJ(J(∇XY − ∇YX), Z)
= gJ(∇X(JY ), Z) + gJ(JY,∇XZ)

− gJ(J∇XY, Z) + gJ(J∇YX,Z)
= gJ((∇XJ)Y, Z) + gJ(JY,∇XZ) + gJ(J∇YX,Z).

Similarly we treat the other terms in (c). We therefore get
dω(X, Y, Z) = gJ((∇XJ)Y, Z) + gJ(JY,∇XZ) + gJ(J∇YX,Z)

gJ((∇Y J)Z,X) + gJ(JZ,∇YX) + gJ(J∇ZY,X)
gJ((∇ZJ)X, Y ) + gJ(JX,∇ZY ) + gJ(J∇XZ, Y )

= gJ((∇XJ)Y, Z) + gJ(JY,∇XZ) − gJ(∇YX, JZ)
gJ((∇Y J)Z,X) + gJ(JZ,∇YX) − gJ(∇ZY, JX)
gJ((∇ZJ)X, Y ) + gJ(JX,∇ZY ) − gJ(∇XZ, JY )

= gJ((∇XJ)Y, Z) + gJ((∇Y J)Z,X) + gJ((∇ZJ)X, Y ).

5.2. Let ω ∈ Ω2(M), J ∈ Jc(M,ω), gJ and ∇ be as above. Show that the following
are equivalent:

(i) ∇J = 0

(ii) J is integrable and ω is closed.

Solution. If ∇J = 0, then dω = 0 follows from 5.1.(c). To show that J is integrable,
we expand the Nijenhuis tensor:

NJ(X, Y ) = [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X, Y ]
= ∇JX(JY ) − ∇JY (JX) − J∇JXY + J∇Y (JX)

− J∇X(JY ) + J∇JYX − ∇XY + ∇YX

= (∇JXJ)Y + J∇JXY − (∇JY J)X − J∇JYX

− J∇JXY + J(∇Y J)X + J2∇YX

− J(∇XJ)Y − J2∇XY + J∇JYX − ∇XY + ∇YX

= (∇JXJ)Y − (∇JY J)X + (∇XJ)JY − (∇Y J)JX,
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where in the last equality we used 5.1.(a). Hence NJ = 0 if ∇J = 0. We conclude
that J is integrable by the Newlander–Nirenberg Theorem.

Conversely, suppose J is integrable and ω is closed. Using the above calculation we
see that

gJ(NJ(X, Y ), Z) = gJ((∇JXJ)Y − (∇JY J)X + (∇XJ)JY − (∇Y J)JX,Z)
5.1.(b)= gJ((∇JXJ)Y, Z) + gJ(X, (∇JY J)Z) + gJ(∇XJ)JY, Z) + gJ(JX, (∇Y J)Z)
5.1.(a)= gJ((∇JXJ)Y, Z) + gJ((∇Y J)Z, JX) + gJ((∇ZJ)JX, Y )

+ gJ((∇XJ)JY, Z) + gJ((∇JY J)Z,X) + gJ((∇ZJ)X, JY )
+ 2gJ(J(∇ZJ)X, Y )

5.1.(c)= dω(JX, Y, Z) + dω(X, JY, Z) + 2gJ(J(∇ZJ)X, Y ).

We conclude that if NJ = 0 and dω = 0, then the term gJ(J(∇ZJ)X, Y ) has to vanish
for all X, Y, Z and thus ∇ZJ = 0 for all Z.

*5.3. Let B(r) ⊂ R2 denote the open disc of radius r. We use the coordinates
x1, y1, x2, y2 and the symplectic form dy1 ∧ dx1 + dy2 ∧ dx2 on R4. Consider the
product B(r) ×B

(
1
r

)
⊂ R4.

(a) Show that there exists a volume preserving diffeomorphism

ψ : B(1) ×B(1) → B(r) ×B
(1
r

)
for any r > 0.

Solution. The map

ψ(x1, . . . , xn, y1, . . . , yn) = (rx1, . . . , rxn,
1
r
y1, . . . ,

1
r
yn)

is a volume-preserving map on R2n restricting do a diffeomorphism from
B(1) ×B(1) to B(r) ×B

(
1
r

)
.

(b) Let c be symplectic capacity in dimension 4. Show that

c
(
B(r) ×B

(1
r

)
, ωstd

)
→ 0

as r → 0.
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Solution. For any r > 0 we can symplectically embed B(r) ×B
(

1
r

)
into the

cylinder Z(r) by the standard inclusion. In particular,

0 < c
(
B(r) ×B

(1
r

))
≤ c(Z(r)) = πr2.

So clearly c
(
B(r) ×B

(
1
r

))
→ 0 as r → 0.

(c) Let 0 < r1 ≤ r2 and 0 < s1 ≤ s2. Show that there exists a symplectic
diffeomorphism

φ : B(r1) ×B(r2) → B(s1) ×B(s2)

if and only if r1 = s1 and r2 = s2.

Hint: You may use the fact that a symplectic capacity exists.

Solution. Suppose φ is a symplectic diffeomorphism. Consider the symplectic
embedding

B4(r1) → B(r1) ×B(r2)
φ−→ B(s1) ×B(s2) → B(s1) × R2 = Z(s1).

It follows from monotonicity of a symplectic capacity c that

πr2
1 ≤ c(B4(r1)) ≤ c(Z(s1)) = πs2

1,

hence r1 ≤ s1. Applying the same argument to φ−1 yields s1 ≤ r1, thus r1 = s1.
Now φ is also volume-preserving, hence r1r2 = s1s2. The result follows.

Remark: The generalization of (c) to the product of n open symplectic 2-balls in
R2n is true. The proof is more subtle and needs more machinery (e.g. symplectic
homology).

*5.4. Given a linear subspace W ⊂ R2n, its symplectic complement is defined by

W⊥ = {v ∈ R2n |ωstd(v, w) = 0 for all w ∈ W}.

The subspace W is called isotropic if W ⊂ W⊥.

(a) Show that (W⊥)⊥ = W and dimW⊥ = dimR2n − dimW .

Solution. Define the linear map

ιω : R2n → W ∗, w 7→ ωstd(−, w).

This has W⊥ as kernel and it is surjective because ωstd is non-degenerate.
Therefore

dimR2n = dim ker ιω + dim im ιω = dimW⊥ + dimW ∗ = dimW⊥ + dimW.

(W⊥)⊥ = W is a direct calculation.
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(b) Show that if W is isotropic then dimW ≤ n.

Solution. By the previous exercise we have

2n = dimR2n = dimW + dimW⊥ ≥ 2 dimW,

where we used dimW ≤ dimW⊥ for isotropic W . Thus n ≥ dimW .

(c) Let c be a symplectic capacity. Let Ω ⊂ R2n be an open bounded set containing
0 and W ⊂ R2n a linear subspace of codimension 2. Show that

c(Ω +W ) = +∞

if W⊥ is isotropic. Here,

Ω +W = {x+ w ∈ R2n |x ∈ Ω, w ∈ W}.

Solution. Since codimW = 2 it follows from part (a) that dimW⊥ = 2. Since
ω vanishes on W⊥ we can assume that

W = {(x, y) | x1 = x2 = 0}.

Indeed, we claim that for any s-dimensional subspace S ⊂ V of an 2n-
dimensional vector space V such that ω|S = 0 a basis {a1, . . . , as} of S can be
extended to a symplectic basis of V . To prove the claim, we argue as follows.
If s = n, we have a Lagrangian subspace and we saw this case in lectures. If
s < n, then the system

ω(a1, v) = 0, ω(a2, v) = 0, . . . ω(as, v) = 0 for v ∈ V

consists of s linearly independent equations. Since dim V = 2n, the system
has 2n− s independent solutions. There will thus exist some as+1 ∈ V that is
linearly independent of {a1, . . . , as} and that satisfies the system above. This
process can be repeated until we get a set {a1, . . . , an} of linearly independent
vectors satisfying ω(ai, aj) = 0 for 1 ≤ i, j ≤ n.

Using non-degenerecy of ω we can find vectors ci for 1 ≤ i ≤ n such that
ω(ai, cj) = δij and such that the 2n vectors ai and cj are linearly independent.
We are not yet done because ω(ci, cj) ̸= 0. To fix this, set bi = cj + ∑n

j=1 sijaj.
To get the constants sij, we solve ω(bi, bj) = 0. This concludes the proof of our
claim.

Now applying the claim to V = R2n and S = W⊥, we get a symplectic basis such
that W⊥ = span{a1, a2}. We can then apply linear symplectic transformation
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to send a1, . . . , as to e1, . . . , es, where {e1, . . . , en, f1, . . . , fn} is the standard
symplectic basis.

We show that any ball can be symplectically embedded into Ω +W . To see this,
define the linear symplectic map

φ(x, y) 7→
(
ϵx,

1
ϵ
y

)
.

For small enough ϵ, the map φ restricts to a symplectic embedding of B(R) →
Ω +W . By monotonicity

πR2 = c(B(R)) ≤ c(Ω +W ).

Since R > 0 was arbitrary, it follows that c(Ω +W ) = +∞.

(d) Let Ω ⊂ R2n and W ⊂ R2n be as above. Show that

0 < c(Ω +W ) < +∞

if W⊥ is not isotropic.

Solution. Since W⊥ has dimension 2 and is not isotropic, it is actually
symplectic, i.e. ω|W ⊥ is non-degenerate. Indeed, let u ∈ W⊥. We claim there
exists v ∈ W⊥ that is linearly independent from u and such that ω(u, v) ̸= 0.
If such a v did not exist, then we would have ω(u, v) = 0, which would imply
v ∈ W by the definition of W⊥ and the fact that u ∈ W⊥. But similarly, since
v ∈ W⊥, we would have that ω(v, u) = 0, which implies u ∈ W . In other words,
W⊥ ⊂ W . This contradicts our assumption that W⊥ is not isotropic. Therefore
W⊥ must be symplectic and disjoint (except at the origin) from W . In other
words, R2n = W⊥ ⊕W .

Choosing a symplectic basis (e1, f1) in W⊥ we can assume, by a linear change
of coordinates, that

W = {(x, y) |x1 = y1 = 0}.

Since Ω is bounded, there exists a real numberN such that for z = (x, y) ∈ Ω+W ,
x2

1 + y2
1 < N2. That is, Ω +W ⊂ Z(N). Hence

c(Ω +W ) ≤ c(Z(N)) = πN2 < ∞.

The inequality c > 0 is always true, as we can always symplectically embed a
small enough ball by Darboux’s theorem.
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