The most important exercises are marked with an asterisk *.

6.1.

(a) Let (V, ω) be a symplectic vector space and $g: V \times V \rightarrow \mathbb{R}$ be an inner product. Show that there exists a symplectic basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ that is orthogonal with respect to g. Moreover, this basis can be chosen so that $g\left(e_{j}, e_{j}\right)=g\left(f_{j}, f_{j}\right)$. Hint: Consider $\mathbb{R}^{2 n}$ with the standard inner product and a linear symplectic form ω. Use an orthonormal basis $z_{1}, \ldots, z_{n} \in \mathbb{C}^{n}$ of eigenvectors of the skewsymmetric matrix A representing ω.

Solution. It is enough to consider $\mathbb{R}^{2 n}$ with the standard inner product and a linear symplectic form ω. The 2 -form ω can be represented by

$$
\omega(v, w)=\langle v, A w\rangle
$$

for an invertible matrix A with $A^{T}=-A$. The skew-symmetry property implies that A is diagonalizable over \mathbb{C}. Its eigenvalues occur in pairs $\pm i \alpha_{j}$, $j=1, \ldots, n$, with $\alpha_{j}>0 .{ }^{1}$ Moreover, there exists an orthogonal (with respect to the hermitian product) basis of eigenvectors $z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n} \in \mathbb{C}^{2 n}$ with

$$
A z_{j}=i \alpha_{j} z_{j} \text { and } A \bar{z}_{j}=-i \alpha_{j} \bar{z}_{j} .
$$

The orthogonality conditions read

$$
\begin{array}{cl}
\bar{z}_{j}^{T} z_{k}=0 & \text { for } j \neq k, \\
z_{j}^{T} z_{k}=0 & \text { for all } j, k .
\end{array}
$$

Writing $z_{j}=u_{j}+i v_{j}$ we get

$$
\begin{aligned}
& A u_{j}=-\alpha_{j} v_{j}, \quad A v_{j}=\alpha_{j} u_{j}, \\
& u_{j}^{T} v_{k}=u_{j}^{T} u_{k}=v_{j}^{T} v_{k}=0, \text { for } j \neq k, \\
& \left\|u_{j}\right\|^{2}=\left\|v_{j}\right\|^{2}, \quad u_{j}^{T} v_{j}=0
\end{aligned}
$$

This implies

$$
\omega\left(u_{j}, v_{j}\right)=u_{j}^{T} A v_{j}=\alpha_{j}\left\|u_{j}\right\|^{2}>0
$$

and similarly

$$
\omega\left(u_{j}, v_{k}\right)=\omega\left(u_{j}, u_{k}\right)=\omega\left(v_{j}, v_{k}\right)=0
$$

[^0]for $j \neq k$. Setting $e_{j}=\frac{v_{j}}{\sqrt{\alpha_{j} \|}\left\|v_{j}\right\|}$ and $f_{j}=\frac{u_{j}}{\sqrt{\alpha_{j}\left\|u_{j}\right\|}}$ we obtain an orthogonal symplectic basis. Moreover,
$$
g\left(e_{j}, e_{j}\right)=g\left(f_{j}, f_{j}\right)=\frac{1}{\alpha_{j}} .
$$
(b) Let g be an inner product on $\mathbb{R}^{2 n}$ and consider the ellipsoid
$$
E(g)=\left\{w \in \mathbb{R}^{2 n} \mid g(w, w)<1\right\} .
$$

Show that there exists a symplectic linear matrix $A \in \operatorname{Sp}(2 n)$ and an n-tuple $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ with $0<r_{1} \leq \cdots \leq r_{n}$ and such that $A E=E(\boldsymbol{r})$, where

$$
E(\boldsymbol{r})=\left\{(x, y) \in \mathbb{R}^{2 n} \left\lvert\, \sum_{j=1}^{2 n} \frac{x_{j}^{2}+y_{j}^{2}}{r_{j}^{2}}<1\right.\right\} .
$$

Solution. We use a basis $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$ as in (a) for $\mathbb{R}^{2 n}, \omega_{\text {std }}$ and g. Let $r_{1}, \ldots, r_{n}>0$ be given by

$$
g\left(e_{j}, e_{j}\right)=g\left(f_{j}, f_{j}\right)=\frac{1}{r_{j}^{2}}
$$

By reordering the basis we can assume that $r_{1} \leq r_{2} \cdots \leq r_{n}$. Let $A \in \operatorname{Sp}(2 n)$ be the symplectic matrix taking the standard basis of $\mathbb{R}^{2 n}$ to $e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}$. Then

$$
\begin{aligned}
g(A(x, y), A(x, y)) & =g\left(\sum_{j=1}^{n} x_{j} e_{j}+\sum_{j=1}^{n} y_{j} f_{j}, \sum_{j=1}^{n} x_{j} e_{j}+\sum_{j=1}^{n} y_{j} f_{j}\right) \\
& =\sum_{j=1}^{n} \frac{x_{j}^{2}+y_{j}^{2}}{r_{j}^{2}} .
\end{aligned}
$$

Thus

$$
A^{-1} E(g)=E\left(A^{*} g\right)=E(\boldsymbol{r}) .
$$

(c) Show that the numbers r_{1}, \ldots, r_{n} are uniquely determined by $E(g)$.

Hint: Suppose $E(\boldsymbol{r})$ and $E(\boldsymbol{s})$ are related by $A \in \operatorname{Sp}(2 n)$. Show that $J_{0} \operatorname{diag}\left(\frac{1}{r_{1}^{2}}, \ldots, \frac{1}{r_{n}^{2}}\right)$ is similar to $J_{0} \operatorname{diag}\left(\frac{1}{s_{1}^{2}}, \ldots, \frac{1}{s_{n}^{2}}\right)$ and compare the eigenvalues.

Solution. The inner product that defines $E(\boldsymbol{r})$ is represented by the matrix

$$
\Delta(\boldsymbol{r}):=\left(\begin{array}{cccc}
\frac{1}{r_{1}^{2}} & 0 & \ldots & 0 \\
0 & \frac{1}{r_{2}^{2}} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \frac{1}{r_{n}^{2}}
\end{array}\right)
$$

Suppose $A(E(s))=E(\boldsymbol{r})$ for a linear symplectomorphism $A \in \operatorname{Sp}(2 n)$. Then

$$
A^{T} \Delta(\boldsymbol{r}) A=\Delta(\boldsymbol{s})
$$

We multiply this equation with J_{0} from the left and use $J_{0} A^{T}=A^{-1} J_{0}$ to get

$$
A^{-1} J_{0} \Delta(\boldsymbol{r}) A=J_{0} \Delta(s)
$$

This shows that $J_{0} \Delta(s)$ is similar to $J_{0} \Delta(\boldsymbol{r})$. Hence these two matrices have the same eigenvalues. Since the eigenvalues are $\pm \frac{i}{s_{1}^{2}}, \ldots, \pm \frac{i}{s_{n}^{2}}$, respectively $\pm \frac{i}{r_{1}^{2}}, \ldots, \pm \frac{i}{r_{n}^{2}}$ it follows that $\boldsymbol{s}=\boldsymbol{r}$.
(d) Interpret the result for $n=1$.

Solution. It says that any ellipse in \mathbb{R}^{2} can be mapped into a circle by an areapreserving linear transformation. The radius of the circle is uniquely determined by the area constraint.
6.2. Let $E \subset \mathbb{R}^{2 n}$ be an ellipsoid centered at 0 . Show that there exists $A \in \operatorname{GL}(2 n, \mathbb{R})$ such that $A^{*} \omega_{\text {std }}=-\omega_{\text {std }}$ and $A(E)=E$.

Solution. Consider the linear map $\Psi_{0}(x, y)=(-x, y)$. Clearly, $\Psi_{0}^{*} \omega_{\text {std }}=-\omega_{\text {std }}$. Given an ellipsoid E centered at 0 , let $A \in \mathrm{Sp}(2 n)$ such that $A(E)=E(\boldsymbol{r})$ as in 6.1.(b). Then $A^{-1} \Psi_{0} A$ is anti-symplectic and

$$
A^{-1} \Psi_{0} A(E)=A^{-1} \Psi_{0}(E(\boldsymbol{r}))=A^{-1}(E(\boldsymbol{r}))=E
$$

*6.3. Let $\psi_{n}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a sequence of continuous maps converging to a homeomorphism $\psi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$, uniformly on compact sets. Let $E \subset \mathbb{R}^{2 n}$ be an ellipsoid centered at 0 .
(a) Show that for any $\lambda<1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\psi_{n}(\lambda E) \subset \psi(E) .
$$

Solution. Consider $f_{n}:=\psi^{-1} \circ \psi_{n}$. Then f_{n} converges to id uniformly on compact subsets. It follows that $f_{n}(\lambda E) \subset E$ for large enough n : Indeed, $\operatorname{id}(\overline{\lambda E}) \subset \overline{\lambda E}$ and hence $f_{n}(\overline{\lambda E})$ will eventually be contained in any neighbourhood of $\overline{\lambda E}$. In particular, $f_{n}(\overline{\lambda E}) \subset E$ for large enough λ. The inequality follows.
(b) Show that for any $\mu>1$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\psi(E) \subset \psi_{n}(\mu E)
$$

Hint: Consider maps $\phi_{n}: \mu \partial E \rightarrow S^{2 n-1}$ obtained by normalizing $\psi^{-1} \circ \psi_{n}$ and study their degree.

Solution. Note that we can't use the same argument as in part (a) to get $E \subset f_{n}(E)$ for large enough n because f_{n} is not necessarily a homeomorphism. We have to work a bit harder here.
Since $f_{n} \rightarrow \mathrm{id}$ as in part (1), there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$
f_{n}(\mu \partial E) \cap E=\emptyset
$$

we can define the maps

$$
\phi_{n}: \mu \partial E \rightarrow S^{2 n-1}, \quad x \mapsto \frac{f_{n}(x)}{\left\|f_{n}(x)\right\|}
$$

We claim that these maps have degree 1 for n large enough. To show this, we show that for sufficiently large n, ϕ_{n} are homotopic to

$$
\phi: \mu \partial E \rightarrow S^{2 n-1}, \quad x \mapsto \frac{x}{\|x\|}
$$

From this it then follows that

$$
\operatorname{deg} \phi_{n}=\operatorname{deg} \phi=1
$$

for n sufficiently large. Since f_{n} converges to the identity uniformly on compact sets, the restriction $\left.f_{n}\right|_{\mu \partial E}$ converges uniformly to id $\left.\right|_{\mu \partial E}$. In particular, given a tubular neighbourhood U of $\mu \partial E$ with a deformation retraction $r: U \rightarrow \mu \partial E$, by choosing N large enough, we can make sure $f_{n}(\mu \partial E) \subset U$ for $n \geq N$. Moreover, for N large enough and $n \geq N$, the deformation retraction r gives us
a homotopy $\left\{f_{t}\right\}_{t \in[0,1]}$ from $\left.f_{n}\right|_{\mu \partial E}$ to id $\left.\right|_{\mu \partial E}$. To get a homotopy from ϕ_{n} to ϕ, we take

$$
(s, x) \mapsto \frac{f_{s}(x)}{\left\|f_{s}(x)\right\|}
$$

This gives us the required homotopies and thus shows that ϕ_{n} has degree 1 for $n \geq N$.
We now show that $n \geq N$ it follows that $E \subset f_{n}(\mu E)$, which implies the statement to be proved. Suppose by contradiction that there exists $y_{0} \in E$ such that for all $x \in \mu E, f_{n}(x) \neq y_{0}$. Then consider the maps

$$
\begin{aligned}
\phi_{n}^{\prime}: \mu \partial E & \rightarrow S^{2 n-1}, \\
x & \mapsto \frac{f_{n}(x)-y_{0}}{\left\|f_{n}(x)-y_{0}\right\|} .
\end{aligned}
$$

The map ϕ_{n}^{\prime} extends to μE for $n \geq N$, hence it must have degree 0 . On the other hand, ϕ_{n}^{\prime} is homotopic to ϕ_{n} with a homotopy given by:

$$
\phi_{n}^{s}: \mu \partial E \rightarrow S^{2 n-1}, \quad x \mapsto \frac{f_{n}(x)-s \cdot y_{0}}{\left\|f_{n}(x)-s \cdot y_{0}\right\|}
$$

Thus the degrees of ϕ_{n} and ϕ_{n}^{\prime} must coincide. This is a contradiction to ϕ_{n} having degree 1.
(c) Deduce that if ψ_{n} preserve the capacity of all ellipsoids, then also ψ preserves the capacity of all ellipsoids.
Solution. Let E be any ellipsoid centered at 0 . Applying the capacity c to the inequalities from (a) and (b) we get

$$
\lambda^{2} c(E)=c(\lambda E)=c\left(\psi_{n}(\lambda E)\right) \leq c(E) \leq \psi_{n}(\mu E)=c(\mu E)=\mu^{2} c(E)
$$

for $\lambda<1<\mu$, where n is large enough. Taking limits as $\mu, \lambda \rightarrow 1$ yields $c(\psi(E))=c(E)$. For an ellipsoid E not centered at 0 you consider a translation T such that $T(E)$ is centered at 0 . Then apply what we proved to $T \psi_{n} T^{-1}$ and $T(E)$. It follows $c\left(T \psi T^{-1}(T(E))\right)=c(T(E))$. Using that c is a symplectic invariant we deduce $c(\psi(E))=c(E)$.
*6.4. Deduce from Exercise 6.3 that $\operatorname{Symp}\left(\mathbb{R}^{2 n}\right)$ is C^{0}-closed in $\operatorname{Diff}\left(\mathbb{R}^{2 n}\right)$.
Solution. Let $\psi_{n} \in \operatorname{Symp}\left(\mathbb{R}^{2 n}\right)$ be a sequence of symplectomorphisms converging in the C^{0}-topology to $\psi \in \operatorname{Diff}\left(\mathbb{R}^{2 n}\right)$. Then ψ_{n} preserves the capacity of ellipsoids
for every n. By Exercise 6.3. ψ also preserves the capacity of ellipsoids. Hence by a theorem in lecture $11, \psi$ is either a symplectomorphism or an anti-symplectomorphism. Suppose $\psi^{*} \omega_{\text {std }}=-\omega_{\text {std }}$. Then $\phi_{n}:=\psi_{n} \times \mathrm{id} \in \operatorname{Symp}\left(\mathbb{R}^{2 n} \times \mathbb{R}^{2 n}, \omega_{\text {std }}=\omega_{\text {std }} \times \omega_{\text {std }}\right)$, while its C^{0}-limit $\phi:=\psi \times$ id satisfies $\phi^{*} \omega_{\text {std }}=\left(-\omega_{\text {std }}\right) \times \omega_{\text {std }} \neq \pm \omega_{\text {std }}$. This is a contradiction to what we proved for C^{0}-limits of symplectomorphisms. Hence $\psi^{*} \omega_{\text {std }}=\omega_{\text {std }}$.

[^0]: ${ }^{1}$ These properties hold because $i A$ is a hermitian matrix and hence $i A$ is unitary diagonalizable. Its eigenvalues are real and come in pairs $\pm \alpha_{j}$ because $i A$ is purely imaginary.

