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The most important exercises are marked with an asterisk *.

6.1.

(a) Let (V, ω) be a symplectic vector space and g : V × V → R be an inner product.
Show that there exists a symplectic basis e1, . . . , en, f1, . . . , fn that is orthogonal
with respect to g. Moreover, this basis can be chosen so that g(ej, ej) = g(fj, fj).

Hint: Consider R2n with the standard inner product and a linear symplectic
form ω. Use an orthonormal basis z1, . . . , zn ∈ Cn of eigenvectors of the skew-
symmetric matrix A representing ω.

Solution. It is enough to consider R2n with the standard inner product and a
linear symplectic form ω. The 2-form ω can be represented by

ω(v, w) = ⟨v, Aw⟩

for an invertible matrix A with AT = −A. The skew-symmetry property
implies that A is diagonalizable over C. Its eigenvalues occur in pairs ±iαj,
j = 1, . . . , n, with αj > 0. 1 Moreover, there exists an orthogonal (with respect
to the hermitian product) basis of eigenvectors z1, . . . , zn, z̄1, . . . , z̄n ∈ C2n with

Azj = iαjzj and Az̄j = −iαj z̄j.

The orthogonality conditions read

z̄T
j zk = 0 for j ̸= k,

zT
j zk = 0 for all j, k.

Writing zj = uj + ivj we get

Auj = −αjvj, Avj = αjuj,

uT
j vk = uT

j uk = vT
j vk = 0, for j ̸= k,

∥uj∥2 = ∥vj∥2 , uT
j vj = 0.

This implies

ω(uj, vj) = uT
j Avj = αj ∥uj∥2 > 0

and similarly

ω(uj, vk) = ω(uj, uk) = ω(vj, vk) = 0
1These properties hold because iA is a hermitian matrix and hence iA is unitary diagonalizable.

Its eigenvalues are real and come in pairs ±αj because iA is purely imaginary.
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for j ̸= k. Setting ej = vj√
αj∥vj∥ and fj = uj√

αj∥uj∥ we obtain an orthogonal
symplectic basis. Moreover,

g(ej, ej) = g(fj, fj) = 1
αj

.

(b) Let g be an inner product on R2n and consider the ellipsoid

E(g) =
{
w ∈ R2n | g(w,w) < 1

}
.

Show that there exists a symplectic linear matrix A ∈ Sp(2n) and an n-tuple
r = (r1, . . . , rn) with 0 < r1 ≤ · · · ≤ rn and such that AE = E(r), where

E(r) =

(x, y) ∈ R2n

∣∣∣∣∣
2n∑

j=1

x2
j + y2

j

r2
j

< 1

 .

Solution. We use a basis e1, . . . , en, f1, . . . , fn as in (a) for R2n, ωstd and g. Let
r1, . . . , rn > 0 be given by

g(ej, ej) = g(fj, fj) = 1
r2

j

.

By reordering the basis we can assume that r1 ≤ r2 · · · ≤ rn. Let A ∈ Sp(2n) be
the symplectic matrix taking the standard basis of R2n to e1, . . . , en, f1, . . . , fn.
Then

g(A(x, y), A(x, y)) = g

 n∑
j=1

xjej +
n∑

j=1
yjfj,

n∑
j=1

xjej +
n∑

j=1
yjfj


=

n∑
j=1

x2
j + y2

j

r2
j

.

Thus

A−1E(g) = E(A∗g) = E(r).

(c) Show that the numbers r1, . . . , rn are uniquely determined by E(g).

Hint: SupposeE(r) and E(s) are related byA ∈ Sp(2n). Show that J0 diag( 1
r2

1
, . . . , 1

r2
n
)

is similar to J0 diag( 1
s2

1
, . . . , 1

s2
n
) and compare the eigenvalues.
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Solution. The inner product that defines E(r) is represented by the matrix

∆(r) :=


1
r2

1
0 . . . 0

0 1
r2

2
. . . 0

. . . . . . . . . . . .
0 0 . . . 1

r2
n

 .

Suppose A(E(s)) = E(r) for a linear symplectomorphism A ∈ Sp(2n). Then

AT ∆(r)A = ∆(s).

We multiply this equation with J0 from the left and use J0A
T = A−1J0 to get

A−1J0∆(r)A = J0∆(s).

This shows that J0∆(s) is similar to J0∆(r). Hence these two matrices have
the same eigenvalues. Since the eigenvalues are ± i

s2
1
, . . . ,± i

s2
n
, respectively

± i
r2

1
, . . . ,± i

r2
n

it follows that s = r.

(d) Interpret the result for n = 1.

Solution. It says that any ellipse in R2 can be mapped into a circle by an area-
preserving linear transformation. The radius of the circle is uniquely determined
by the area constraint.

6.2. Let E ⊂ R2n be an ellipsoid centered at 0. Show that there exists A ∈ GL(2n,R)
such that A∗ωstd = −ωstd and A(E) = E.

Solution. Consider the linear map Ψ0(x, y) = (−x, y). Clearly, Ψ∗
0ωstd = −ωstd.

Given an ellipsoid E centered at 0, let A ∈ Sp(2n) such that A(E) = E(r) as in
6.1.(b). Then A−1Ψ0A is anti-symplectic and

A−1Ψ0A(E) = A−1Ψ0(E(r)) = A−1(E(r)) = E.

*6.3. Let ψn : R2n → R2n be a sequence of continuous maps converging to a homeo-
morphism ψ : R2n → R2n, uniformly on compact sets. Let E ⊂ R2n be an ellipsoid
centered at 0.
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(a) Show that for any λ < 1, there exists N ∈ N such that for all n ≥ N ,

ψn(λE) ⊂ ψ(E).

Solution. Consider fn := ψ−1 ◦ ψn. Then fn converges to id uniformly on
compact subsets. It follows that fn(λE) ⊂ E for large enough n: Indeed,
id(λE) ⊂ λE and hence fn(λE) will eventually be contained in any neighbour-
hood of λE. In particular, fn(λE) ⊂ E for large enough λ. The inequality
follows.

(b) Show that for any µ > 1, there exists N ∈ N such that for all n ≥ N ,

ψ(E) ⊂ ψn(µE).

Hint: Consider maps ϕn : µ ∂E → S2n−1 obtained by normalizing ψ−1 ◦ψn and
study their degree.

Solution. Note that we can’t use the same argument as in part (a) to get
E ⊂ fn(E) for large enough n because fn is not necessarily a homeomorphism.
We have to work a bit harder here.

Since fn → id as in part (1), there exists N ∈ N such that for all n ≥ N

fn(µ ∂E) ∩ E = ∅

we can define the maps

ϕn : µ ∂E → S2n−1, x 7→ fn(x)
∥fn(x)∥ .

We claim that these maps have degree 1 for n large enough. To show this, we
show that for sufficiently large n, ϕn are homotopic to

ϕ : µ ∂E → S2n−1, x 7→ x

∥x∥
.

From this it then follows that

deg ϕn = deg ϕ = 1

for n sufficiently large. Since fn converges to the identity uniformly on compact
sets, the restriction fn|µ∂E converges uniformly to id |µ∂E. In particular, given a
tubular neighbourhood U of µ∂E with a deformation retraction r : U → µ∂E,
by choosing N large enough, we can make sure fn(µ∂E) ⊂ U for n ≥ N .
Moreover, for N large enough and n ≥ N , the deformation retraction r gives us
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a homotopy {ft}t∈[0,1] from fn|µ∂E to id |µ∂E. To get a homotopy from ϕn to ϕ,
we take

(s, x) 7→ fs(x)
∥fs(x)∥ .

This gives us the required homotopies and thus shows that ϕn has degree 1 for
n ≥ N .

We now show that n ≥ N it follows that E ⊂ fn(µE), which implies the
statement to be proved. Suppose by contradiction that there exists y0 ∈ E such
that for all x ∈ µE, fn(x) ̸= y0. Then consider the maps

ϕ′
n : µ ∂E → S2n−1,

x 7→ fn(x) − y0

∥fn(x) − y0∥
.

The map ϕ′
n extends to µE for n ≥ N , hence it must have degree 0. On the

other hand, ϕ′
n is homotopic to ϕn with a homotopy given by:

ϕs
n : µ∂E → S2n−1, x 7→ fn(x) − s · y0

∥fn(x) − s · y0∥

Thus the degrees of ϕn and ϕ′
n must coincide. This is a contradiction to ϕn

having degree 1.

(c) Deduce that if ψn preserve the capacity of all ellipsoids, then also ψ preserves
the capacity of all ellipsoids.

Solution. Let E be any ellipsoid centered at 0. Applying the capacity c to the
inequalities from (a) and (b) we get

λ2c(E) = c(λE) = c(ψn(λE)) ≤ c(E) ≤ ψn(µE) = c(µE) = µ2c(E),

for λ < 1 < µ, where n is large enough. Taking limits as µ, λ → 1 yields
c(ψ(E)) = c(E). For an ellipsoid E not centered at 0 you consider a translation
T such that T (E) is centered at 0. Then apply what we proved to TψnT

−1

and T (E). It follows c(TψT−1(T (E))) = c(T (E)). Using that c is a symplectic
invariant we deduce c(ψ(E)) = c(E).

*6.4. Deduce from Exercise 6.3 that Symp(R2n) is C0-closed in Diff(R2n).

Solution. Let ψn ∈ Symp(R2n) be a sequence of symplectomorphisms converging
in the C0-topology to ψ ∈ Diff(R2n). Then ψn preserves the capacity of ellipsoids
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for every n. By Exercise 6.3. ψ also preserves the capacity of ellipsoids. Hence by a
theorem in lecture 11, ψ is either a symplectomorphism or an anti-symplectomorphism.
Suppose ψ∗ωstd = −ωstd. Then ϕn := ψn × id ∈ Symp(R2n × R2n, ωstd = ωstd × ωstd),
while its C0-limit ϕ := ψ × id satisfies ϕ∗ωstd = (−ωstd) × ωstd ̸= ±ωstd. This is
a contradiction to what we proved for C0-limits of symplectomorphisms. Hence
ψ∗ωstd = ωstd.
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