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The most important exercises are marked with an asterisk *.

7.1. Consider two functions F,G ∈ C∞(R2n). The Poisson bracket of F and G is
defined by

{F,G} :=
n∑
j=1

(
∂F

∂xj

∂G

∂yj
− ∂F

∂yj

∂G

∂xj

)
∈ C∞(R2n).

*(a) Show that {F,G} = ωstd(XG, XF ).

Solution. Using that ωstd, J0 and the standard inner product form a compatible
triple, XF = J0∇F and XG = J0∇G, we compute

ωstd(XG, XF ) = ωstd(J0∇G, J0∇F )
= ⟨J0∇G,∇F ⟩

=
〈(

∂G
∂y

−∂G
∂x

)
,

(
∂F
∂x
∂F
∂y

)〉
= {F,G}.

*(b) The function F is called an integral of the Hamiltonian differential equation

ẋ(t) = XG(x(t))

if F is constant along its solutions x(t). Show that F is an integral of the
Hamiltonian differential equation associated to G if and only if {F,G} = 0.

Solution. We compute the derivative of F (x(t)) for a solution x(t) of the
Hamiltonian differential equation associated to G:

d
dtF (x(t)) = dFx(t)

(
XG(x(t))

)
= −ωstd

(
XF (x(t)), XG(x(t))

)
= {F,G},

where we used (a) in the last equation. In particular, this derivative vanishes
for all t, if and only if {F,G} = 0.

*(c) Show that a diffeomorphism ψ : R2n → R2n is a symplectomorphism if and only
if

{F,G} ◦ ψ = {F ◦ ψ,G ◦ ψ}

for any functions F,G ∈ C∞(M).

Solution. Old solutions containing a mistake: This also follows from (a):

{F,G} ◦ ψ = ωstd(XG ◦ ψ,XF ◦ ψ)
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and

{F ◦ ψ,G ◦ ψ} = ωstd(XG◦ψ, XF◦ψ)
= ωstd((dψ)−1(XG ◦ ψ), (dψ)−1(XF ◦ ψ))
=
(
(ψ−1)∗ωstd

)
(XG ◦ ψ,XF ◦ ψ)

These two terms coincide for all F,G if and only if (ψ−1)∗ωstd = ωstd. Namely,
if and only if ψ is a symplectomorphism.

Explanation of the mistake: The two red colored terms in the equation are only
equal if ψ is a symplectomorphism. Same for the two green colored terms. So
this calculation shows actually only one direction of the implication: if ψ is a
symplectomorphism then

{F,G} ◦ ψ = {F ◦ ψ,G ◦ ψ}.

Correct solution: As in (a) we compute

{F,G} ◦ ψ = ⟨J0∇G ◦ ψ,∇F ◦ ψ⟩ = −(∇G ◦ ψ)TJ0(∇F ◦ ψ)

and

{F ◦ ψ,G ◦ ψ} = −(∇(G ◦ ψ))TJ0∇(F ◦ ψ)
= −(∇G ◦ ψ)TdψJ0(dψ)T (∇F ◦ ψ).

Hence these two terms are equal for all F and G if and only if

dψJ0(dψ)T = J0.

This in turn is equivalent to ψ being a symplectomorphism.

(d) Let X and Y be two symplectic vector fields. Show that [X, Y ] is a Hamiltonian
vector field.

Hint: The bracket of two vector fields X and Y is defined by

[X, Y ] = ∇XY − ∇YX.

Use the formula ι[X,Y ]ω = LX(ιY ω) − ιY (LXω) to show that ι[X,Y ]ωstd is exact.

Solution. We abbreviate ω = ωstd. We proceed as in the hint, using Cartan’s
formula twice:

ι[X,Y ]ω = LX(ιY ω) − ιY (LXω)
= dιX(ιY ω) + ιXd(ιY ω) − ιY (dιXω) − ιY (ιXdω)
= dω(Y,X),
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where in the last equation we used that d(ιY ω) = 0 and dιXω = 0 because Y,X
are symplectic. Hence ι[X,Y ]ω is exact and in fact ωstd(X, Y ) is a Hamiltonian
function generating the vector field [X, Y ].

(e) Show that

[XF , XG] = X{G,F}.

Solution. This follows from (a) and what we’ve shown in (d). Indeed, in (d),
we showed that [XF , XG] is a Hamiltonian vector field corresponding to the
Hamiltonian ωstd(XF , XG). Thus:

[XF , XG] = Xωstd(XF ,XG) = X{G,F}.

*7.2. Let c be a symplectic capacity. Define

č(M,ω) := sup{c(U, ω) |U ⊂ M open, U ⊂ M\∂M}.

We always have č ≤ c. The capacity c is called inner regular if c = č. Show:

(a) Corrected version!!! The measurement č does satisfy the conformality and
non-triviality axiom, but it is not necessarily a symplectic capacity.

Remark: Changing the definition of č by taking supremum only over c(U, ω)
where U is in addition compact, will result in an actual symplectic capacity.

Solution.

The measurement č does satisfy the conformality and non-triviality axiom, but
not necessarily the monotonicity axiom:

• Monotonicity. We show why the obvious proof fails:

Let φ : (M,ω) → (N, τ) be a symplectic embedding. Then for every
U ⊂ M open and such that U ⊂ M \∂M , the map φ|U is also a symplectic
embedding. Therefore, since c is a capacity, it holds c(U, ω) ≤ c(φ(U), τ).
Taking supremum over U , we get

sup
Uopen

U⊂M\∂M

c(U, ω) ≤ sup
Uopen

U⊂M\∂M

c(φ(U), τ).

The problem is that V := φ(U) could intersect the boundary of N , so that
we can’t conclude that

sup
Uopen

U⊂M\∂M

c(φ(U), τ) ≤ sup
V open

V⊂N\∂N

c(V, τ) = č(N,ω).
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To see that V could intersect the boundary of N , consider the symplectic
embedding φ of the open unit ball M into the closed unit ball N . Then
U = M is an open set as it occurs in the definition of č(M). However, the
closure of φ(U) is N , hence intersects the boundary of N .

• Conformality. We need to show that č(M,αω) = |α| · č(M,ω) for all
α ∈ R \ {0}. Since c is a symplectic capacity, it follows that c(U, αω) =
|α| · c(U, α). Taking supremums over all open U with U ⊂ M \ ∂M shows
conformality.

• Non-triviality. We show that č(B(1), ω0) = π. Since (B(1), ω0) embeds
in (B(1), ω0), it must hold that č(B(1), ω0) ≤ π. Suppose for contradiction
that č(B(1), ω0) = πε2 for some ε ∈ (0, 1). Note that for δ = (1 + ε)/2 we
can symplectically embed (B(δ), ω0) into (B(1), ω0). Thus

č(B(1), ω0) ≥ c(B(δ), ω0) =
(1 + ε

2

)2
π > ε2π.

This is a contradiction to our assumption that č(B(1), ω0) = πε2 and thus
the inner capacity of the ball must be č(B(1), ω0) = π.

The argument for Z(1) is analogous.

(b) If d is any inner regular symplectic capacity with d ≤ c, then d ≤ č.

Solution. Since d is inner regular and d ≤ c, we have

d(M) = ď(M) = sup{d(U, ω) |U ⊂ M open , U ⊂ M\∂M}
≤ sup{c(U, ω) |U ⊂ M open , U ⊂ M\∂M}
= č.

(c) The Gromov-width D(M,ω) is inner regular.

Solution. Let 0 < a < D(M,ω). Then for ϵ > 0 satisfying a + ϵ < D(M,ω),
there exists a symplectic embedding

φ : B(a+ ϵ) ↪→ (M,ω).

But then U := φ(B(a)) ⊂ M satisfies U ⊂ M\∂M . In particular, D(U, ω) ≥ a
and thus Ď(M,ω) ≥ a. Since this is true for any 0 < a < D(M,ω) we conclude
Ď(M,ω) = D(M,ω).
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(d) The Hofer-Zehnder capacity c0 is inner regular.

Solution. Let (M,ω) be a symplectic manifold, possibly with boundary. Sup-
pose c0(M,ω) < ∞. For ϵ > 0 there exists H ∈ Ha(M,ω) such that

m(H) > c0(M,ω) − ϵ.

Let K ⊂ M be the support of XH . By property (1) for elements in the set
H(M,ω), we have K ⊂ M\∂M . Pick an open set U with K ⊂ U ⊂ U ⊂ M\∂M .
Clearly, the restrictionH|U is contained in Ha(U, ω) andm (H|U) = m(H). Thus
c0(U, ω) ≥ m(H) > c0(M,ω) − ϵ. It follows that č0(M,ω) ≥ c0(M,ω). The
other inequality is clear.

*7.3. What is the biggest symplectic capacity?

Solution. Similar to the Gromov-width, that measures the size of the biggest ball
that embeds into a symplectic manifold M , we can measure the smallest size of a
cylinder into which we can squeeze M . More precisely, we define

D̃(M,ω) := inf{πr2
∣∣∣∃M s

↪−−−−→ Z(r)}.

We show that D̃ satisfies the monotonicity axiom: Let ψ : (M,ω) ↪→ (N, σ) be a
symplectic embedding. Note that any symplectic embedding φ : N ↪→ Z(r) gives a
symplectic embedding φ ◦ ψ : M ↪→ Z(r). Therefore,

D̃(N, σ) = inf{πr2
∣∣∣ ∃N s

↪−−−−→ Z(r)}

≥ inf{πr2
∣∣∣∃M s

↪−−−−→ Z(r)}

= D̃(M,ω).

For the conformality axiom, we need to show that

D̃(M,αω) = |α|D̃(M,ω)

It is enough to construct a bijection between{
φ : (M,αω) s

↪−→ Z(r)
}

and φ̂ : (M,ω) s
↪−→ Z

 r√
|α|
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for any real number α ̸= 0. Consider

f : Z(r) → Z

 r√
|α|

 , x 7→ x√
|α|

.

If α > 0, we get a bijection by setting φ̂ = f ◦φ. Indeed, φ̂ is a symplectic embedding:

φ̂∗ωstd = φ∗f ∗ωstd = φ∗(α−1ωstd) = α−1αω = ω.

If α < 0 a bijection is given by φ̂ = ψ0 ◦ f ◦ φ, where ψ0(u, v) = (−u, v) is an
anti-symplectomorphism on Z(r). Then φ̂ is again a symplectic embedding:

φ̂∗ωstd = φ∗f ∗ψ∗
0ωstd = −φ∗f ∗ωstd = −φ∗(|α|−1ωstd) = α−1αω = ω.

Finally the non-triviality axiom follows from non-squeezing: D̃(B(1), ωstd) = π

because there exists a symplectic embedding B(1) s
↪−→ Z(r) if and only if 1 ≤ r.

D̃(Z(1), ωstd) = π follows from the definition of D̃.

This shows that D̃ is a symplectic capacity. Moreover, any symplectic capacity c is
bounded from above by D̃. Indeed, we have

πr2 = c(Z(r), ωstd) ≥ c(M,ω),

whenever (M,ω) s
↪−→ (Z(r), ωstd). Hence D̃(M,ω) ≥ c(M,ω).

7.4. Let H ∈ C∞(R×R2n) be a Hamiltonian function that is 1-periodic: Ht = Ht+1
for any t. On a loop z ∈ C∞(S1,R2n), the action functional takes the value

AH(z) =
∫ 1

0

1
2⟨−J0ż(t), z(t)⟩ dt−

∫ 1

0
Ht(z(t)) dt.

Show that this coincides with the physicist’s action functional, namely for a loop
z(t) = (x(t), y(t)) we have

AH(z) =
∫ 1

0
⟨y(t), ẋ(t)⟩ dt−

∫ 1

0
Ht(z(t)) dt.

In other words, AH(z) is the integral of the action 1-form

λH :=
n∑
j=1

yjdxj −Hdt

along the loop z.
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Hint: Integration by parts.

Solution. It’s only the first term we need to study. We have

1
2 ⟨−J0ż(t), z(t)⟩ = 1

2

〈(
−ẏ(t)
ẋ(t)

)
,

(
x(t)
y(t)

)〉

= 1
2 (⟨y(t), ẋ(t)⟩ − ⟨ẏ(t), x(t)⟩)

Integration by parts implies∫ 1

0

1
2 ⟨−J0ż(t), z(t)⟩ dt = 1

2

∫ 1

0
(⟨y(t), ẋ(t)⟩ − ⟨ẏ(t), x(t)⟩) dt

= 1
2

(∫ 1

0
⟨y(t), ẋ(t)⟩dt− ⟨y(t), x(t)⟩

∣∣∣1
0

+
∫ 1

0
⟨y(t), ẋ(t)⟩dt

)
=
∫ 1

0
⟨y(t), ẋ(t)⟩dt.

Here the last equation follows because y(0) = y(1) and x(0) = x(1).

The last assertion follows directly from the definition of the integral of a 1-form:∫
S1
z∗λH =

∫ 1

0
(λH)z(t)(ż(t))dt

=
∫ 1

0

n∑
j=1

yj(t)ẋj(t)dt−
∫ 1

0
Ht(z(t))dt

=
∫ 1

0
⟨y(t), ẋ(t)⟩dt−

∫ 1

0
Ht(z(t))dt

= AH(z).
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