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The most important exercises are marked with an asterisk *.

7.1. Consider two functions F,G € C°°(R?*"). The Poisson bracket of F' and G is
defined by

" (OF 0G OF 0G
rGy=2, (My " oy, 0,

J=1

*(a) Show that {F,G} = wga(X¢, XT).

) € O=(R*™).

Solution. Using that wgq, Jo and the standard inner product form a compatible
triple, X' = JoVF and X¢ = J,VG, we compute

Wetd (XY, XT) = wea (S VG, JoVF)

= (J,VG, VF)

oG oF
(%) (8))
— {F.G).

*(b) The function F is called an integral of the Hamiltonian differential equation
@(t) = XO(x(1))

if F'is constant along its solutions x(¢). Show that F' is an integral of the
Hamiltonian differential equation associated to G if and only if {F,G} = 0.

Solution. We compute the derivative of F'(z(t)) for a solution x(t) of the
Hamiltonian differential equation associated to G:

SFE0) = AR (XE((0)) = (X7 ((0), X (a(1))) = {F. G}

where we used (a) in the last equation. In particular, this derivative vanishes

for all ¢, if and only if {F, G} = 0.

*(c) Show that a diffeomorphism v: R?" — R*" is a symplectomorphism if and only
if

{F.G}oy ={Foy,Goy}
for any functions F, G € C*(M).

Solution. Old solutions containing a mistake: This also follows from (a):

{F,G} o :wstd(XGoz/;,XFow)
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and
{Foy,Go} = wya( X, )
= wstd((dﬁ))_l(XG o 1), )

(d)

= (@) waa) (XC 01, X 0 9p)

These two terms coincide for all F, G if and only if (¢ ™!)*wsq = wsa. Namely,
if and only if ¢ is a symplectomorphism.

Explanation of the mistake: The two red colored terms in the equation are only
equal if ¢ is a symplectomorphism. Same for the two green colored terms. So
this calculation shows actually only one direction of the implication: if ¢ is a
symplectomorphism then

(F,G}oy ={Fo,Gorp}.
Correct solution: As in (a) we compute
{F,G}otp = (JyVG o), VF o p) = —(VG o )T Jy(VF 0 9)
and
{Foy,Goy}=—(V(Goy) Jh)V(F o)
= —(VG o) dipJo(dy)" (VF o ¢)).
Hence these two terms are equal for all F and G if and only if

dpJo(dep)" = Jo
This in turn is equivalent to 1 being a symplectomorphism.

Let X and Y be two symplectic vector fields. Show that [X, Y] is a Hamiltonian
vector field.

Hint: The bracket of two vector fields X and Y is defined by
(X,Y]=VxY —VyX.
Use the formula ¢[x yjw = Lx(tyw) — ty (Lxw) to show that ¢[x yjwsa is exact.

Solution. We abbreviate w = wgq. We proceed as in the hint, using Cartan’s
formula twice:

L[X’y]w = EX(Lyw) — Ly(ﬁxw)
= dex (tyw) + exd(iyw) — vy (dexw) — vy (exdw)
= dw(Y, X),
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where in the last equation we used that d(tyw) = 0 and dexw = 0 because Y, X
are symplectic. Hence ¢y yjw is exact and in fact wsq(X,Y) is a Hamiltonian
function generating the vector field [X,Y].

(e) Show that
(X7, X9 = X1oF,

Solution. This follows from (a) and what we’ve shown in (d). Indeed, in (d),

we showed that [ X', X¢] is a Hamiltonian vector field corresponding to the
Hamiltonian wgq(X*, X¢). Thus:

[XF,XG] — sttd(XF,XG) _ X{G’F}.

*7.2. Let ¢ be a symplectic capacity. Define
(M, w) :=sup{c(U,w) |U C M open, U C M\OM}.
We always have ¢ < c¢. The capacity c is called inner reqular if ¢ = ¢. Show:

(a) Corrected version!!! The measurement ¢ does satisfy the conformality and
non-triviality axiom, but it is not necessarily a symplectic capacity.

Remark: Changing the definition of ¢ by taking supremum only over c(U,w)
where U is in addition compact, will result in an actual symplectic capacity.

Solution.

The measurement ¢ does satisfy the conformality and non-triviality axiom, but
not necessarily the monotonicity axiom:

e Monotonicity. We show why the obvious proof fails:

Let ¢: (M,w) — (N,7) be a symplectic embedding. Then for every
U C M open and such that U C M\ OM, the map ¢|y is also a symplectic
embedding. Therefore, since ¢ is a capacity, it holds ¢(U,w) < c¢(¢(U), 7).
Taking supremum over U, we get

sup  c(U,w) < sup  c(p(U), 7).

TeAnoM TernoM

The problem is that V := ¢(U) could intersect the boundary of N, so that
we can’t conclude that

swp eo(U).r) < sup e(Vir) = E(N.w).

o Uopen . Vopen
UCM\OM VCN\ON
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To see that V' could intersect the boundary of N, consider the symplectic
embedding ¢ of the open unit ball M into the closed unit ball N. Then
U = M is an open set as it occurs in the definition of ¢(M). However, the
closure of p(U) is N, hence intersects the boundary of N.

Conformality. We need to show that ¢(M, aw) = |a| - ¢(M,w) for all
a € R\ {0}. Since ¢ is a symplectic capacity, it follows that ¢(U, aw) =
la| - ¢(U, o). Taking supremums over all open U with U C M \ OM shows
conformality.

Non-triviality. We show that ¢(B(1),wq) = 7. Since (B(1),wp) embeds
in (B(1),wp), it must hold that ¢(B(1),wy) < w. Suppose for contradiction
that ¢(B(1),wp) = me? for some € € (0,1). Note that for 6 = (1+¢)/2 we
can symplectically embed (B(d),wp) into (B(1),wp). Thus

§(B(1),wo) > c(B(5),wo) = (1 - 5) .

This is a contradiction to our assumption that ¢(B(1),wy) = 7e? and thus
the inner capacity of the ball must be ¢(B(1),wp) = 7.

The argument for Z(1) is analogous.

(b) If d is any inner regular symplectic capacity with d < ¢, then d < ¢é.

Solution. Since d is inner regular and d < ¢, we have

d(M) = d(M) = sup{d(U,w) |U € M open ,U C M\OM}
< sup{c(U,w) |U C M open ,U C M\OM}

= C.

(c¢) The Gromov-width D(M,w) is inner regular.

Solution. Let 0 < a < D(M,w). Then for € > 0 satisfying a + ¢ < D(M,w),

there exists a symplectic embedding

v: Bla+¢€) — (M,w).

But then U = p(B(a)) C M satisfies U C M\OM. In particular, D(U,w) > a
and thus D(M,w) > a. Since this is true for any 0 < a < D(M,w) we conclude

D(M,w) = D(M,w).
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(d) The Hofer-Zehnder capacity ¢y is inner regular.

Solution. Let (M,w) be a symplectic manifold, possibly with boundary. Sup-
pose ¢o(M,w) < co. For € > 0 there exists H € H,(M,w) such that

m(H) > co(M,w) — €.

Let K C M be the support of X#. By property (1) for elements in the set
H(M,w), we have K C M\OM. Pick an open set U with K C U C U C M\OM.
Clearly, the restriction H |y is contained in H,(U,w) and m (H|y) = m(H). Thus
co(U,w) > m(H) > ¢o(M,w) — €. It follows that ¢o(M,w) > co(M,w). The
other inequality is clear.

*7.3. What is the biggest symplectic capacity?

Solution. Similar to the Gromov-width, that measures the size of the biggest ball
that embeds into a symplectic manifold M, we can measure the smallest size of a
cylinder into which we can squeeze M. More precisely, we define

D(M,w) := inf{mr? ’ IM —— Z(r)}.
We show that D satisfies the monotonicity axiom: Let ¢: (M,w) < (N,0o) be a

symplectic embedding. Note that any symplectic embedding ¢: N < Z(r) gives a
symplectic embedding ¢ o ¢: M — Z(r). Therefore,

D(N, o) = inf{mr? ‘ IN —— Z(r)}
> inf{mr? |3 M —— Z(r)}

= D(M,w).
For the conformality axiom, we need to show that
D(M, ow) = |a|D(M,w)
It is enough to construct a bijection between

{o: (M, aw) S Z(r)}

and
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for any real number « # 0. Consider

f:Z(r)—>Z<r>,xl—> T
| 1ol

If a > 0, we get a bijection by setting ¢ = fop. Indeed, ¢ is a symplectic embedding:

O Wsta = ©* ffwsta = gp*(a‘lwstd) =a law = w.

If @ < 0 a bijection is given by @ = 1y o f o ¢, where ¥y(u,v) = (—u,v) is an
anti-symplectomorphism on Z(r). Then ¢ is again a symplectic embedding:

(ﬁ*wstd = (P*f*wgwstd = _(P*f*wstd = _90*<|a|71wstd> =o law = w.

Finally the non-triviality axiom follows from non-squeezing: D(B(1),wsa)

because there exists a symplectic embedding B(1) <% Z(r) if and only if 1 < 7.
D(Z(1),wgq) = m follows from the definition of D.

This shows that D is a symplectic capacity. Moreover, any symplectic capacity c is
bounded from above by D. Indeed, we have

whenever (M, w) <> (Z(r), wsa). Hence D(M,w) > ¢(M,w).

7.4. Let H € C*(R x R?") be a Hamiltonian function that is 1-periodic: H; = Hy4
for any ¢. On a loop 2z € C°°(S!,R?"), the action functional takes the value

An(2) :/01;<—J0z'(t),z(t)>dt—/ol H(=(1) dt.

Show that this coincides with the physicist’s action functional, namely for a loop
z(t) = (x(t),y(t)) we have

1 1
An(2) = [ @) aw)at— [ H((0)
In other words, Ay(z) is the integral of the action 1-form

)\H = Zyjdl‘j — Hdt

j=1

along the loop z.

6/7
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Hint: Integration by parts.
Solution. It’s only the first term we need to study. We have

st = 1((349). ()

Integration by parts implies

11 '
[ et anar =

Here the last equation follows because y(0) = y(1) and z(0) = x(1).

The last assertion follows directly from the definition of the integral of a 1-form:
1 .
/S Ay = /0 (a0 (3(0)dt
1 1
= [ S w0t — [ Hi=(0)at
0 = 0

_ /01<y(t),jc(t))dt - /01 Hy(=(t))dt
= Ay(2).



