The most important exercises are marked with an asterisk *.
*8.1. Let $N \in \mathbb{N}, \pi<a<2 \pi$ and consider the quadratic Hamiltonian $Q: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ defined by

$$
Q(x, y)=a\left(x_{1}^{2}+y_{1}^{2}\right)+\frac{a}{N^{2}} \sum_{j=2}^{n}\left(x_{j}^{2}+y_{j}^{2}\right) .
$$

Show that there are no 1-periodic solutions to $\dot{z}=X^{Q}(z)$ except the constant solution $z=0$.

Solution.

We write $z=(x, y)$ and consider a solution with $z(0) \neq 0$. Then since, as we saw in lectures, $\dot{z}(t)=J_{0} \nabla Q(z)$, it follows that

$$
\binom{-\dot{y}(t)}{\dot{x}(t)}=-J_{0} \dot{z}=\nabla Q(z)=2 a \operatorname{diag}\left(1, \frac{1}{N^{2}}, \ldots, \frac{1}{N^{2}}, 1, \frac{1}{N^{2}}, \ldots, \frac{1}{N^{2}}\right) z .
$$

Therefore, the ODE decouples into n ODE's:

$$
\left(-\dot{y}_{1}, \dot{x}_{1}\right)=2 a\left(x_{1}, y_{1}\right)
$$

and for $2 \leq k \leq n$

$$
\left(-\dot{y}_{k}, \dot{x}_{k}\right)=\frac{2 a}{N^{2}}\left(x_{k}, y_{k}\right)
$$

Therefore, writing $z_{1}=\left(x_{1}, y_{1}\right)$ we get

$$
z_{1}(t)=\cos (2 a t) z_{1}(0)+\sin (2 a t) J_{0} z_{1}(0)
$$

and for $2 \leq k \leq n, z_{k}=\left(x_{k}, y_{k}\right)$ we get

$$
z_{k}(t)=\cos \left(\frac{2 a}{N^{2}} t\right) z_{k}(0)+\sin \left(\frac{2 a}{N^{2}} t\right) J_{0} z_{k}(0)
$$

Thus $z(t)$ have smallest period $T=\frac{\pi N^{2}}{a}$. If $N \geq 2$ we see $T>\frac{\pi N^{2}}{2 \pi} \geq 2$. If $N=1$ we have $T=\frac{\pi}{a}<1$. In both cases, $T \neq 1$ which proves the result.
*8.2. Let E be a Hilbert space and $f \in C^{1}(E, \mathbb{R})$. A subset $R \subset E$ is called a mountain range for f, if

- $E \backslash R$ is disconnected,
- $\alpha:=\inf _{R} f>-\infty$,
- and on every component of $E \backslash R$, the function f attains a value strictly less than α.

Prove the Mountain Pass Lemma: Assume that f satisfies the Palais-Smale condition and assume that the gradient equation

$$
\dot{x}=-\nabla f(x)
$$

generates a global flow on E. Then for any mountain range $R \subset E$, the function f has a critical point $x \in E$ satisfying $f(x) \geq \alpha$.
Solution. Choose two different components E^{0} and E^{1} of $E \backslash R$. Let

$$
\Gamma:=\left\{\gamma \in C([0,1], E) \mid \gamma(0) \in E^{0}, \gamma(1) \in E^{1}, f(\gamma(0)), f(\gamma(1))<\alpha\right\}
$$

and

$$
\mathcal{F}:=\{\operatorname{im}(\gamma) \mid \gamma \in \Gamma\} .
$$

Consider $\gamma \in \Gamma$. Then $\gamma(0)$ and $\gamma(1)$ lie in two different components of $E \backslash R$ and hence there exists $t_{0} \in(0,1)$ such that $\gamma\left(t_{0}\right) \in R$. In particular,

$$
\sup _{t \in[0,1]} f(\gamma(t)) \geq f\left(\gamma\left(t_{0}\right)\right) \geq \alpha
$$

Thus

$$
c(f, \mathcal{F})=\inf _{\gamma \in \Gamma} \sup _{t \in[0,1]} f(\gamma(t)) \geq \alpha .
$$

Clearly, $c(f, \mathcal{F})<\infty$ because f attains its maximum on the compact set $\operatorname{im}(\gamma)$. Moreover, \mathcal{F} is positively invariant under the flow φ_{t} of $-\nabla f$: for $\gamma \in \Gamma$ and $t \geq 0$ we have $\varphi_{t} \circ \gamma \in \Gamma$ because f decreases along flow lines. Thus f and \mathcal{F} satisfy all assumptions of the minimax lemma. Therefore, $c(f, \mathcal{F}) \geq \alpha$ is a critical value of f.
8.3. Show that H^{1} is a Hilbert space. You should use the fact that $L^{2}\left(S^{1}\right)$ is a Hilbert space and the definition of H^{1} using Fourier series.

Hint: Given a Cauchy sequence $x^{n} \in H^{1}$, consider the sequences x^{n} and its weak derivative $y^{n}:=\left(x^{n}\right)$ as Cauchy sequences in $L^{2}\left(S^{1}\right)$.
Solution. We need to show that H^{1} is complete. Let $x^{n} \in H^{1}$ be a Cauchy sequence. Write

$$
x^{n}=\sum_{k \in \mathbb{Z}} e^{2 \pi k J_{0} t} x_{k}^{n}
$$

with $x_{k}^{n} \in \mathbb{R}^{2 n}$. We have

$$
\left\|x^{n}-x^{m}\right\|_{0}^{2} \leq\left\|x^{n}-x^{m}\right\|_{1}^{2}
$$

and thus x^{n} is a Cauchy sequence wrt to $\|\cdot\|_{0}$. Consider the sequence

$$
y^{n}:=2 \pi \sum_{k \in \mathbb{Z}} e^{2 \pi k J_{0} t}\left(k J_{0} x_{k}^{n}\right)
$$

We have

$$
\begin{aligned}
\left\|y^{n}-y^{m}\right\|_{0}^{2} & =\left\|y_{0}^{n}-y_{0}^{m}\right\|^{2}+2 \pi \sum_{k \in \mathbb{Z}}\left\|y_{k}^{n}-y_{k}^{m}\right\|^{2} \\
& =0+2 \pi \sum_{k \in \mathbb{Z}} 4 \pi^{2} k^{2}\left\|x_{k}^{n}-x_{k}^{m}\right\|^{2} \\
& \leq 4 \pi^{2}\left\|x^{n}-x^{m}\right\|_{1}^{2} .
\end{aligned}
$$

Thus also y^{n} is a Cauchy sequence for $\|\cdot\|_{0}$. Since $\|\cdot\|_{0}$ is equivalent to $\|\cdot\|_{L^{2}}$ on $H^{0}=L^{2}\left(S^{1}\right)$ and $L^{2}\left(S^{1}\right)$ is complete, x^{n} converges to some $x \in L^{2}\left(S^{1}\right)$ and y_{n} converges to some $y \in L^{2}\left(S^{1}\right)$ wrt $\|\cdot\|_{L^{2}}$.
Since $\left\|y^{n}-y\right\|_{0} \rightarrow 0$, we have $\left\|2 \pi k J_{0} x_{k}^{n}-y_{k}\right\| \rightarrow 0$ and thus

$$
y_{k}=\lim _{n \rightarrow \infty} 2 \pi k J_{0} x_{k}^{n}=2 \pi k J_{0} x_{k}
$$

We therefore have

$$
\begin{aligned}
\left\|x^{n}-x\right\|_{1}^{2} & =\left\|x_{0}^{n}-x_{0}\right\|^{2}+2 \pi \sum_{k \in \mathbb{Z}} k^{2}\left\|x_{k}^{n}-x_{k}\right\|^{2} \\
& =\left\|x_{0}^{n}-x_{0}\right\|^{2}+2 \pi \sum_{k \in \mathbb{Z}} k^{2} \frac{1}{4 \pi^{2} k^{2}}\left\|y_{k}^{n}-y_{k}\right\|^{2} \\
& \leq C\left\|y^{n}-y\right\|_{0}^{2} \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

Therefore, x^{n} converges to x in $\|\cdot\|_{1}$. Moreover,

$$
\|x\|_{1} \leq\left\|x-x_{n}\right\|_{1}+\left\|x_{n}\right\|_{1}<\infty
$$

so that $x \in H^{1}$.
8.4. If you don't know the Fourier series representation for elements in $L^{2}\left(S^{1}\right)$ and you are interested in it, read it up for example in sections 1.1 and 1.2 in https://math.iisc.ac.in/~veluma/fourier.pdf

