The most important exercises are marked with an asterisk *.
*10.1. Let (M, ω) and $\left(M^{\prime}, \omega^{\prime}\right)$ be a symplectic manifolds of the same dimension. Let $\psi: M \rightarrow M^{\prime}$ be a smooth map and consider its graph

$$
\Gamma_{\psi}:=\{(x, \psi(x)) \mid x \in M\} \subset\left(M \times M^{\prime}, \omega \oplus\left(-\omega^{\prime}\right)\right) .
$$

Show that ψ is symplectic (i.e. $\psi^{*} \omega^{\prime}=\omega$) if and only if Γ_{ψ} is a Lagrangian submanifold.
Solution. Note first that $\operatorname{dim} \Gamma_{\psi}=\operatorname{dim} M=\frac{1}{2} \operatorname{dim}\left(M \times M^{\prime}\right)$. Thus Γ_{ψ} is a Lagrangian if and only if the restriction of $\omega \oplus\left(-\omega^{\prime}\right)$ to $T L$ vanishes. Consider the graph map

$$
g r_{\psi}: M \rightarrow M \times M^{\prime}, x \mapsto(x, \psi(x)) .
$$

This is a diffeomorphism onto Γ_{ψ} and hence the condition of being a Lagrangian is equivalent to $g r_{\psi}^{*}\left(\omega \oplus\left(-\omega^{\prime}\right)\right)=0$. We have

$$
g r_{\psi}^{*}\left(\omega \oplus\left(-\omega^{\prime}\right)\right)=\omega-\psi^{*} \omega^{\prime}
$$

This vanishes if and only if $\omega=\psi^{*} \omega^{\prime}$.
*10.2. Let Q be a smooth manifold and $S \subset Q$ a submanifold. Prove that the annihilator

$$
T S^{0}:=\left\{(x, \xi) \in T^{*} Q|x \in S, \xi|_{T_{x} S} \equiv 0\right\}
$$

is a Lagrangian submanifold of $T^{*} Q$ with respect to the canonical symplectic form.
Solution. First we show that $T S^{0}$ is submanifold of $T^{*} Q$ of dimension $n:=\operatorname{dim} Q$. Denote by $m:=\operatorname{dim} S$. Let $U \subseteq Q$ be an open subset and $\varphi: U \rightarrow \mathbb{R}^{n}$ a chart such that $\varphi(U \cap S)=\mathbb{R}^{m} \times\{0\}$. This induces a chart

$$
\Phi: T^{*} U \rightarrow T^{*} \mathbb{R}^{n}, \Phi(x, \xi)=\left(\varphi(x), \xi \circ\left(\mathrm{d} \varphi_{x}\right)^{-1}\right)
$$

on $T^{*} Q$. We have

$$
\begin{aligned}
\Phi\left(T S^{0} \cap T^{*} U\right) & =\varphi(U \cap S) \times\left\{\xi \in T^{*} \mathbb{R}^{n}|\xi|_{\mathbb{R}^{m} \times\{0\}} \equiv 0\right\} \\
& \cong\left(\mathbb{R}^{m} \times\{0\}\right) \times\left(\{0\} \times \mathbb{R}^{n-m}\right) \cong \mathbb{R}^{n}
\end{aligned}
$$

Thus $T S^{0}$ is an n-dimensional submanifold of $T^{*} Q$.

Let now $(x, \xi) \in T S^{0}$ and $v \in T_{(x, \xi)}\left(T S^{0}\right)$. Let $\alpha \in \Omega^{1}\left(T^{*} Q\right)$ be the tautological 1 -form. We have

$$
\left(i^{*} \alpha\right)_{(x, \xi)}(v)=\alpha_{(x, \xi)}(v)=\xi(\mathrm{d} \pi(v))=0
$$

because $\mathrm{d} \pi(v) \in T_{x} S$ and $\left.\xi\right|_{T_{x} S} \equiv 0$. Denote by $i: T S^{0} \hookrightarrow T^{*} Q$ the inclusion. The above shows that $i^{*} \alpha=0$. It follows from $\omega_{\text {std }}=\mathrm{d} \alpha$ that

$$
i^{*} \omega_{\text {std }}=i^{*}(\mathrm{~d} \alpha)=\mathrm{d}\left(i^{*} \alpha\right)=0
$$

Hence $T S^{0}$ is a Lagrangian submanifold of $T^{*} Q$.

10.3.

(a) Let X be a smooth manifold. Show that any diffeomorphism $\psi: X \rightarrow X$ lifts to a symplectomorphism

$$
\Psi: T^{*} X \rightarrow T^{*} X
$$

by the formula

$$
\Psi(x, \xi)=\left(\psi(x), \xi \circ\left(\mathrm{d} \psi_{x}\right)^{-1}\right) .
$$

Solution. Let $\alpha \in \Omega^{1}\left(T^{*} X\right)$ denote the tautological 1-form. We show that $\Psi^{*} \alpha=\alpha$, which is even stronger than being a symplectomorphism. Let $p=$ $(x, \xi) \in T^{*} X$ and $v \in T_{(x, \xi)} T^{*} X$. We compute

$$
\begin{aligned}
\left(\Psi^{*} \alpha\right)_{p}(v) & =\alpha_{\left(\psi(x), \xi \circ\left(\mathrm{d} \psi_{x}\right)^{-1}\right)}\left(\mathrm{d} \Psi_{p}(v)\right) \\
& =\left(\xi \circ\left(\mathrm{d} \psi_{x}\right)^{-1}\right)\left(\mathrm{d} \pi_{\Psi(p)} \circ \mathrm{d} \Psi_{p}(v)\right) \\
& =\left(\xi \circ\left(\mathrm{d} \psi_{x}\right)^{-1}\right)\left(\mathrm{d}(\pi \circ \Psi)_{p}(v)\right) \\
& =\left(\xi \circ\left(\mathrm{d} \psi_{x}\right)^{-1}\right)\left(\mathrm{d}(\psi \circ \pi)_{p}(v)\right) \\
& =\left(\xi \circ\left(\mathrm{d} \psi_{x}\right)^{-1} \circ \mathrm{~d} \psi_{x}\right)\left(\mathrm{d} \pi_{p}(v)\right) \\
& =\xi\left(\mathrm{d} \pi_{p}(v)\right) \\
& =\alpha_{p}(v),
\end{aligned}
$$

hence $\Psi^{*} \alpha=\alpha$ as claimed.
(b) Consider $\left(\mathbb{C}^{2} \cong \mathbb{R}^{4}, \omega_{\text {std }}\right)$ and the submanifold

$$
L_{\mathrm{Ch}}:=\left\{\left.\binom{\left(e^{s}+i e^{-s} t\right) \cos (\theta)}{\left(e^{s}+i e^{-s} t\right) \sin (\theta)} \right\rvert\, \theta, s, t \in \mathbb{R}, s^{2}+t^{2}=1\right\} .
$$

Show that this is a Lagrangian submanifold. It is called Chekanov torus.
Hint: Write L_{Ch} as the image of a Lagrangian in $T^{*} S^{1} \times T^{*} \mathbb{R}$ under a symplectomorphism.
Solution. Let $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$ the coordinate on the unit circle S^{1} and consider the diffeomorphism

$$
\begin{aligned}
\psi: S^{1} \times \mathbb{R} & \rightarrow \mathbb{R}^{2} \backslash\{0\} \\
(\theta, s) & \mapsto\left(e^{s} \cos (\theta), e^{s} \sin (\theta)\right)
\end{aligned}
$$

We lift it to a symplectomorphism $\Psi: T^{*}\left(S^{1} \times \mathbb{R}\right) \rightarrow T^{*}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ as in part (a). We identify $T^{*}\left(S^{1} \times \mathbb{R}\right) \cong T^{*} S^{1} \times T^{*} \mathbb{R}$ and denote elements in it by quadruples (θ, τ, s, t), where $(\theta, \tau) \in T^{*} S^{1} \cong S^{1} \times \mathbb{R}$ and $(s, t) \in T^{*} \mathbb{R} \cong \mathbb{R}^{2}$. Furthermore we identify $T^{*}\left(\mathbb{R}^{2} \backslash\{0\}\right) \cong\left(\mathbb{R}^{2} \backslash\{0\}\right) \times \mathbb{R}^{2} \subset \mathbb{R}^{4} \cong \mathbb{C}^{2}$.

In these coordinates we have

$$
\mathrm{d} \psi_{(\theta, s)}=\left(\begin{array}{cc}
-e^{s} \sin (\theta) & e^{s} \cos (\theta) \\
e^{s} \cos (\theta) & e^{s} \sin (\theta)
\end{array}\right)
$$

and thus

$$
\left(\mathrm{d} \psi_{(\theta, s)}\right)^{-1}=\left(\begin{array}{cc}
-e^{-s} \sin (\theta) & e^{-s} \cos (\theta) \\
e^{-s} \cos (\theta) & e^{-s} \sin (\theta)
\end{array}\right) .
$$

It follows that for $\xi=(\tau, t) \in T_{(\theta, s)}^{*}\left(S^{1} \times \mathbb{R}\right) \cong \operatorname{Hom}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ we have

$$
\xi \circ\left(\mathrm{d} \psi_{(\theta, s)}\right)^{-1}=\left(-e^{-s} \sin (\theta) \tau+e^{-s} \cos (\theta) t, e^{-s} \cos (\theta) \tau+e^{-s} \sin (\theta) t\right) .
$$

As noted above, we identify $T^{*}\left(\mathbb{R}^{2} \backslash\{0\} \cong\left(\mathbb{R}^{2} \backslash\{0\}\right) \times \mathbb{R}^{2}\right.$ and consider it as a subset of \mathbb{C}^{2}. If we think of the base as living in the real part of \mathbb{C}^{2} and the fibres in the purely imaginary part, then Ψ is given by

$$
\Psi(\theta, \tau, s, t)=\binom{\left(e^{s}+i e^{-s} t\right) \cos (\theta)-i \tau e^{-s} \sin (\theta)}{\left(e^{s}+i e^{-s} t\right) \sin (\theta)+i \tau e^{-s} \cos (\theta)}
$$

The Chekanov torus L_{Ch} is the image under Ψ of the product of the zero section in $T^{*} S^{1}$ with the unit circle in \mathbb{R}^{2}. Hence it is the image of a Lagrangian under a symplectomorphism. We conclude that L_{Ch} is a Lagrangian.

