The most important exercises are marked with an asterisk *.

*10.1. Let (M, ω) and (M', ω') be a symplectic manifolds of the same dimension. Let $\psi: M \to M'$ be a smooth map and consider its graph

$$\Gamma_{\psi} \coloneqq \{(x, \psi(x)) \mid x \in M\} \subset (M \times M', \omega \oplus (-\omega')).$$

Show that ψ is symplectic (i.e. $\psi^* \omega' = \omega$) if and only if Γ_{ψ} is a Lagrangian submanifold.

Solution. Note first that $\dim \Gamma_{\psi} = \dim M = \frac{1}{2} \dim(M \times M')$. Thus Γ_{ψ} is a Lagrangian if and only if the restriction of $\omega \oplus (-\omega')$ to *TL* vanishes. Consider the graph map

$$gr_{\psi} \colon M \to M \times M', \ x \mapsto (x, \psi(x)).$$

This is a diffeomorphism onto Γ_{ψ} and hence the condition of being a Lagrangian is equivalent to $gr_{\psi}^*(\omega \oplus (-\omega')) = 0$. We have

$$gr_{\psi}^*(\omega \oplus (-\omega')) = \omega - \psi^*\omega'.$$

This vanishes if and only if $\omega = \psi^* \omega'$.

*10.2. Let Q be a smooth manifold and $S \subset Q$ a submanifold. Prove that the annihilator

$$TS^{0} \coloneqq \{ (x,\xi) \in T^{*}Q \, | \, x \in S, \xi |_{T_{x}S} \equiv 0 \}$$

is a Lagrangian submanifold of T^*Q with respect to the canonical symplectic form.

Solution. First we show that TS^0 is submanifold of T^*Q of dimension $n := \dim Q$. Denote by $m := \dim S$. Let $U \subseteq Q$ be an open subset and $\varphi : U \to \mathbb{R}^n$ a chart such that $\varphi(U \cap S) = \mathbb{R}^m \times \{0\}$. This induces a chart

$$\Phi \colon T^*U \to T^*\mathbb{R}^n, \ \Phi(x,\xi) = (\varphi(x),\xi \circ (\mathrm{d}\varphi_x)^{-1})$$

on T^*Q . We have

$$\Phi(TS^0 \cap T^*U) = \varphi(U \cap S) \times \{\xi \in T^* \mathbb{R}^n \mid \xi|_{\mathbb{R}^m \times \{0\}} \equiv 0\}$$
$$\cong (\mathbb{R}^m \times \{0\}) \times (\{0\} \times \mathbb{R}^{n-m}) \cong \mathbb{R}^n.$$

Thus TS^0 is an *n*-dimensional submanifold of T^*Q .

Last modified: December 1, 2023

Let now $(x,\xi) \in TS^0$ and $v \in T_{(x,\xi)}(TS^0)$. Let $\alpha \in \Omega^1(T^*Q)$ be the tautological 1-form. We have

$$(i^*\alpha)_{(x,\xi)}(v) = \alpha_{(x,\xi)}(v) = \xi(\mathrm{d}\pi(v)) = 0$$

because $d\pi(v) \in T_x S$ and $\xi|_{T_x S} \equiv 0$. Denote by $i: TS^0 \hookrightarrow T^*Q$ the inclusion. The above shows that $i^*\alpha = 0$. It follows from $\omega_{\text{std}} = d\alpha$ that

 $i^*\omega_{\rm std} = i^*(\mathrm{d}\alpha) = \mathrm{d}(i^*\alpha) = 0.$

Hence TS^0 is a Lagrangian submanifold of T^*Q .

10.3.

(a) Let X be a smooth manifold. Show that any diffeomorphism $\psi: X \to X$ lifts to a symplectomorphism

 $\Psi \colon T^*X \to T^*X$

by the formula

 $\Psi(x,\xi) = (\psi(x),\xi \circ (\mathrm{d}\psi_x)^{-1}).$

Solution. Let $\alpha \in \Omega^1(T^*X)$ denote the tautological 1-form. We show that $\Psi^*\alpha = \alpha$, which is even stronger than being a symplectomorphism. Let $p = (x,\xi) \in T^*X$ and $v \in T_{(x,\xi)}T^*X$. We compute

$$(\Psi^*\alpha)_p(v) = \alpha_{(\psi(x),\xi\circ(\mathrm{d}\psi_x)^{-1})} (\mathrm{d}\Psi_p(v))$$

= $\left(\xi\circ(\mathrm{d}\psi_x)^{-1}\right) (\mathrm{d}\pi_{\Psi(p)}\circ\mathrm{d}\Psi_p(v))$
= $\left(\xi\circ(\mathrm{d}\psi_x)^{-1}\right) (\mathrm{d}(\pi\circ\Psi)_p(v))$
= $\left(\xi\circ(\mathrm{d}\psi_x)^{-1}\right) (\mathrm{d}(\psi\circ\pi)_p(v))$
= $\left(\xi\circ(\mathrm{d}\psi_x)^{-1}\circ\mathrm{d}\psi_x\right) (\mathrm{d}\pi_p(v))$
= $\xi(\mathrm{d}\pi_p(v))$
= $\alpha_p(v),$

hence $\Psi^* \alpha = \alpha$ as claimed.

(b) Consider $(\mathbb{C}^2 \cong \mathbb{R}^4, \omega_{std})$ and the submanifold

$$L_{\rm Ch} \coloneqq \left\{ \begin{pmatrix} (e^s + ie^{-s}t)\cos(\theta)\\ (e^s + ie^{-s}t)\sin(\theta) \end{pmatrix} \middle| \theta, s, t \in \mathbb{R}, s^2 + t^2 = 1 \right\}.$$

2/3

Show that this is a Lagrangian submanifold. It is called *Chekanov torus*.

Hint: Write L_{Ch} as the image of a Lagrangian in $T^*S^1 \times T^*\mathbb{R}$ under a symplectomorphism.

Solution. Let $\theta \in \mathbb{R}/2\pi\mathbb{Z}$ the coordinate on the unit circle S^1 and consider the diffeomorphism

$$\psi \colon S^1 \times \mathbb{R} \to \mathbb{R}^2 \setminus \{0\}, (\theta, s) \mapsto (e^s \cos(\theta), e^s \sin(\theta)).$$

We lift it to a symplectomorphism $\Psi: T^*(S^1 \times \mathbb{R}) \to T^*(\mathbb{R}^2 \setminus \{0\})$ as in part (a). We identify $T^*(S^1 \times \mathbb{R}) \cong T^*S^1 \times T^*\mathbb{R}$ and denote elements in it by quadruples (θ, τ, s, t) , where $(\theta, \tau) \in T^*S^1 \cong S^1 \times \mathbb{R}$ and $(s, t) \in T^*\mathbb{R} \cong \mathbb{R}^2$. Furthermore we identify $T^*(\mathbb{R}^2 \setminus \{0\}) \cong (\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}^2 \subset \mathbb{R}^4 \cong \mathbb{C}^2$.

In these coordinates we have

$$d\psi_{(\theta,s)} = \begin{pmatrix} -e^s \sin(\theta) & e^s \cos(\theta) \\ e^s \cos(\theta) & e^s \sin(\theta) \end{pmatrix}$$

and thus

$$\left(\mathrm{d}\psi_{(\theta,s)}\right)^{-1} = \begin{pmatrix} -e^{-s}\sin(\theta) & e^{-s}\cos(\theta) \\ e^{-s}\cos(\theta) & e^{-s}\sin(\theta) \end{pmatrix}.$$

It follows that for $\xi = (\tau, t) \in T^*_{(\theta, s)}(S^1 \times \mathbb{R}) \cong \operatorname{Hom}(\mathbb{R}^2, \mathbb{R})$ we have

$$\xi \circ (\mathrm{d}\psi_{(\theta,s)})^{-1} = \left(-e^{-s}\sin(\theta)\tau + e^{-s}\cos(\theta)t, \ e^{-s}\cos(\theta)\tau + e^{-s}\sin(\theta)t\right).$$

As noted above, we identify $T^*(\mathbb{R}^2 \setminus \{0\}) \cong (\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}^2$ and consider it as a subset of \mathbb{C}^2 . If we think of the base as living in the real part of \mathbb{C}^2 and the fibres in the purely imaginary part, then Ψ is given by

$$\Psi(\theta,\tau,s,t) = \begin{pmatrix} (e^s + ie^{-s}t)\cos(\theta) - i\tau e^{-s}\sin(\theta)\\ (e^s + ie^{-s}t)\sin(\theta) + i\tau e^{-s}\cos(\theta) \end{pmatrix}.$$

The Chekanov torus $L_{\rm Ch}$ is the image under Ψ of the product of the zero section in T^*S^1 with the unit circle in \mathbb{R}^2 . Hence it is the image of a Lagrangian under a symplectomorphism. We conclude that $L_{\rm Ch}$ is a Lagrangian.