The most important exercises are marked with an asterisk *.
*11.1. Let (M, ω) be a closed symplectic manifold.
(a) Let X be a symplectic vector field, i.e. a vector field satisfying $\mathrm{d} \iota_{X} \omega=0$. Let $\psi \in \operatorname{Symp}_{0}(M, \omega)$. Show that $\psi^{*} X-X$ is a Hamiltonian vector field.
Solution. Let ψ_{t} be a symplectic isotopy connecting id to ψ and let Y_{t} be the generating vector field. It is a symplectic vector field for every t. We compute

$$
\begin{aligned}
\iota_{\left(\psi^{*} X-X\right)} \omega & =\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\iota_{\psi_{t}^{*} X} \omega\right) \mathrm{d} t \\
& =\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\psi_{t}^{*} \iota_{X} \omega\right) \mathrm{d} t \\
& =\int_{0}^{1} \mathcal{L}_{Y_{t}}\left(\iota_{X} \omega\right) \mathrm{d} t \\
& =\int_{0}^{1}\left(\mathrm{~d} \iota_{Y_{t}} \iota_{X} \omega+\iota_{Y_{t}} \mathrm{~d} \iota_{X} \omega\right) \mathrm{d} t \\
& =\int_{0}^{1} \mathrm{~d} \iota_{Y_{t}}\left(\iota_{X} \omega\right) \mathrm{d} t \\
& =\int_{0}^{1} \mathrm{~d} \omega\left(X, Y_{t}\right) \mathrm{d} t \\
& =\mathrm{d}\left(\int_{0}^{1} \omega\left(X, Y_{t}\right) \mathrm{d} t\right)
\end{aligned}
$$

This shows that $\psi^{*} X-X$ is a Hamiltonian vector field.
(b) Suppose the smooth isotopies $\varphi_{t}, \psi_{t} \in \operatorname{Diff}(M)$ are generated by the vector fields X_{t} and Y_{t}. Compute the vector field that generates $\psi_{t} \circ \varphi_{t}$.
Solution. As in Exercise 2.2, we compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\psi_{t} \circ \varphi_{t}\right) & =\left(\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}\right) \circ \varphi_{t}+\mathrm{d} \psi_{t}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \varphi_{t}\right) \\
& =Y_{t} \circ \psi_{t} \circ \varphi_{t}+\mathrm{d} \psi_{t}\left(X_{t} \circ \varphi_{t}\right) \\
& =\left(Y_{t}+\mathrm{d} \psi_{t}\left(X_{t} \circ \psi_{t}^{-1}\right)\right) \circ\left(\psi_{t} \circ \varphi_{t}\right) \\
& =\left(Y_{t}+\left(\psi_{t}^{-1}\right)^{*} X_{t}\right)\left(\psi_{t} \circ \varphi_{t}\right) .
\end{aligned}
$$

Therefore, $\psi_{t} \circ \varphi_{t}$ is generated by $Y_{t}+\left(\psi_{t}^{-1}\right)^{*} X_{t}$.
(c) Deduce that

$$
\text { Flux: } \widetilde{\operatorname{Symp}_{0}}(M, \omega) \rightarrow \mathrm{H}^{1}(M, \mathbb{R})
$$

is a homomorphism of groups.
Solution. Let $\left\{\varphi_{t}\right\}$ and $\left\{\psi_{t}\right\}$ be symplectic isotopies representing elements in $\widetilde{\operatorname{Symp}}_{0}(M, \omega)$. Let X_{t} and Y_{t} be the vector fields generating them. We compute

$$
\begin{aligned}
\operatorname{Flux}\left(\left\{\psi_{t} \circ \varphi_{t}\right\}\right) & \stackrel{(b)}{=} \int_{0}^{1}\left[\iota_{Y_{t}+\left(\psi_{t}^{-1}\right)^{*}\left(X_{t}\right)} \omega\right] \mathrm{d} t \\
& =\int_{0}^{1}\left[\iota_{Y_{t}} \omega\right]+\left[\iota_{\left(\psi_{t}^{-1}\right)^{*}\left(X_{t}\right)} \omega\right] \mathrm{d} t \\
& \stackrel{(a)}{=} \int_{0}^{1}\left[\iota_{Y_{t}} \omega\right]+\left[\iota_{X_{t}} \omega\right] \mathrm{d} t \\
& =\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)+\operatorname{Flux}\left(\left\{\varphi_{t}\right\}\right) .
\end{aligned}
$$

In the equality labelled by (b) we used part (b) of this exercise and in the equality (a) we used the following: applying part (a) of this exercise to ψ_{t}^{-1} and the symplectic vector field X_{t} we get that

$$
\iota_{\left(\psi_{t}^{-1}\right)^{*}\left(X_{t}\right)} \omega-\iota_{X_{t}} \omega=\iota_{\left(\psi_{t}^{-1}\right)^{*}\left(X_{t}\right)-X_{t}} \omega
$$

is exact. In particular,

$$
\left[\iota_{\left(\psi_{t}^{-1}\right)^{*}\left(X_{t}\right)} \omega\right]=\left[\iota_{X_{t}} \omega\right] \in \mathrm{H}^{1}(M, \mathbb{R})
$$

*11.2. Let (M, ω) be a closed symplectic manifold. Show that Flux is surjective.
Solution. Let $\theta \in \Omega^{1}(M, \mathbb{R})$ be a closed 1-form representing an element $[\theta]$ in $H^{1}(M, \mathbb{R})$. We show that there exists a symplectic isotopy $\left\{\psi_{t}\right\}_{t \in[0,1]}$ starting at $\psi_{0}=$ id such that $\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)=[\theta]$. Let X be the smooth vector field defined by $\iota_{X} \omega=\theta$. (This is well-defined because ω is non-degenerate.) The vector field X is a symplectic vector field, since θ is closed. Let $\psi_{t}, t \in[0,1]$, be the flow generated by X. Since X is symplectic, ψ_{t} is a symplectic isotopy. Moreover,

$$
\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right)=\int_{0}^{1}\left[\iota_{X} \omega\right] \mathrm{d} t=\int_{0}^{1}[\theta] \mathrm{d} t=[\theta]
$$

which proves the result.
11.3. Let (M, ω) be a closed symplectic manifold. Let ψ_{t} and φ_{t} be symplectic isotopies with $\psi_{0}=\varphi_{0}=\mathrm{id}$. Consider the juxtaposition of ψ_{t} and φ_{t}, which is defined by

$$
\chi_{t}= \begin{cases}\varphi_{2 t}, & 0 \leq t \leq \frac{1}{2} \\ \psi_{2 t-1} \circ \varphi_{1}, & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Prove that χ_{t} and $\psi_{t} \circ \varphi_{t}$ represent the same element in $\widetilde{\operatorname{Symp}_{0}(M, \omega) \text {. Use it to give }}$ a different proof for Flux being a homomorphism.

Solution. We have to show that χ_{t} and $\psi_{t} \circ \varphi_{t}$ are homotopic with fixed endpoints. For this, consider the homotopy

$$
f_{s, t}:=\left\{\begin{array}{l}
\psi_{0} \circ \varphi_{\frac{2}{2-s} t} \quad 0 \leq t \leq \frac{s}{2} \\
\psi_{\frac{2}{2-s} t+\frac{s}{s-2}}^{\frac{s}{2-s} t \quad \varphi_{2} \leq t \leq 1-\frac{s}{2}} \\
\psi_{\frac{2}{2-s} t+\frac{s}{s-2} \circ \varphi_{1} \quad 1-\frac{s}{2} \leq t \leq 1}
\end{array}\right.
$$

We have $f_{0, t}=\psi_{t} \circ \varphi_{t}, f_{1, t}=\chi_{t}, f_{s, 0}=\operatorname{id}$ and $f_{s, 1}=\psi_{1} \circ \varphi_{1}$. Therefore, $f_{s, t}$ is the required homotopy between $\psi_{t} \circ \varphi_{t}$ and χ_{t}.

Since the Flux is well-defined on $\widetilde{\operatorname{Symp}_{0}}(M, \omega)$ we can now use juxtaposition of paths to represent composition and compute its flux using the generating vector field. Let X_{t} and Y_{t} be the generating vector fields for $\left\{\varphi_{t}\right\}$ and $\left\{\psi_{t}\right\}$. Then the generating vector field for the juxtaposition χ_{t} is

$$
\begin{cases}2 X_{2 t} & 0 \leq t \leq \frac{1}{2} \\ 2 Y_{2 t-1} & \frac{1}{2} \leq t \leq 1\end{cases}
$$

Thus

$$
\begin{aligned}
\operatorname{Flux}\left(\left\{\psi_{t} \circ \varphi_{t}\right\}\right) & =\operatorname{Flux}\left(\left\{\chi_{t}\right\}\right) \\
& =\int_{0}^{\frac{1}{2}}\left[\iota_{2 X_{t}} \omega\right] \mathrm{d} t+\int_{\frac{1}{2}}^{1}\left[\iota_{2 Y_{2 t-1}} \omega\right] \mathrm{d} t \\
& =\int_{0}^{\frac{1}{2}} 2\left[\iota_{X_{t}} \omega\right] \mathrm{d} t+\int_{\frac{1}{2}}^{1} 2\left[\iota_{Y_{2 t-1}} \omega\right] \mathrm{d} t \\
& =\int_{0}^{1}\left[\iota_{X_{t}} \omega\right] \mathrm{d} t+\int_{0}^{1}\left[\iota_{Y_{t}} \omega\right] \mathrm{d} t \\
& =\operatorname{Flux}\left(\left\{\varphi_{t}\right\}\right)+\operatorname{Flux}\left(\left\{\psi_{t}\right\}\right),
\end{aligned}
$$

where we used the substitutions $t \mapsto 2 t$ and $t \mapsto 2 t-1$ in the second last step.

