The most important exercises are marked with an asterisk *.

12.1. Let (M, ω) be a closed symplectic manifold. Consider

$$M \times M^{-} \coloneqq \left(M \times M, \ \omega \oplus (-\omega) \right).$$

Let $j_{\Delta} \colon M \to M \times M^-$ denote the diagonal inclusion j(x) = (x, x).

Let $\psi_t, t \in [0, 1]$, be a symplectic isotopy with $\psi_0 = id$. Show that

 $\operatorname{Flux}(\{\psi_t\}) = -j_{\Delta}^*\operatorname{Flux}(\{\operatorname{id} \times \psi_t\}).$

Solution. Let X_t be the vector field generating ψ_t . Then the symplectic isotopy id $\times \psi_t$ is generated by the vector field

$$\hat{X}_t(x,y) = (0, X_t(y)) \in T_{(x,y)}(M \times M^-).$$

Let $x \in M$ and $v \in T_x M$. We compute

$$(j_{\Delta}^* \iota_{\hat{X}_t}(\omega \oplus (-\omega)))_x (v) = (\omega \oplus (-\omega))(\hat{X}_t(x,x), (v,v))$$

= $(-\omega)(X_t(x), v)$
= $-(\iota_{X_t}\omega)_x (v).$

Integrating over $t \in [0, 1]$ and taking classes in $H^1(M, \mathbb{R})$ yields the result.

*12.2. Let $\chi: M \to M$ be a symplectomorphism on a closed symplectic manifold (M, ω) and let $\psi_t, t \in [0, 1]$, be a symplectic isotopy with $\psi_0 = \text{id}$. Show that

$$\operatorname{Flux}(\{\chi^{-1} \circ \psi_t \circ \chi\}) = \chi^*(\operatorname{Flux}(\{\psi_t\}).$$

Solution. Let X_t be the vector field generating ψ_t . Then the symplectic isotopy $\chi^{-1} \circ \psi_t \circ \chi$ is generated by the vector field

$$\chi^*(X_t) = \mathrm{d}\chi^{-1}(X_t \circ \chi)$$

(see Exercise 2.2.) Thus for $x \in M$ and $v \in T_x M$ we have

$$(\iota_{\chi^*(X_t)}\omega)_x (v) = \omega(\mathrm{d}\chi^{-1}(X_t \circ \chi(x)), v)$$

= $\omega(X_t \circ \chi(x), \mathrm{d}\chi(v))$
= $(\iota_{X_t}\omega)_{\chi(x)} (\mathrm{d}\chi(v))$
= $(\chi^*(\iota_{X_t}\omega))_x (v),$

Last modified: December 13, 2023

thus $\iota_{\chi^*(X_t)}\omega = \chi^*(\iota_{X_t}\omega)$. Therefore,

$$\operatorname{Flux}(\{\chi^{-1} \circ \psi_t \circ \chi\}) = \int_0^1 [\iota_{\chi^*(X_t)}\omega] dt$$
$$= \int_0^1 [\chi^*(\iota_{X_t}\omega)] dt$$
$$= \chi^*\left(\int_0^1 [\iota_{X_t}\omega] dt\right)$$
$$= \chi^* \operatorname{Flux}(\{\psi_t\}).$$

*12.3. Consider the exact symplectic manifold $(T^*Q, d\alpha)$, where $\alpha \in \Omega^1(Q)$ is the canonical 1-form on M. If $\sigma \in \Omega^1(Q)$ is a closed 1-form, there is an associated diffeomorphism $\nu_{\sigma} \colon T^*Q \to T^*Q$ defined by

- $\nu_{\sigma}(q,\xi) = (q,\xi + \sigma_q).$
- (a) Prove that

$$\nu_{\sigma}^* \alpha - \alpha = \pi^* \sigma,$$

where $\pi: T^*Q \to Q$ denotes the canonical projection.

Solution.

Let $q \in Q$, $\xi \in T_q^*Q$ and $v \in T_{(q,\xi)}Q$. We compute

$$\begin{aligned} (\nu_{\sigma}^* \alpha - \alpha)_{(q,\xi)}(v) &= \alpha_{(q,\xi+\sigma_q)}(\mathrm{d}\nu_{\sigma}(v)) - \alpha_{(q,\xi)}(v) \\ &= (\xi + \sigma_q)(\mathrm{d}(\pi \circ \nu_{\sigma})(v)) - \xi(\mathrm{d}\pi(v)) \\ &= (\xi + \sigma_q)(\mathrm{d}\pi(v)) - \xi(\mathrm{d}\pi(v)) \\ &= \sigma_q(\mathrm{d}\pi(v)) \\ &= (\pi^*\sigma)_{(q,\xi)}(v). \end{aligned}$$

This shows the claim.

(b) Prove that ν_{σ} is a symplectomorphism.

Solution. Since σ is assumed to be closed, $\nu_{\sigma}^* \alpha - \alpha = \pi^* \sigma$ is closed. Therefore, ν_{σ} is a symplectomorphism (Proposition Lecture 21).

(c) Prove that ν_{σ} is a Hamiltonian diffeomorphism if and only if σ is exact.

Solution. By the Proposition from Lecture 21 and part (a), ν_{σ} is a Hamiltonian diffeomorphism if and only if $\pi^*\sigma$ is exact. This is equivalent to σ being exact. (Indeed, if $\sigma = df$ is exact, then $\pi^*\sigma = \pi^*df = d\pi^*f$ is exact. Conversely, if $\pi^*\sigma = dF$ is exact, then $\sigma = (\pi \circ j)^*\sigma = j^*\pi^*\sigma = j^*dF = dj^*F$ is exact, where $j: Q \to T^*Q$ denotes the inclusion of the zero-section.)