This is a sample exam question.

*13.1. Hamiltonian diffeomorphisms

Let (M, ω) be a closed symplectic manifold.

(a) (3 points) What is a Hamiltonian diffeomorphism on M?

Solution. Let $H: [0,1] \times M \to \mathbb{R}$ be a smooth function and write $H_t = H(t,-)$ for $t \in [0, 1]$. The associated time-dependent Hamiltonian vector field X_t^H on M is defined via

$$\iota_{X_{\star}^{H}}\omega = -\mathrm{d}H_{t}$$

for $t \in [0, 1]$. Its flow $\psi_t^H \in \text{Diff}(M), t \in [0, 1]$, is defined via

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi^H_t = X^H_t \circ \psi^H_t, \quad \psi^H_0 = \mathrm{id}\,.$$

A diffeomorphism φ on M is called Hamiltonian diffeomorphism if it is the time-1 map $\varphi = \psi_1^{H}$ for some Hamiltonian function H as above. (Equivalently if it is the time-t map $\varphi = \psi_t^H$ for some H and t.)

- **1 point** for the definition of X_t^H .
- **1 point** for the flow ψ_t^H .

1 point for saying that ψ_1^H are the Hamiltonian diffeomorphisms.

(b) (4 points) Let $H: [0,1] \times M \to \mathbb{R}$ be a smooth Hamiltonian function and ψ_t^H the corresponding Hamiltonian flow. Let χ be a symplectomorphism on M. Show that $\chi^{-1}\psi_t^H\chi$ is generated by $H_t \circ \chi$.

Solution. We compute

$$d(H_t \circ \chi) = dH_t \circ d\chi$$

= $-\omega \left(X_t^H \circ \chi, d\chi(-) \right)$
= $-\omega \left(d\chi^{-1} \left(X_t^H \circ \chi \right), - \right),$

hence $X_t^{H \circ \chi} = \chi^*(X_t^H)$. Therefore

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(\chi^{-1} \psi_t^H \chi \right) &= \mathrm{d}\chi^{-1} \left(\frac{\mathrm{d}}{\mathrm{d}t} \psi_t^H \circ \chi \right) \\ &= \chi^* \left(\frac{\mathrm{d}}{\mathrm{d}t} \psi_t^H \right) = \chi^* (X_t^H \circ \psi_t^H) = X_t^{H \circ \chi} \circ \left(\chi^{-1} \psi_t^H \chi \right), \end{split}$$

which proves the claim.

- **2 points** for expressing $X_t^{H \circ \chi}$ in terms of X_t^H . **2 points** for showing that $X_t^{H \circ \chi}$ generates $\chi^{-1} \psi_t^H \chi$.

Last modified: December 12, 2023

1/2

(c) (4 points) Consider the 2-sphere $S^2 \subset \mathbb{R}^3$ endowed with the standard symplectic form given by

 $\omega_x(v,w) = x \cdot (v \times w),$

for all $x \in S^2$ and $v, w \in T_x S^2 = \{v \in \mathbb{R}^3 \mid x \cdot v = 0\}$. Let $H: S^2 \to \mathbb{R}$ be the autonomous Hamiltonian function given by

 $(x_1, x_2, x_3) \mapsto x_3.$

Compute the corresponding Hamiltonian flow $\psi_t^H, t \in \mathbb{R}$.

Solution. For $x \in S^2$ and $v \in T_x S^2$ the equation for the Hamiltonian vector field is

$$x \cdot (X^H(x) \times v) = \omega_x(X^H(x), v) = -\mathrm{d}H_x(v) = -v_3$$

for $v \in T_x S^2$. Writing $X^H(x) = (X_1^H, X_2^H, X_3^H)$ this equation becomes

$$x_1(X_2^H v_3 - X_3^H v_2) + x_2(X_3^H v_1 - X_1^H v_3) + x_3(X_1^H v_2 - X_2^H v_1) = -v_3.$$
(1)

In trying to solve this equation it's helpful to have a good guess: Since H is autonomous, X^H should point along circles in S^2 with $H(x) = x_3 = const$. Therefore $X^H(x)$ should be parallel to $(x_2, -x_1, 0)$. Plugging in this guess into equation (1) and using $x \cdot v = 0$ and $x_1^2 + x_2^2 + x_3^2 = 1$ we see that

$$X^H(x) = \begin{pmatrix} x_2 \\ -x_1 \\ 0 \end{pmatrix}$$

actually solves the equation. To get the flow, we need to solve:

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi_t = X^H \circ \psi_t.$$

If we denote $\psi_t = (\psi_t^1, \psi_t^2, \psi_t^3)$, we immediately see that $\psi_t^3(x) = x_3$. To get ψ_t^1 and ψ_t^2 , we solve the system:

$$\dot{\psi}_t^1 = x_2 \circ \psi_t = \psi_t^2 \dot{\psi}_t^2 = -x_1 \circ \psi_t = -\psi_t^1$$

Putting everything together, we obtain:

$$\psi_t^H(x) = (\cos(t)x_1 + \sin(t)x_2, -\sin(t)x_1 + \cos(t)x_2, x_3)$$

This is rotation along the x_3 -axis.

- **1 point** for explicit equation for X^H .
- **1** point for realising that X^H is tangent to level sets.
- **1 point** for X^H .
- **1 point** for ψ_t^H .