This is a sample exam question.

*13.1. Hamiltonian diffeomorphisms

Let (M, ω) be a closed symplectic manifold.
(a) (3 points) What is a Hamiltonian diffeomorphism on M ?

Solution. Let $H:[0,1] \times M \rightarrow \mathbb{R}$ be a smooth function and write $H_{t}=H(t,-)$ for $t \in[0,1]$. The associated time-dependent Hamiltonian vector field X_{t}^{H} on M is defined via

$$
\iota_{X_{t}^{H}} \omega=-\mathrm{d} H_{t}
$$

for $t \in[0,1]$. Its flow $\psi_{t}^{H} \in \operatorname{Diff}(M), t \in[0,1]$, is defined via

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}^{H}=X_{t}^{H} \circ \psi_{t}^{H}, \quad \psi_{0}^{H}=\mathrm{id}
$$

A diffeomorphism φ on M is called Hamiltonian diffeomorphism if it is the time-1 map $\varphi=\psi_{1}^{H}$ for some Hamiltonian function H as above. (Equivalently if it is the time- t map $\varphi=\psi_{t}^{H}$ for some H and t.)
1 point for the definition of X_{t}^{H}.
1 point for the flow ψ_{t}^{H}.
1 point for saying that ψ_{1}^{H} are the Hamiltonian diffeomorphisms.
(b) (4 points) Let $H:[0,1] \times M \rightarrow \mathbb{R}$ be a smooth Hamiltonian function and ψ_{t}^{H} the corresponding Hamiltonian flow. Let χ be a symplectomorphism on M. Show that $\chi^{-1} \psi_{t}^{H} \chi$ is generated by $H_{t} \circ \chi$.

Solution. We compute

$$
\begin{aligned}
\mathrm{d}\left(H_{t} \circ \chi\right) & =\mathrm{d} H_{t} \circ \mathrm{~d} \chi \\
& =-\omega\left(X_{t}^{H} \circ \chi, \mathrm{~d} \chi(-)\right) \\
& =-\omega\left(\mathrm{d} \chi^{-1}\left(X_{t}^{H} \circ \chi\right),-\right)
\end{aligned}
$$

hence $X_{t}^{H \circ \chi}=\chi^{*}\left(X_{t}^{H}\right)$. Therefore

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\chi^{-1} \psi_{t}^{H} \chi\right) & =\mathrm{d} \chi^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{t}^{H} \circ \chi\right) \\
& =\chi^{*}\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{t}^{H}\right)=\chi^{*}\left(X_{t}^{H} \circ \psi_{t}^{H}\right)=X_{t}^{H \circ \chi} \circ\left(\chi^{-1} \psi_{t}^{H} \chi\right)
\end{aligned}
$$

which proves the claim.
2 points for expressing $X_{t}^{H \circ \chi}$ in terms of X_{t}^{H}.
2 points for showing that $X_{t}^{H \circ \chi}$ generates $\chi^{-1} \psi_{t}^{H} \chi$.
(c) (4 points) Consider the 2-sphere $S^{2} \subset \mathbb{R}^{3}$ endowed with the standard symplectic form given by

$$
\omega_{x}(v, w)=x \cdot(v \times w)
$$

for all $x \in S^{2}$ and $v, w \in T_{x} S^{2}=\left\{v \in \mathbb{R}^{3} \mid x \cdot v=0\right\}$. Let $H: S^{2} \rightarrow \mathbb{R}$ be the autonomous Hamiltonian function given by

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{3} .
$$

Compute the corresponding Hamiltonian flow $\psi_{t}^{H}, t \in \mathbb{R}$.
Solution. For $x \in S^{2}$ and $v \in T_{x} S^{2}$ the equation for the Hamiltonian vector field is

$$
x \cdot\left(X^{H}(x) \times v\right)=\omega_{x}\left(X^{H}(x), v\right)=-\mathrm{d} H_{x}(v)=-v_{3}
$$

for $v \in T_{x} S^{2}$. Writing $X^{H}(x)=\left(X_{1}^{H}, X_{2}^{H}, X_{3}^{H}\right)$ this equation becomes

$$
\begin{equation*}
x_{1}\left(X_{2}^{H} v_{3}-X_{3}^{H} v_{2}\right)+x_{2}\left(X_{3}^{H} v_{1}-X_{1}^{H} v_{3}\right)+x_{3}\left(X_{1}^{H} v_{2}-X_{2}^{H} v_{1}\right)=-v_{3} . \tag{1}
\end{equation*}
$$

In trying to solve this equation it's helpful to have a good guess: Since H is autonomous, X^{H} should point along circles in S^{2} with $H(x)=x_{3}=$ const. Therefore $X^{H}(x)$ should be parallel to $\left(x_{2},-x_{1}, 0\right)$. Plugging in this guess into equation (1) and using $x \cdot v=0$ and $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ we see that

$$
X^{H}(x)=\left(\begin{array}{c}
x_{2} \\
-x_{1} \\
0
\end{array}\right)
$$

actually solves the equation. To get the flow, we need to solve:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}=X^{H} \circ \psi_{t}
$$

If we denote $\psi_{t}=\left(\psi_{t}^{1}, \psi_{t}^{2}, \psi_{t}^{3}\right)$, we immediately see that $\psi_{t}^{3}(x)=x_{3}$. To get ψ_{t}^{1} and ψ_{t}^{2}, we solve the system:

$$
\begin{aligned}
\dot{\psi}_{t}^{1} & =x_{2} \circ \psi_{t}=\psi_{t}^{2} \\
\dot{\psi}_{t}^{2} & =-x_{1} \circ \psi_{t}=-\psi_{t}^{1}
\end{aligned}
$$

Putting everything together, we obtain:

$$
\psi_{t}^{H}(x)=\left(\cos (t) x_{1}+\sin (t) x_{2},-\sin (t) x_{1}+\cos (t) x_{2}, x_{3}\right)
$$

This is rotation along the x_{3}-axis.
1 point for explicit equation for X^{H}.
1 point for realising that X^{H} is tangent to level sets.
1 point for X^{H}.
1 point for ψ_{t}^{H}.

