
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 10: Uniformly integrable martingales, stopping times

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 27/11/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (Mn)n≥0 be a (Fn)n≥0 martingale and let T be a (Fn)n≥0 stopping time.

(1) Assume that T is bounded. Show that E [MT ] = E [M0].

(2) Assume that E [T ] <∞ and there there exists K > 0 such that a.s. we have E [|Mn+1 −Mn| | Fn] ≤ K for
every n ≥ 0. Show that E [MT ] = E [M0].

Hint. Justify that |MT∧n| ≤ |M0|+
∑∞

i=0 |Mi+1 −Mi |1T >i and use dominated convergence.

(3) Let (Xn)n≥1 be i.i.d. integrable real-valued random variables. Set S0 = 0, Sn = X1 + · · ·+Xn for n ≥ 1
and Fn = σ (Si : 0 ≤ i ≤ n) for n ≥ 0. Finally, let T be a (Fn)-stopping time with E [T ] <∞. Show that

E [ST ] = E [X1]E [T ] .

2 Training exercises

Exercise 2. Let (Fn)n≥0 be a filtration and let S,T be two stopping times with respect to (Fn)n≥0. Let
S,T : Ω → N ∪ {∞} be (Fn) stopping times. Prove or disprove with a counter-example the following
statements:

(1) S ∨ T is a stopping time.

(2) S ∧ T is a stopping time.

(3) S + T is a stopping time.

(4) S + 1 is a stopping time.

(5) S − 1 is a stopping time.
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Exercise 3. Let (Fn) be a filtration and F∞ := σ (∪nFn). Let (Xn) be a sequence of integrable random
variables such that Xn → X as n → ∞ both a.s. and in L1, where X is an integrable random variable.
Assume that for all n ≥ 0, |Xn| ≤ Y a.s., where Y is a non-negative integrable random variable.

(1) Define Zn = supm≥n |Xm −X |. Show that Zn→ 0 as n→∞ a.s. and in L1.

(2) Show that E [Xn | Fn]→ E [X | F∞] as n→∞ a.s.

(3) Let (Yn) and (Zn) be two independent sequences of independent random variables such that P (Yn = n) =
n−2 = 1−P (Yn = 0) and P (Zn = n) = n−1 = 1−P (Zn = 0). Set Xn = YnZn and A = σ (Zn : n ≥ 0).

Show that Xn→ 0 as n→∞ both a.s. and in L1, but E [Xn | A] does not converge to 0 almost surely.

Exercise 4. Let T be a stopping time for a filtration (Fn)n≥0. Assume that there exit ε > 0 and n0 ≥ 1 such
that for every n ≥ 0, almost surely

P (T ≤ n+n0|Fn) > ε.

(1) Show that for every k ≥ 0 we have P (T ≥ kn0) ≤ (1− ε)k.

(2) Show that T is almost surely finite and that E [T ] <∞.

Exercise 5. Let (Mn)n≥0 be a uniformly integrable martingale with respect to a filtration (Fn)n≥0.

(1) Is it true that the collection {MT : T stopping time with respect to (Fn)n≥0} is uniformly integrable?

(2) Let T be a stopping time. Is it true that (Mn∧T )n≥0 is a uniformly integrable martingale? Justify your
answer.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. Let T be a stopping time with respect to a filtration (Fn)n≥0 with F0 ⊂ F1 ⊂ · · · ⊂ F . Recall that
the σ -field FT is defined by

FT = {A ∈ F : A∩ {T = n} ∈ Fn ∀n ≥ 0}.

(1) Let S be a stopping time with respect to the filtration (Fn)n≥0 such that S ≤ T . Show that FS ⊂ FT .

(2) Show that T is FT measurable.

(3) Here we assume that (Xn)n≥0 is a sequence of random variables and that Fn = σ (X0, . . . ,Xn). Show
that FT = σ (XT∧n : n ≥ 0).
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Exercise 7. Let (Mn) be a martingale with respect to a filtration (Fn) and let S and T be stopping times.
Show that for every n ≥ 0 we almost surely have

E(Mn∧S | FT ) = Mn∧S∧T

Exercise 8. Let f : [0,1]→R be a Lipschitz function, i.e. there exists K > 0 such that |f (x)−f (y)| ≤ K |x−y|
for all x,y ∈ [0,1]. Let f ′n : [0,1]→R be defined by

f ′n(x) =

2
n
(
f
(
i+1
2n

)
− f

(
i
2n
))

: x ∈ [i/2n, (i + 1)/2n) ,

0 : x = 1 .

Note that f ′n is the derivative of the piecewise linear extension of f |(2−nZ)∩[0,1] to [0,1].

(1) Show that f ′n → f ′ almost everywhere and in L1 (with respect to the Lebesgue measure) as n→∞ for
some integrable function f ′ : [0,1]→R.

Hint. Use the martingale convergence theorem after defining a suitable probability space together
with a martingale on it.

(2) Deduce that

f (x)− f (0) =
∫ x

0
f ′(y)dy for all x ∈ [0,1] .

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 9. You throw a fair six-sided die until you get 6. What is the expected number of throws (in-
cluding the throw giving 6) conditioned on the event that all throws gave even numbers?
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