Week 10: Uniformly integrable martingales, stopping times

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 27/11/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $\left(M_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale and let T be a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ stopping time.
(1) Assume that T is bounded. Show that $\mathbb{E}\left[M_{T}\right]=\mathbb{E}\left[M_{o}\right]$.
(2) Assume that $\mathbb{E}[T]<\infty$ and there there exists $K>o$ such that a.s. we have $\mathbb{E}\left[\left|M_{n+1}-M_{n}\right| \mid \mathcal{F}_{n}\right] \leq K$ for every $n \geq o$. Show that $\mathbb{E}\left[M_{T}\right]=\mathbb{E}\left[M_{o}\right]$.
Hint. Justify that $\left|M_{T \wedge n}\right| \leq\left|M_{\mathrm{o}}\right|+\sum_{i=0}^{\infty}\left|M_{i+1}-M_{i}\right| \mathbb{1}_{T>i}$ and use dominated convergence.
(3) Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d. integrable real-valued random variables. Set $S_{o}=0, S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$ and $\mathcal{F}_{n}=\sigma\left(S_{i}: o \leq i \leq n\right)$ for $n \geq o$. Finally, let T be a $\left(\mathcal{F}_{n}\right)$-stopping time with $\mathbb{E}[T]<\infty$. Show that

$$
\mathbb{E}\left[S_{T}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}[T]
$$

Solution:

(1) Let $N>$ o be such that $T \leq N$. We know that $\left(M_{n \wedge T}\right)_{n \geq o}$ is a martingale, so that $\mathbb{E}\left[M_{n \wedge T}\right]=\mathbb{E}\left[M_{o}\right]$ for every $n \geq 0$. It suffices to take $n=N$, since $N \wedge T=T$.
(2) Let us prove

$$
\begin{equation*}
\left|M_{T \wedge n}\right| \leq\left|M_{\mathrm{o}}\right|+\sum_{i=\mathrm{o}}^{\infty}\left|M_{i+1}-M_{i}\right| \mathbb{1}_{T>i} \tag{1}
\end{equation*}
$$

Write

$$
M_{T \wedge n}=M_{\mathrm{o}}+\sum_{i=\mathrm{o}}^{n \wedge T-1}\left(M_{i+1}-M_{i}\right) \leq M_{\mathrm{o}}+\sum_{i=0}^{\infty}\left(M_{i+1}-M_{i}\right) \mathbb{1}_{T>i}
$$

and we get (1) by triangular inequality.
Since $\mathbb{E}[T]<\infty$, it follows that $T<\infty$ a.s. As a consequence, $M_{T \wedge n}$ converges almost surely to M_{T}. In addition, by (1), we are in position to use dominated convergence since $\left|M_{\mathrm{o}}\right|+\sum_{i=\mathrm{o}}^{\infty} \mid M_{i+1}$ -
$M_{i} \mid \mathbb{1}_{T>i}$ is integrable. Indeed using the fact that $\mathbb{1}_{T>i}$ is \mathcal{F}_{i} measurable, write

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{\mathrm{o}}\right|\right]+\sum_{i=0}^{\infty} \mathbb{E}\left[\left|M_{i+1}-M_{i}\right| \mathbb{1}_{T>i}\right] & =\mathbb{E}\left[\left|M_{\mathrm{o}}\right|\right]+\sum_{i=\mathrm{o}}^{\infty} \mathbb{E}\left[\mathbb{E}\left[\left|M_{i+1}-M_{i}\right| \mid \mathcal{F}_{i}\right] \mathbb{1}_{T>i}\right] \\
& \leq \mathbb{E}\left[\left|M_{\mathrm{o}}\right|\right]+\sum_{i=\mathrm{o}}^{\infty} K \mathbb{E}\left[\mathbb{1}_{T>i}\right] \\
& =\mathbb{E}\left[\left|M_{\mathrm{o}}\right|\right]+K \mathbb{E}[T]<\infty,
\end{aligned}
$$

where we have used the fact that $\mathbb{E}[Z]=\sum_{i=1}^{\infty} \mathbb{P}(Z \geq i)$ for every non-negative integer valued random variable Z. We thus get $\mathbb{E}\left[M_{T \wedge n}\right] \rightarrow \mathbb{E}\left[M_{T}\right]$ as $n \rightarrow \infty$. Since $\mathbb{E}\left[M_{T \wedge n}\right]=\mathbb{E}\left[M_{\mathrm{o}}\right]$ for every $n \geq 0$, we get the desired result.
(3) We use (2) with the martingale $M_{n}=S_{n}-\mathbb{E}\left[X_{1}\right] n$. We just have to check that there exists $K>0$ such that a.s. we have $\mathbb{E}\left[\mid M_{n+1}-M_{n} \| \mathcal{F}_{n}\right] \leq K$ for every $n \geq o$. To this end write

$$
\mathbb{E}\left[\mid M_{n+1}-M_{n} \| \mathcal{F}_{n}\right]=\mathbb{E}\left[\mid X_{n+1}-\mathbb{E}\left[X_{1}\right] \| \mathcal{F}_{n}\right] \leq 2 \mathbb{E}\left[\left|X_{1}\right|\right]
$$

2 Training exercises

Exercise 2. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration and let S, T be two stopping times with respect to $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Let $S, T: \Omega \rightarrow \mathbb{N} \cup\{\infty\}$ be $\left(\mathcal{F}_{n}\right)$ stopping times. Prove or disprove with a counter-example the following statements:
(1) $S \vee T$ is a stopping time.
(2) $S \wedge T$ is a stopping time.
(3) $S+T$ is a stopping time.
(4) $S+1$ is a stopping time.
(5) $S-1$ is a stopping time.

Solution:

(1) This is true. Indeed for $n \geq o$ we have $\{S \vee T \leq n\}=\{S \leq n\} \cap\{T \leq n\} \in \mathcal{F}_{n}$ for $n \geq$ o since $\{S \leq n\},\{T \leq n\} \in \mathcal{F}_{n}$.
(2) This is true. For $n \geq 0$ we have $\{S \wedge T>n\}=\{S>n\} \cap\{T>n\}$ which is an element of \mathcal{F}_{n} since \mathcal{F}_{n} is stable under intersections and $\{S>n\}=\{S \leq n\}^{c},\{T>n\}=\{T \leq n\}^{c} \in \mathcal{F}_{n}$. Therefore also
$\{S \wedge T \leq n\}=\{S \wedge T>n\}^{c} \in \mathcal{F}_{n}$ as required.
(3) This is also true. Indeed, we have

$$
\{S+T \leq n\}=\bigcup_{k+\ell \leq n}\{S \leq k\} \cap\{T \leq \ell\} .
$$

Also $\{S \leq k\} \in \mathcal{F}_{k} \subset \mathcal{F}_{n}$ and $\{T \leq \ell\} \in \mathcal{F}_{\ell} \subset \mathcal{F}_{n}$ for $k, \ell \leq n$. Thus $\{S+T \leq n\} \in \mathcal{F}_{n}$ for all $n \geq o$ as required.
(4) This is true. Indeed, for $n \geq 1$ we have $\{S+1 \leq n\}=\{S \leq n-1\} \in \mathcal{F}_{n-1} \subset \mathcal{F}_{n}$ and $\{S+1=0\}=\emptyset$.
(5) This is not true. For instance, consider a Bernoulli random variable B with parameter $1 / 2$ and let $\mathcal{F}_{\mathrm{o}}=\{\emptyset, \Omega\}$ and $\mathcal{F}_{n}=\sigma(B)$ for $n \geq 1$. Then $T:=B+1$ is an $\left(\mathcal{F}_{n}\right)$ stopping time but $\{T-1=0\}=$ $\{B=\mathrm{o}\} \notin \mathcal{F}_{\mathrm{o}}$.

Exercise 3. Let $\left(\mathcal{F}_{n}\right)$ be a filtration and $\mathcal{F}_{\infty}:=\sigma\left(\cup_{n} \mathcal{F}_{n}\right)$. Let $\left(X_{n}\right)$ be a sequence of integrable random variables such that $X_{n} \rightarrow X$ as $n \rightarrow \infty$ both a.s. and in L^{1}, where X is an integrable random variable. Assume that for all $n \geq 0,\left|X_{n}\right| \leq Y$ a.s., where Y is a non-negative integrable random variable.
(1) Define $Z_{n}=\sup _{m \geq n}\left|X_{m}-X\right|$. Show that $Z_{n} \rightarrow o$ as $n \rightarrow \infty$ a.s. and in L^{1}.
(2) Show that $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right]$ as $n \rightarrow \infty$ a.s.
(3) Let $\left(Y_{n}\right)$ and $\left(Z_{n}\right)$ be two independent sequences of independent random variables such that $\mathbb{P}\left(Y_{n}=n\right)=$ $n^{-2}=1-\mathbb{P}\left(Y_{n}=0\right)$ and $\mathbb{P}\left(Z_{n}=n\right)=n^{-1}=1-\mathbb{P}\left(Z_{n}=0\right)$. Set $X_{n}=Y_{n} Z_{n}$ and $\mathcal{A}=\sigma\left(Z_{n}: n \geq 0\right)$. Show that $X_{n} \rightarrow 0$ as $n \rightarrow \infty$ both a.s. and in L^{1}, but $\mathbb{E}\left[X_{n} \mid \mathcal{A}\right]$ does not converge to o almost surely.

Solution:

(1) Since $X_{n} \rightarrow X$ a.s. it is clear that $Z_{n} \rightarrow o$ a.s. as $n \rightarrow \infty$. To see that this convergence is also in L^{1} it suffices to prove that $\left(Z_{n}\right)$ is uniformly integrable. This follows from the fact that $Z_{n} \leq 2 Y$ for all $n \geq 1$ a.s. with Y is integrable.
(2) For $m \leq n$ a.s.

$$
\begin{aligned}
\left|\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right]\right| & \leq \mathbb{E}\left[\left|X-X_{n}\right| \mid \mathcal{F}_{n}\right]+\left|\mathbb{E}\left[X \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right]\right| \\
& \leq \mathbb{E}\left[Z_{m} \mid \mathcal{F}_{n}\right]+\left|\mathbb{E}\left[X \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right]\right|
\end{aligned}
$$

As seen in the lecture, the right hand side converges to $\mathbb{E}\left[Z_{m} \mid \mathcal{F}_{\infty}\right]$ a.s. and in L^{1} as $n \rightarrow \infty$ for
fixed m. Therefore

$$
\limsup _{n \rightarrow \infty}\left|\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[X \mid \mathcal{F}_{\infty}\right]\right| \leq \inf _{m \geq 1} \mathbb{E}\left[Z_{m} \mid \mathcal{F}_{\infty}\right] \quad \text { a.s. }
$$

The claim follows since $\mathbb{E}\left[Z_{m} \mid \mathcal{F}_{\infty}\right] \rightarrow \mathrm{o}$ as $m \rightarrow \infty$ a.s. by dominated convergence for conditional expectations.
(3) We have

$$
\mathbb{E}\left(X_{n}\right)=\frac{1}{n} \quad \text { and } \quad \mathbb{E}\left[X_{n} \mid \mathcal{A}\right]=\mathbb{E}\left[Y_{n}\right] Z_{n}=\frac{1}{n} Z_{n} \quad \text { a.s. }
$$

As a consequence $X_{n} \rightarrow o$ in L^{1}. Also, since $\mathbb{P}\left(X_{n}>0\right) \leq \mathbb{P}\left(Y_{n}, Z_{n}>0\right)=\frac{1}{n^{2}}$ and since $\sum_{n \geq 1} \frac{1}{n^{2}}<\infty$, it follows that a.s. $X_{n}=\mathrm{o}$ for n sufficiently large, so that $X_{n} \rightarrow$ o a.s.

Finally

$$
\sum_{n \geq 1} \mathbb{P}\left(Z_{n} n^{-1} \geq 1\right) \geq \sum_{n \geq 1} \mathbb{P}\left(Z_{n}=n\right)=\sum_{n \geq 1} \frac{1}{n}=\infty
$$

and so by Borel-Cantelli we have $\mathbb{E}\left[X_{n} \mid \mathcal{A}\right] \nrightarrow$ o almost surely.

Exercise 4. Let T be a stopping time for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$. Assume that there exit $\varepsilon>0$ and $n_{0} \geq 1$ such that for every $n \geq 0$, almost surely

$$
\mathbb{P}\left(T \leq n+n_{\mathrm{o}} \mid \mathcal{F}_{n}\right)>\varepsilon
$$

(1) Show that for every $k \geq 0$ we have $\mathbb{P}\left(T \geq k n_{0}\right) \leq(1-\varepsilon)^{k}$.
(2) Show that T is almost surely finite and that $\mathbb{E}[T]<\infty$.

Solution:

(1) We argue by induction on k. For $k=0$, the result is true. Assume that $\mathbb{P}\left(T \geq k n_{\mathrm{o}}\right) \leq(1-\varepsilon)^{k}$. Then write, using the fact that $\mathbb{1}_{T \geq k n_{o}}$ is measurable with respect to $\mathcal{F}_{k n_{0}}$,

$$
\mathbb{P}\left(T \geq(k+1) n_{\mathrm{o}}\right)=\mathbb{E}\left[\mathbb{1}_{T \geq k n_{\mathrm{o}}, T \geq(k+1) n_{\mathrm{o}}}\right]=\mathbb{E}\left[\mathbb{1}_{T \geq k n_{\mathrm{o}}} \mathbb{P}\left(T \geq k n_{\mathrm{o}}+n_{\mathrm{o}} \mid \mathcal{F}_{k n_{\mathrm{o}}}\right)\right] \leq \mathbb{E}\left[\mathbb{1}_{T \geq k n_{\mathrm{o}}}(1-\varepsilon)\right]
$$

which is at most $(1-\varepsilon)^{k+1}$ by induction hypothesis.
(2) Write

$$
\mathbb{E}[T]=\sum_{k=0}^{\infty} \mathbb{E}\left[T \mathbb{1}_{k n_{0} \leq T<(k+1) n_{\mathrm{o}}}\right] \leq \sum_{k=\mathrm{o}}^{\infty}(k+1) n_{\mathrm{o}} \mathbb{P}\left(k n_{\mathrm{o}} \leq T\right) \leq \sum_{k=\mathrm{o}}^{\infty}(k+1) n_{\mathrm{o}}(1-\varepsilon)^{k}<\infty .
$$

A fortiori, this shows that $T<\infty$ a.s.

Exercise 5. Let $\left(M_{n}\right)_{n \geq 0}$ be a uniformly integrable martingale with respect to a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$.
(1) Is it true that the collection $\left\{M_{T}: T\right.$ stopping time with respect to $\left.\left(\mathcal{F}_{n}\right)_{n \geq 0}\right\}$ is uniformly integrable?
(2) Let T be a stopping time. Is it true that $\left(M_{n \wedge T}\right)_{n \geq 0}$ is a uniformly integrable martingale? Justify your answer.

Solution:

(1) Yes it is true. It follows from the following two facts seen in the lecture: $M_{T}=\mathbb{E}\left[Z \mid \mathcal{F}_{T}\right]$ and for any collection of σ-fields $\left(\mathcal{A}_{i}\right)_{i \in I}$ the collection $\left(\mathbb{E}\left[Z \mid \mathcal{A}_{i}\right]\right)_{i \in I}$ is uniformly integrable.
(2) Yes it is true, as a consequence of (1) since $n \wedge T$ is a stopping time for every $n \geq 0$.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. Let T be a stopping time with respect to a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ with $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}$. Recall that the σ-field \mathcal{F}_{T} is defined by

$$
\mathcal{F}_{T}=\left\{A \in \mathcal{F}: A \cap\{T=n\} \in \mathcal{F}_{n} \forall n \geq 0\right\} .
$$

(1) Let S be a stopping time with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ such that $S \leq T$. Show that $\mathcal{F}_{S} \subset \mathcal{F}_{T}$.
(2) Show that T is \mathcal{F}_{T} measurable.
(3) Here we assume that $\left(X_{n}\right)_{n \geq 0}$ is a sequence of random variables and that $\mathcal{F}_{n}=\sigma\left(X_{o}, \ldots, X_{n}\right)$. Show that $\mathcal{F}_{T}=\sigma\left(X_{T \wedge n}: n \geq 0\right)$.

Solution:

(1) Take $A \in \mathcal{F}_{S}$ and $n \geq 0$. We show that $A \cap\{T=n\} \in \mathcal{F}_{n}$. To this end, using $S \leq T$ write

$$
A \cap\{T=n\}=\left(\bigcup_{s=0}^{n} A \cap\{T=s\}\right) \cap\{T=n\} \in \mathcal{F}_{n} .
$$

(2) It is enough to show that for every $k \geq 0,\{T=k\} \in \mathcal{F}_{T}$. To this end, take $n \geq o$ and write $\{T=k\} \cap\{T=n\}=\varnothing \in \mathcal{F}_{n}$ for $n \neq k$ and $\{T=k\} \cap\{T=k\} \in \mathcal{F}_{n}$ for $n=k$ by definition of a stopping time.
(3) We argue by double inclusion.

* First, we have seen in the lecture that $X_{n \wedge T}$ is $\mathcal{F}_{n \wedge T}$ measurable. Since $T \wedge n \leq T$, we have $\mathcal{F}_{n \wedge T} \subset \mathcal{F}_{T}$ by (1), so $X_{n \wedge T}$ is \mathcal{F}_{T} measurable. Thus

$$
\sigma\left(X_{n \wedge T}: n \geq 0\right) \subset \mathcal{F}_{T}
$$

* We now show that

$$
\mathcal{F}_{T} \subset \sigma\left(X_{n \wedge T}: n \geq 0\right)
$$

We show by strong induction that

$$
\forall k \geq \mathrm{o}, \forall A \in \mathcal{F}_{T}, \quad A \cap\{T=k\} \in \sigma\left(X_{n \wedge T}: n \geq 0\right)
$$

$-k=\mathrm{o}$. For $A \in \mathcal{F}_{T}$,

$$
A \cap\{T=\mathrm{o}\} \in \mathcal{F}_{\mathrm{o}}=\sigma\left(X_{\mathrm{o}}\right)=\sigma\left(X_{\mathrm{o} \wedge T}\right) \subset \sigma\left(X_{n \wedge T}: n \geq \mathrm{o}\right)
$$

- Assume that for every o $\leq i \leq k-1$ and for every $A \in \mathcal{F}_{T}$ we have $A \cap\{T=i\} \in \sigma\left(X_{n \wedge T}: n \geq o\right)$. Take $A \in \mathcal{F}_{T}$. We have

$$
A \cap\{T=k\} \in \mathcal{F}_{k}=\sigma\left(X_{o}, \ldots, X_{k}\right)
$$

so by the Doob-Dynkin lemma applied with the \mathbb{R}^{k+1}-valued random variable $\left(X_{o}, \ldots, X_{k}\right)$, there exists a measurable function $f: \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ such that

$$
\mathbb{1}_{A \cap\{T=k\}}=f\left(X_{o}, X_{1}, \ldots, X_{k}\right) .
$$

As $\mathbb{1}_{\{T=k\}}=\mathbb{1}_{\{T=k\}} \mathbb{1}_{\{T \geq k\}}$ we get

$$
\mathbb{1}_{A \cap\{T=k\}}=f\left(X_{1}, \ldots, X_{k}\right) \mathbb{1}_{\{T \geq k\}}=f\left(X_{\mathrm{o} \wedge T}, X_{1 \wedge T}, \ldots, X_{k \wedge T}\right) \mathbb{1}_{\{T \geq k\}} .
$$

Because of the induction hypothesis (applied with $A=\Omega$), we have

$$
\{T \geq k\}=\{T \leq k-1\}^{c} \in \sigma\left(X_{n \wedge T}: n \geq 0\right)
$$

and therefore it follows that $\mathbb{1}_{A \cap\{T=k\}}$ is $\sigma\left(X_{n \wedge T}: n \geq 0\right)$-measurable; this is equivalent to $A \cap\{T=$ $k\} \in \sigma\left(X_{n \wedge T}: n \geq o\right)$.

Exercise 7. Let $\left(M_{n}\right)$ be a martingale with respect to a filtration $\left(\mathcal{F}_{n}\right)$ and let S and T be stopping times. Show that for every $n \geq$ o we almost surely have

$$
\mathbb{E}\left(M_{n \wedge S} \mid \mathcal{F}_{T}\right)=M_{n \wedge S \wedge T}
$$

Solution:

First of all, for $n \geq 0, M_{S \wedge T \wedge n}$ is measurable with respect to $\mathcal{F}_{S \wedge T \wedge n}$, so is is measurable with respect to \mathcal{F}_{T} (Exercise $\left.6(1)\right)$

We now fix $A \in \mathcal{F}_{T}$ and show that

$$
\mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A}\right]=\mathbb{E}\left[M_{n \wedge S \wedge T} \mathbb{1}_{A}\right]
$$

which will imply the result.
To this end start with wriing

$$
\mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A}\right]=\sum_{k=0}^{n} \mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A \cap\{T=k\}}\right]+\mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A \cap\{T>n\}}\right]
$$

We know that $\left(M_{n \wedge S}\right)_{n \geq 0}$ is a martingale and since $A \cap\{T=k\} \in \mathcal{F}_{k}$ (by definition) we have for $k \leq n$,

$$
\mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A \cap\{T=k\}}\right]=\mathbb{E}\left[\mathbb{E}\left[M_{n \wedge S} \mid \mathcal{F}_{k}\right] \mathbb{1}_{A \cap\{T=k\}}\right]=\mathbb{E}\left[M_{k \wedge S} \mathbb{1}_{A \cap\{T=k\}}\right] .
$$

Therefore

$$
\mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A}\right]=\sum_{k=0}^{n} \mathbb{E}\left[M_{k \wedge S} \mathbb{1}_{A \cap\{T=k\}}\right]+\mathbb{E}\left[M_{n \wedge S} \mathbb{1}_{A \cap\{T>n\}}\right]=\mathbb{E}\left[M_{n \wedge S \wedge T} \mathbb{1}_{A}\right]
$$

which completes the argument.
Exercise 8. Let $f:[0,1] \rightarrow \mathbb{R}$ be a Lipschitz function, i.e. there exists $K>0$ such that $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in[0,1]$. Let $f_{n}^{\prime}:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}^{\prime}(x)= \begin{cases}2^{n}\left(f\left(\frac{i+1}{2^{n}}\right)-f\left(\frac{i}{2^{n}}\right)\right) & : x \in\left[i / 2^{n},(i+1) / 2^{n}\right) \\ 0 & : x=1\end{cases}
$$

Note that f_{n}^{\prime} is the derivative of the piecewise linear extension of $\left.f\right|_{\left(2^{-n} \mathbb{Z}\right) \cap[0,1]}$ to $[0,1]$.
(1) Show that $f_{n}^{\prime} \rightarrow f^{\prime}$ almost everywhere and in L^{1} (with respect to the Lebesgue measure) as $n \rightarrow \infty$ for some integrable function $f^{\prime}:[0,1] \rightarrow \mathbb{R}$.

Hint. Use the martingale convergence theorem after defining a suitable probability space together with a martingale on it.
(2) Deduce that

$$
f(x)-f(\mathrm{o})=\int_{0}^{x} f^{\prime}(y) d y \quad \text { for all } x \in[0,1]
$$

Solution:

(1) Let $\Omega=[0,1], \mathcal{F}=\mathcal{B}([0,1))$ and let \mathbb{P} be the Lebesgue measure on $[0,1]$. We also define the filtration

$$
\mathcal{F}_{n}=\sigma\left(\left[i^{-n},(i+1) 2^{-n}\right): i=0, \ldots, 2^{n}-1\right) .
$$

Clearly the sequence $\left(f_{n}^{\prime}\right)$ is adapted with respect to $\left(\mathcal{F}_{n}\right)$. Moreover, $\left|f_{n}^{\prime}\right| \leq K$ by the Lipschitz property, so (f_{n}^{\prime}) is bounded in L^{∞} and in particular uniformly integrable. Lastly, let us verify the martingale property for $\left(f_{n}^{\prime}\right)$. We have

$$
\mathbb{E}\left[f_{n+1}^{\prime} \mid \mathcal{F}_{n}\right]=\sum_{i=0}^{2^{n+1}-1} 2^{n+1}\left(f\left(\frac{i+1}{2^{n+1}}\right)-f\left(\frac{i}{2^{n+1}}\right)\right) \mathbb{P}\left(\left[i / 2^{n+1},(i+1) / 2^{n+1}\right) \mid \mathcal{F}_{n}\right)
$$

almost surely. They key is now that if $a=j / 2^{n}$ and $b=(j+1) / 2^{n}$ then

$$
\mathbb{P}\left([a, a+(b-a) / 2) \mid \mathcal{F}_{n}\right)=\mathbb{P}\left([a+(b-a) / 2, b) \mid \mathcal{F}_{n}\right)=\frac{1}{2} 1_{[a, b)} \quad \text { a.s. }
$$

This follows since \mathcal{F}_{n} is a σ-algebra which is generated by a collection of disjoint sets and hence the conditional expectation is explicit. Using this observation, the terms in the expression $\mathbb{E}\left[f_{n+1}^{\prime} \mid \mathcal{F}_{n}\right]$ with $i=2 j$ and with $i=2 j+1$ combine and we see that

$$
\mathbb{E}\left[f_{n+1}^{\prime} \mid \mathcal{F}_{n}\right]=f_{n}^{\prime} \quad \text { a.s. }
$$

Hence $\left(f_{n}^{\prime}\right)$ is a uniformly integrable martingale and hence converges to an integrable limit f^{\prime} almost surely and in L^{1}.
(2) For $n \geq m \geq 0$ and $i \in\left\{0, \ldots, 2^{m}-1\right\}$ we have by definition that

$$
f\left(i / 2^{m}\right)-f(\mathrm{o})=\int_{0}^{i / 2^{m}} f_{n}^{\prime}(y) d y \rightarrow \int_{0}^{i / 2^{m}} f^{\prime}(y) d y \quad \text { as } n \rightarrow \infty
$$

Therefore the result holds for all x of the form $x=i / 2^{m}$ and the full result follows by continuity of f and integrability of f^{\prime} (using dominated convergence).

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 9. You throw a fair six-sided die until you get 6 . What is the expected number of throws (including the throw giving 6) conditioned on the event that all throws gave even numbers?

Solution:

See https://www.yichijin.com//files/elchanan.pdf

