Week 11: L^{p} martingales, $p>1$.

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 4/12/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d random variables L^{2} with $\mathbb{E}\left[X_{1}\right]=0$, and set $\sigma^{2}=\operatorname{Var}\left(X_{1}\right)$. Set $S_{o}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$. Set also $M_{n}=S_{n}^{2}-n \sigma^{2}$ for $n \geq o$ and $\mathcal{F}_{n}=\sigma\left(M_{o}, \ldots, M_{n}\right)$. Let T be a $\left(\mathcal{F}_{n}\right)$ stopping time with $\mathbb{E}[T]<\infty$.
(1) Show that $\left(M_{n}\right)$ is a $\left(\mathcal{F}_{n}\right)$ martingale.
(2) Show that $\mathbb{E}\left[S_{T \wedge n}^{2}\right]=\sigma^{2} \mathbb{E}[T \wedge n]$ for every $n \geq 0$.
(3) Show that $\left(S_{T \wedge n}\right)_{n \geq 0}$ is bounded in L^{2}.
(4) Conclude that $\mathbb{E}\left[S_{T}^{2}\right]=\sigma^{2} \mathbb{E}[T]$.

2 Training exercises

Exercise 2. Let $\left(M_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale bounded in L^{p} with $p>1$. Show that

$$
\mathbb{E}\left[\sup _{n \geq 0}\left|M_{n}\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \sup _{n \geq 0} \mathbb{E}\left[\left|M_{n}\right|^{p}\right] .
$$

Exercise 3. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. random variables with values in $\{-1,1\}$ where we write $\mathbb{P}\left(X_{i}=1\right)=p$ and assume that $p \in(0,1 / 2)$. Moreover, define $S_{o}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$. For $n \geq 0$ we set

$$
M_{n}=\left(\frac{1}{p}-1\right)^{S_{n}}
$$

For $n \geq 1$ set $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $\mathcal{F}_{o}=\{\varnothing, \Omega\}$.
Recall from Exercise Sheet 9 Exercise 3 that $\left(M_{n}\right)$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale.
(1) Show that for every $a>0$ we have

$$
\mathbb{P}\left(\sup _{n \geq 0} M_{n} \geq a\right) \leq \frac{1}{a}
$$

(2) Show that for every $k \geq o$ we have

$$
\mathbb{P}\left(\sup _{n \geq 0} S_{n} \geq k\right) \leq\left(\frac{p}{1-p}\right)^{k}
$$

(3) Deduce that $\mathbb{E}\left[\sup _{n \geq 0} S_{n}\right] \leq \frac{p}{1-2 p}$.

Exercise 4. (Azuma's inequality) Let M_{n} be a martingale starting from o with respect to a filtration $\left(\mathcal{F}_{n}\right)$ with $\left|M_{n}-M_{n-1}\right| \leq c_{n}$ for all $n \geq 1$ and finite deterministic constants $c_{n}<\infty$.
(1) Show that if Y is a random variable with mean o and $|Y| \leq c$ then for $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\theta Y}\right) \leq \cosh (\theta c) \leq e^{\theta^{2} c^{2} / 2}
$$

Hint. Use the convexity of $y \mapsto e^{\theta y}$ on $[-c, c]$.
(2) Show that for $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\theta M_{n}}\right) \leq e^{\theta^{2} \sigma_{n}^{2} / 2}
$$

where $\sigma_{n}^{2}=c_{1}^{2}+\cdots+c_{n}^{2}$.
(3) Deduce that for $x \geq 0$,

$$
\mathbb{P}\left(\sup _{0 \leq k \leq n} M_{k} \geq x\right) \leq e^{-x^{2} /\left(2 \sigma_{n}^{2}\right)} .
$$

Hint. Introduce $N_{n}=\exp \left(\theta M_{n}-\theta^{2} \sigma_{n}^{2} / 2\right)$.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent non-negative random variables with $\mathbb{E}\left[X_{n}\right]=1$ for every $n \geq 1$ (the random variables do not necessarily have the same law). Set $M_{\mathrm{O}}=1$ and for $n \geq 1$:

$$
M_{n}=\prod_{k=1}^{n} X_{k} .
$$

(1) Show that $\left(M_{n}\right)_{n \geq 1}$ is a martingale which converges a.s. to a random variable denoted by M_{∞}.

For $k \geq 1$ set $a_{k}=\mathbb{E}\left[\sqrt{X_{k}}\right]$ which belongs to (0,1$]$ (by the Cauchy-Schwarz inequality). Define $N_{\mathrm{o}}=1$ and for $n \geq 1$

$$
N_{n}=\prod_{k=1}^{n} \frac{\sqrt{X_{k}}}{a_{k}} .
$$

(2) Using the process $\left(N_{n}\right)$, show that the following five conditions are equivalent:
(a) $\mathbb{E}\left[M_{\infty}\right]=1$;
(b) $M_{n} \rightarrow M_{\infty}$ in L^{1};
(c) the martingale $\left(M_{n}\right)$ is uniformly integrable;
(d) $\prod_{k=1}^{\infty} a_{k}>0$;
(e) $\sum_{k=1}^{\infty}\left(1-a_{k}\right)<\infty$.

Also show that if one of these conditions are not satisfied, then $M_{\infty}=\mathrm{o}$ a.s.
(3) Is it true that a supermartingale bounded in L^{p} converges in L^{p} ? Justify your answer.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 6. Suppose your friend is turning over cards from a face-down shuffled deck, and at any point you can call "Next", and if the next card is red, you win a prize.

Clearly, if you immediately shout "Next", your chances of winning are 1/2. Can you devise a strategy that does better than $1 / 2$ - for example, waiting until there are slightly more red cards remaining and then calling "Next", even though you might never reach a state where there are slightly more red cards?

