Week 11: L^{p} martingales, $p>1$.

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 4/12/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d random variables L^{2} with $\mathbb{E}\left[X_{1}\right]=0$, and set $\sigma^{2}=\operatorname{Var}\left(X_{1}\right)$. Set $S_{o}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$. Set also $M_{n}=S_{n}^{2}-n \sigma^{2}$ for $n \geq o$ and $\mathcal{F}_{n}=\sigma\left(M_{o}, \ldots, M_{n}\right)$. Let T be a $\left(\mathcal{F}_{n}\right)$ stopping time with $\mathbb{E}[T]<\infty$.
(1) Show that $\left(M_{n}\right)$ is a $\left(\mathcal{F}_{n}\right)$ martingale.
(2) Show that $\mathbb{E}\left[S_{T \wedge n}^{2}\right]=\sigma^{2} \mathbb{E}[T \wedge n]$ for every $n \geq 0$.
(3) Show that $\left(S_{T \wedge n}\right)_{n \geq 0}$ is bounded in L^{2}.
(4) Conclude that $\mathbb{E}\left[S_{T}^{2}\right]=\sigma^{2} \mathbb{E}[T]$.

Solution:

(1) M_{n} is integrable since S_{n}^{2} is integrable (beause X_{n} is in L^{2}). M_{n} is \mathcal{F}_{n} measurable by definition of \mathcal{F}_{n}. Then write

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\left(S_{n}+X_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right]-(n+1) \sigma^{2} \\
& =\mathbb{E}\left[S_{n}^{2} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[S_{n} X_{n+1} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[X_{n+1}^{2} \mid \mathcal{F}_{n}\right]-(n+1) \sigma^{2}
\end{aligned}
$$

Since X_{n+1} is independent of \mathcal{F}_{n} we have $\mathbb{E}\left[X_{n+1}^{2} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[X_{n+1}^{2}\right]=\sigma^{2}$. By the tower property,

$$
\mathbb{E}\left[S_{n} X_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[S_{n} X_{n+1} \mid \mathcal{F}_{n}, S_{n}\right] \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[S_{n} \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}, S_{n}\right] \mid \mathcal{F}_{n}\right]
$$

and $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}, S_{n}\right]=\mathbb{E}\left[X_{n+1}\right]=\mathrm{o}$ since X_{n+1} is independent from $\sigma\left(\mathcal{F}_{n}, S_{n}\right)$. We conclude that

$$
\begin{aligned}
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =S_{n}^{2}+\mathrm{o}+\sigma^{2}-(n+1) \sigma^{2} \\
& =M_{n} .
\end{aligned}
$$

For the third equality we have used the fact that S_{n} is \mathcal{F}_{n} measurable and that X_{n+1} is independent of \mathcal{F}_{n}.
(2) Since T is a stopping time, $\left(M_{T \wedge n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale, so $\mathbb{E}\left[M_{T \wedge n}\right]=\mathbb{E}\left[M_{o}\right]=o$ for every $n \geq 0$, which gives the result.
(3) By (2), $\mathbb{E}\left[S_{T \wedge n}^{2}\right] \leq \sigma^{2} \mathbb{E}[T]$, which gives the result.
(4) By monotone convergence, $\mathbb{E}[T \wedge n] \rightarrow \mathbb{E}[T]$ as $n \rightarrow \infty$. To show that $\mathbb{E}\left[S_{T \wedge n}^{2}\right] \rightarrow \mathbb{E}\left[S_{T}^{2}\right]$ as $n \rightarrow \infty$, we use the fact that $\left(S_{n}\right)$, and thus also $\left(S_{T \wedge n}\right)$, is a $\left(\mathcal{F}_{n}\right)$ martingale. Since $\mathbb{E}[T]<\infty$, we have $T<\infty$ almost surely, so $S_{T \wedge n}$ converges almost surely to S_{T}. Also, since $\left(S_{T \wedge n}\right)_{n \geq 0}$ is bounded in L^{2}, the previous convergence holds in L^{2}, which implies that $\mathbb{E}\left[S_{T \wedge n}^{2}\right] \rightarrow \mathbb{E}\left[S_{T}^{2}\right]$ and gives the desired result.

2 Training exercises

Exercise 2. Let $\left(M_{n}\right)_{n \geq 0}$ be a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale bounded in L^{p} with $p>1$. Show that

$$
\mathbb{E}\left[\sup _{n \geq 0}\left|M_{n}\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \sup _{n \geq 0} \mathbb{E}\left[\left|M_{n}\right|^{p}\right] .
$$

Solution:

We have seen in the lecture that

$$
\mathbb{E}\left[\left(\sup _{n \geq 0}\left|M_{n}\right|\right)^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \sup _{n \geq 0} \mathbb{E}\left[\left|M_{n}\right|^{p}\right]
$$

Since

$$
\left(\sup _{n \geq 0}\left|M_{n}\right|\right)^{p}=\sup _{n \geq 0}\left|M_{n}\right|^{p}
$$

the desired result follows.
Exercise 3. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. random variables with values in $\{-1,1\}$ where we write $\mathbb{P}\left(X_{i}=1\right)=p$ and assume that $p \in(0,1 / 2)$. Moreover, define $S_{o}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$. For $n \geq 0$ we set

$$
M_{n}=\left(\frac{1}{p}-1\right)^{S_{n}}
$$

For $n \geq 1$ set $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $\mathcal{F}_{o}=\{\varnothing, \Omega\}$.
Recall from Exercise Sheet 9 Exercise 3 that $\left(M_{n}\right)$ is a $\left(\mathcal{F}_{n}\right)_{n \geq o}$ martingale.
(1) Show that for every $a>0$ we have

$$
\mathbb{P}\left(\sup _{n \geq 0} M_{n} \geq a\right) \leq \frac{1}{a}
$$

(2) Show that for every $k \geq 0$ we have

$$
\mathbb{P}\left(\sup _{n \geq 0} S_{n} \geq k\right) \leq\left(\frac{p}{1-p}\right)^{k}
$$

(3) Deduce that $\mathbb{E}\left[\sup _{n \geq 0} S_{n}\right] \leq \frac{p}{1-2 p}$.

Solution:

Note that $\left|M_{n}\right|=M_{n}$ since $M_{n} \geq 0$.
(1) By Doob's maximal inequality, for $\ell \geq n$ we have

$$
a \mathbb{P}\left(\sup _{o \leq n \leq \ell} M_{n} \geq a\right) \leq \mathbb{E}\left[M_{\ell}\right]=1
$$

But $\sup _{o \leq n \leq \ell} M_{n} \rightarrow \sup _{n \geq 0} M_{n}$ in an increasing way when $\ell \rightarrow \infty$, so $\mathbb{P}\left(\sup _{o \leq n \leq \ell} M_{n} \geq a\right) \rightarrow$ $\mathbb{P}\left(\sup _{n \geq 0} M_{n} \geq a\right)$ as $\ell \rightarrow \infty$, and we get the desired result.
(2) Observe that since $r \mapsto((1-p) / p)^{r}$ is increasing, we have

$$
\left\{\sup _{n \geq 0} S_{n} \geq k\right\}=\left\{\sup _{n \geq 0} M_{n} \geq\left(\frac{1-p}{p}\right)^{k}\right\}
$$

and the result follows from (1).
(3) We use the previously seen fact that if $Z \geq o$ is an integer valued random variable we have $\mathbb{E}[Z]=\sum_{k=1}^{\infty} \mathbb{P}(Z \geq k)$, so that by (2)

$$
\mathbb{E}\left[\sup _{n \geq 0} S_{n}\right] \leq \sum_{k=1}^{\infty}\left(\frac{p}{1-p}\right)^{k}=\frac{p}{1-p} \cdot \frac{1}{1-\frac{p}{1-p}}=\frac{p}{1-2 p}
$$

Exercise 4. (Azuma's inequality) Let M_{n} be a martingale starting from o with respect to a filtration $\left(\mathcal{F}_{n}\right)$ with $\left|M_{n}-M_{n-1}\right| \leq c_{n}$ for all $n \geq 1$ and finite deterministic constants $c_{n}<\infty$.
(1) Show that if Y is a random variable with mean o and $|Y| \leq c$ then for $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\theta Y}\right) \leq \cosh (\theta c) \leq e^{\theta^{2} c^{2} / 2} .
$$

Hint. Use the convexity of $y \mapsto e^{\theta y}$ on $[-c, c]$.
(2) Show that for $\theta \in \mathbb{R}$,

$$
\mathbb{E}\left(e^{\theta M_{n}}\right) \leq e^{\theta^{2} \sigma_{n}^{2} / 2}
$$

where $\sigma_{n}^{2}=c_{1}^{2}+\cdots+c_{n}^{2}$.
(3) Deduce that for $x \geq 0$,

$$
\mathbb{P}\left(\sup _{o \leq k \leq n} M_{k} \geq x\right) \leq e^{-x^{2} /\left(2 \sigma_{n}^{2}\right)}
$$

Hint. Introduce $N_{n}=\exp \left(\theta M_{n}-\theta^{2} \sigma_{n}^{2} / 2\right)$.

Solution:

(1) Using the hint, we obtain

$$
e^{\theta Y} \leq \frac{Y+c}{2 c} e^{\theta c}+\frac{-Y+c}{2 c} e^{-\theta c}
$$

Taking expectations and using that $\mathbb{E}(Y)=0$ yields $\mathbb{E}\left(e^{\theta Y}\right) \leq \cosh (\theta c)$. Finally for $x \in \mathbb{R}$,

$$
\cosh (x)=\sum_{k \geq 0} \frac{x^{2 k}}{(2 k)!} \leq \sum_{k \geq 0} \frac{x^{2 k}}{2^{k} k!}=e^{x^{2} / 2}
$$

and the second inequality follows by taking $x=\theta c$.
(2) We prove the claim using induction. The $n=$ o claim is obvious. For the induction step, we observe that

$$
\begin{equation*}
\mathbb{E}\left[e^{\theta M_{n+1}}\right]=\mathbb{E}\left[e^{\theta M_{n}} \mathbb{E}\left[e^{\theta\left(M_{n+1}-M_{n}\right)} \mid \mathcal{F}_{n}\right]\right] \text { a.s. } \tag{1}
\end{equation*}
$$

Since $\mathbb{E}\left[M_{n+1}-M_{n} \mid \mathcal{F}_{n}\right]=0$ and $\left|M_{n+1}-M_{n}\right| \leq c_{n+1}$ the same argument as in (1), now in the setting of conditional expectations yields that

$$
\mathbb{E}\left[e^{\theta\left(M_{n+1}-M_{n}\right)} \mid \mathcal{F}_{n}\right] \leq e^{\theta^{2} c_{n+1}^{2} / 2} \quad \text { a.s. }
$$

Substituting this into (??) and using the induction hypothesis yields the induction step.
(3) Let $N_{n}=\exp \left(\theta M_{n}-\theta^{2} \sigma_{n}^{2} / 2\right)$. We claim that $\left(N_{n}\right)$ is a supermartingale with respect to the filtration $\left(\mathcal{F}_{n}\right)$. It is clearly \mathcal{F}_{n}-measurable and integrability is shown in (2). For the supermartingale property observe that for $n \geq 0$,

$$
\mathbb{E}\left[N_{n+1} \mid \mathcal{F}_{n}\right]=e^{\theta M_{n}-\theta^{2} \sigma_{n+1}^{2} / 2} \mathbb{E}\left[e^{\theta\left(M_{n+1}-M_{n}\right)} \mid \mathcal{F}_{n}\right] \leq e^{\theta M_{n}-\theta^{2} \sigma_{n+1}^{2} / 2} e^{\theta^{2} c_{n+1}^{2} / 2}=N_{n} \quad \text { a.s. }
$$

as we saw as part of the proof of (2). Now let us define the following stopping time $T=\inf \{n \geq$ o: $\left.M_{n} \geq x\right\}$.

Then, by the same method of proof as for martingales, the stopped process $\left(N_{n \wedge T}\right)_{n \geq 0}$ is a supermartingale, so for every $n \geq 0$ we get

$$
\mathbb{E}\left[N_{n \wedge T}\right] \leq \mathbb{E}\left[N_{\mathrm{o}}\right]=1
$$

Moreover $N_{n \wedge T} \geq N_{T} \mathbb{1}_{T \leq n} \geq e^{\theta x-\theta^{2} \sigma_{n}^{2} / 2} \mathbb{1}_{T \leq n}$ for $\theta \geq 0$. Combing everything yields

$$
e^{\theta x-\theta^{2} \sigma_{n}^{2} / 2} \mathbb{P}(T \leq n) \leq 1
$$

We now take $\theta=x / \sigma_{n}^{2}$ (which makes the inequality strongest) and obtain the claim; indeed $\mathbb{P}(T \leq n)$ is exactly $\mathbb{P}\left(\sup _{o \leq k \leq n} M_{k} \geq x\right)$.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent non-negative random variables with $\mathbb{E}\left[X_{n}\right]=1$ for every $n \geq 1$ (the random variables do not necessarily have the same law). Set $M_{o}=1$ and for $n \geq 1$:

$$
M_{n}=\prod_{k=1}^{n} X_{k} .
$$

(1) Show that $\left(M_{n}\right)_{n \geq 1}$ is a martingale which converges a.s. to a random variable denoted by M_{∞}.

For $k \geq 1$ set $a_{k}=\mathbb{E}\left[\sqrt{X_{k}}\right]$ which belongs to (o, $]$ (by the Cauchy-Schwarz inequality). Define $N_{\mathrm{o}}=1$ and for $n \geq 1$

$$
N_{n}=\prod_{k=1}^{n} \frac{\sqrt{X_{k}}}{a_{k}} .
$$

(2) Using the process $\left(N_{n}\right)$, show that the following five conditions are equivalent:
(a) $\mathbb{E}\left[M_{\infty}\right]=1$;
(b) $M_{n} \rightarrow M_{\infty}$ in L^{1};
(c) the martingale $\left(M_{n}\right)$ is uniformly integrable;
(d) $\prod_{k=1}^{\infty} a_{k}>0$;
(e) $\sum_{k=1}^{\infty}\left(1-a_{k}\right)<\infty$.

Also show that if one of these conditions are not satisfied, then $M_{\infty}=\mathrm{o}$ a.s.
(3) Is it true that a supermartingale bounded in L^{p} converges in L^{p} ? Justify your answer.

Solution:

(1) Set $\mathcal{F}_{n}=\sigma\left(M_{\mathrm{o}}, \ldots, M_{n}\right)$. Observe that $M_{n} \geq \mathrm{o}$ and by independence

$$
\mathbb{E}\left[M_{n}\right]=\prod_{k=1}^{n} \mathbb{E}\left[X_{k}\right]=1<\infty .
$$

In addition,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[M_{n} X_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \mathbb{E}\left[X_{n+1}\right]=M_{n}
$$

(2) - We have seen the equivalence $(b) \Longleftrightarrow(c)$ in the lecture.

- The fact that $(d) \Longleftrightarrow(e)$ is a result from real analysis, which comes from the fact that $\ln (1-x) \sim-x$ as $x \rightarrow 0$ and if $a_{n} \sim b_{n}$ with all the $\left(a_{n}\right)$ having the same sign, then $\sum_{n} a_{n}$ is convergent if and only if $\sum_{n} b_{n}$ is convergent.
- for $(b) \Longrightarrow(a)$, this comes from the fact that convergence in L^{1} implies convergence of expectations.
- The fact that $(a) \Longrightarrow(b)$ comes from Scheffé's Lemma (Exercise sheet 7 , exercise 2).
- for $(d) \Longrightarrow(a)$, we note that $\left(N_{n}\right)$ is a non-negative martingale, which converges a.s. to a random variable denoted by N_{∞}. If $\prod_{k=1}^{\infty} a_{k}>0$, this implies that

$$
\mathbb{E}\left[N_{n}^{2}\right]=\frac{\mathbb{E}\left[M_{n}\right]}{\prod_{k=1}^{n} a_{k}} \leq \frac{1}{\prod_{k=1}^{\infty} a_{k}}<\infty
$$

As a consequence, $\left(N_{n}\right)$ is bounded in L^{2} and converges in L^{2} to $\sqrt{M_{\infty}} / \prod_{k=1}^{\infty} a_{k}$. As a consequence, $\mathbb{E}\left[N_{n}^{2}\right] \rightarrow \mathbb{E}\left[M_{\infty}^{2}\right] /\left(\prod_{k=1}^{\infty} a_{k}\right)^{2}$, so $1=\mathbb{E}\left[M_{n}\right] \rightarrow \mathbb{E}\left[M_{\infty}\right]$.

- for $(a) \Longrightarrow(d)$, we argue by contraposition. Assume that $\prod_{k=1}^{\infty} a_{k}=o$. Then as above the non-negative martingale $\left(N_{n}\right)$ converges a.s. to a random variable denoted by N_{∞}. Since $N_{\infty}<\infty$ and $\prod_{k=1}^{n} a_{k} \rightarrow \mathrm{o}$, we must have $M_{n} \rightarrow \mathrm{o}$ a.s. so that $M_{\infty}=\mathrm{o}$ a.s.
(3) We use the previous questions to give a counterexample in the case $p=2$. Set

$$
\mathbb{P}\left(X_{n}\right)= \begin{cases}\frac{(n+1)^{2}}{n^{2}} & \text { with probability } \frac{n^{2}}{(n+1)^{2}} \\ 0 & \text { with probability } 1-\frac{n^{2}}{(n+1)^{2}}\end{cases}
$$

so that $\mathbb{E}\left[X_{n}\right]=1$ and $\mathbb{E}\left[\sqrt{X_{n}}\right]=\frac{n}{n+1}$. Finally, set $S_{n}=\sqrt{M_{n}}$.
The computations of question (2) show that $\left(S_{n}\right)$ is a non-negative supermartingale bounded in L^{2}. But since $\sum_{n \geq 1}\left(1-\frac{n}{n+1}\right)=\infty, M_{n} \rightarrow 0$ almost surely, so $\mathbb{E}\left[S_{n}^{2}\right] \rightarrow 0$, so S_{n} does not converge in L^{2} 。

Remark. By taking $\left(-S_{n}\right)$ we get a (non-positive) submartingale bounded in L^{2} which does not converge in L^{2}.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 6. Suppose your friend is turning over cards from a face-down shuffled deck, and at any point you can call "Next", and if the next card is red, you win a prize.

Clearly, if you immediately shout "Next", your chances of winning are 1/2. Can you devise a strategy that does better than $1 / 2$ - for example, waiting until there are slightly more red cards remaining and then calling "Next", even though you might never reach a state where there are slightly more red cards?

Solution:

The answer is no: every strategy has probability $1 / 2$ of winning.
To see this, let R_{n} denote the number of red cards remaining the deck after n cards have been shown. Set $\mathcal{F}_{n}=\sigma\left(R_{0}, \ldots, R_{n}\right)$ and $M_{n}=\frac{R_{n}}{52-n}$ the fraction of remaining red cards. We claim that $\left(M_{n}\right)$ is a martingale. Indeed, given \mathcal{F}_{n}, the probability that the next card is red is M_{n}, so

$$
\mathbb{E}\left[R_{n+1} \mid \mathcal{F}_{n}\right]=R_{n}-\frac{R_{n}}{5^{2-n}}=\frac{5^{1-n}}{5^{2-n}} R_{n}
$$

so that $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}$. Since $M_{o}=1 / 2$, this martingale has mean $1 / 2$.
Now consider any strategy and let N be number of cards after which "Next" has been called. Since $\left(M_{n \wedge N}\right)_{n \geq 0}$ is a bounded martingale and thus uniformly integrable, the optional stopping theorem implies $\mathbb{E}\left[M_{N}\right]=1 / 2$. Denote by W the event of winning. It's probability is the probability that the next card is red, which given $\mathcal{F}_{\mathcal{N}}$ happens with probability M_{N}, so

$$
\mathbb{P}(W)=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{W} \mid R_{N}\right]\right]=\mathbb{E}\left[M_{N}\right]=1 / 2 .
$$

