
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 11: Lp martingales, p > 1.

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 4/12/2023 17:00 (online) following the instructions on the course website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (Xn)n≥1 be a sequence of i.i.d random variables L2 with E [X1] = 0, and set σ2 = Var(X1).
Set S0 = 0 and Sn = X1+ · · ·+Xn for n ≥ 1. Set also Mn = S2n −nσ2 for n ≥ 0 and Fn = σ (M0, . . . ,Mn). Let T be
a (Fn) stopping time with E [T ] <∞.

(1) Show that (Mn) is a (Fn) martingale.

(2) Show that E
[
S2T∧n

]
= σ2E [T ∧n] for every n ≥ 0.

(3) Show that (ST∧n)n≥0 is bounded in L2.

(4) Conclude that E
[
S2T

]
= σ2E [T ].

Solution:

(1) Mn is integrable since S2n is integrable (beause Xn is in L2). Mn is Fn measurable by definition of
Fn. Then write

E [Mn+1 | Fn] = E [(Sn +Xn+1)
2 | Fn]− (n+ 1)σ2

= E [S2n | Fn] +E [SnXn+1 | Fn] +E [X2n+1 | Fn]− (n+ 1)σ2

Since Xn+1 is independent of Fn we have E [X2n+1 | Fn] = E [X2n+1] = σ2. By the tower property,

E [SnXn+1 | Fn] = E [E [SnXn+1 | Fn,Sn] | Fn] = E [SnE [Xn+1 | Fn,Sn] | Fn]

and E [Xn+1 | Fn,Sn] = E [Xn+1] = 0 since Xn+1 is independent from σ (Fn,Sn). We conclude that

E [Mn+1 | Fn] = S2n + 0+ σ2 − (n+ 1)σ2

= Mn.
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For the third equality we have used the fact that Sn is Fn measurable and that Xn+1 is independent
of Fn.

(2) Since T is a stopping time, (MT∧n)n≥0 is a (Fn)-martingale, so E [MT∧n] = E [M0] = 0 for every
n ≥ 0, which gives the result.

(3) By (2), E
[
S2T∧n

]
≤ σ2E [T ], which gives the result.

(4) By monotone convergence, E [T ∧n] → E [T ] as n → ∞. To show that E

[
S2T∧n

]
→ E

[
S2T

]
as

n → ∞, we use the fact that (Sn), and thus also (ST∧n), is a (Fn) martingale. Since E [T ] < ∞,
we have T < ∞ almost surely, so ST∧n converges almost surely to ST . Also, since (ST∧n)n≥0 is
bounded in L2, the previous convergence holds in L2, which implies that E

[
S2T∧n

]
→ E

[
S2T

]
and

gives the desired result.

□

2 Training exercises

Exercise 2. Let (Mn)n≥0 be a (Fn)n≥0 martingale bounded in Lp with p > 1. Show that

E

[
sup
n≥0
|Mn|p

]
≤

(
p

p − 1

)p
sup
n≥0

E [|Mn|p] .

Solution:
We have seen in the lecture that

E

[(
sup
n≥0
|Mn|

)p]
≤

(
p

p − 1

)p
sup
n≥0

E [|Mn|p] .

Since (
sup
n≥0
|Mn|

)p
= sup

n≥0
|Mn|p

the desired result follows. □

Exercise 3. Let (Xi)i≥1 be i.i.d. random variables with values in {−1,1} where we write P(Xi = 1) = p and
assume that p ∈ (0,1/2). Moreover, define S0 = 0 and Sn = X1 + · · ·+Xn for n ≥ 1. For n ≥ 0 we set

Mn =
(
1
p
− 1

)Sn
.

For n ≥ 1 set Fn = σ (X1, . . . ,Xn) and F0 = {∅,Ω}.
Recall from Exercise Sheet 9 Exercise 3 that (Mn) is a (Fn)n≥0 martingale.

(1) Show that for every a > 0 we have

P

(
sup
n≥0

Mn ≥ a

)
≤ 1

a
.
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(2) Show that for every k ≥ 0 we have

P

(
sup
n≥0

Sn ≥ k

)
≤

(
p

1− p

)k
(3) Deduce that E

[
supn≥0Sn

]
≤ p
1−2p .

Solution:
Note that |Mn| = Mn since Mn ≥ 0.

(1) By Doob’s maximal inequality, for ℓ ≥ n we have

aP

(
sup
0≤n≤ℓ

Mn ≥ a

)
≤ E [Mℓ] = 1.

But sup0≤n≤ℓMn → supn≥0Mn in an increasing way when ℓ → ∞, so P

(
sup0≤n≤ℓMn ≥ a

)
→

P

(
supn≥0Mn ≥ a

)
as ℓ→∞, and we get the desired result.

(2) Observe that since r 7→ ((1− p)/p)r is increasing, we have{
sup
n≥0

Sn ≥ k

}
=

sup
n≥0

Mn ≥
(
1− p
p

)k
and the result follows from (1).

(3) We use the previously seen fact that if Z ≥ 0 is an integer valued random variable we have
E [Z] =

∑∞
k=1P (Z ≥ k), so that by (2)

E

[
sup
n≥0

Sn

]
≤
∞∑
k=1

(
p

1− p

)k
=

p

1− p
· 1
1− p

1−p
=

p

1− 2p
.

□

Exercise 4. (Azuma’s inequality) Let Mn be a martingale starting from 0 with respect to a filtration (Fn)
with |Mn −Mn−1| ≤ cn for all n ≥ 1 and finite deterministic constants cn <∞.

(1) Show that if Y is a random variable with mean 0 and |Y | ≤ c then for θ ∈R,

E(eθY ) ≤ cosh(θc) ≤ eθ
2c2/2 .

Hint. Use the convexity of y 7→ eθy on [−c,c].

(2) Show that for θ ∈R,

E(eθMn) ≤ eθ
2σ2n /2

where σ2n = c21 + · · ·+ c2n.
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(3) Deduce that for x ≥ 0,

P

(
sup
0≤k≤n

Mk ≥ x

)
≤ e−x

2/(2σ2n ) .

Hint. Introduce Nn = exp(θMn −θ2σ2n /2).

Solution:

(1) Using the hint, we obtain

eθY ≤ Y + c
2c

eθc +
−Y + c
2c

e−θc .

Taking expectations and using that E(Y ) = 0 yields E(eθY ) ≤ cosh(θc). Finally for x ∈R,

cosh(x) =
∑
k≥0

x2k

(2k)!
≤

∑
k≥0

x2k

2kk!
= ex

2/2

and the second inequality follows by taking x = θc.

(2) We prove the claim using induction. The n = 0 claim is obvious. For the induction step, we
observe that

E

[
eθMn+1

]
= E

[
eθMn

E

[
eθ(Mn+1−Mn) | Fn

]]
a.s. (1)

Since E [Mn+1 −Mn | Fn] = 0 and |Mn+1 −Mn| ≤ cn+1 the same argument as in (1), now in the
setting of conditional expectations yields that

E

[
eθ(Mn+1−Mn) | Fn

]
≤ eθ

2c2n+1/2 a.s. .

Substituting this into (??) and using the induction hypothesis yields the induction step.

(3) Let Nn = exp(θMn−θ2σ2n /2). We claim that (Nn) is a supermartingale with respect to the filtration
(Fn). It is clearly Fn-measurable and integrability is shown in (2). For the supermartingale
property observe that for n ≥ 0,

E [Nn+1 | Fn] = eθMn−θ2σ2n+1/2E
[
eθ(Mn+1−Mn) | Fn

]
≤ eθMn−θ2σ2n+1/2eθ

2c2n+1/2 = Nn a.s.

as we saw as part of the proof of (2). Now let us define the following stopping time T = inf{n ≥
0 : Mn ≥ x}.
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Then, by the same method of proof as for martingales, the stopped process (Nn∧T )n≥0 is a super-
martingale, so for every n ≥ 0 we get

E [Nn∧T ] ≤ E [N0] = 1 .

Moreover Nn∧T ≥NT 1T≤n ≥ eθx−θ
2σ2n /21T≤n for θ ≥ 0. Combing everything yields

eθx−θ
2σ2n /2P(T ≤ n) ≤ 1 .

We now take θ = x/σ2n (which makes the inequality strongest) and obtain the claim; indeed
P(T ≤ n) is exactly P

(
sup0≤k≤nMk ≥ x

)
.

□

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let (Xn)n≥1 be a sequence of independent non-negative random variables with E [Xn] = 1 for
every n ≥ 1 (the random variables do not necessarily have the same law). Set M0 = 1 and for n ≥ 1:

Mn =
n∏

k=1

Xk .

(1) Show that (Mn)n≥1 is a martingale which converges a.s. to a random variable denoted by M∞.

For k ≥ 1 set ak = E

[√
Xk

]
which belongs to (0,1] (by the Cauchy-Schwarz inequality). Define N0 = 1 and

for n ≥ 1

Nn =
n∏

k=1

√
Xk

ak
.

(2) Using the process (Nn), show that the following five conditions are equivalent:

(a) E [M∞] = 1;

(b) Mn→M∞ in L1;

(c) the martingale (Mn) is uniformly integrable;

(d)
∏∞

k=1 ak > 0;

(e)
∑∞

k=1(1− ak) <∞.

Also show that if one of these conditions are not satisfied, then M∞ = 0 a.s.

(3) Is it true that a supermartingale bounded in Lp converges in Lp? Justify your answer.
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Solution:

(1) Set Fn = σ (M0, . . . ,Mn). Observe that Mn ≥ 0 and by independence

E [Mn] =
n∏

k=1

E [Xk] = 1 <∞.

In addition,
E [Mn+1 | Fn] = E [MnXn+1 | Fn] = MnE [Xn+1] = Mn.

(2) – We have seen the equivalence (b) ⇐⇒ (c) in the lecture.

– The fact that (d) ⇐⇒ (e) is a result from real analysis, which comes from the fact that
ln(1 − x) ∼ −x as x→ 0 and if an ∼ bn with all the (an) having the same sign, then

∑
n an is

convergent if and only if
∑

n bn is convergent.

– for (b) =⇒ (a), this comes from the fact that convergence in L1 implies convergence of
expectations.

– The fact that (a) =⇒ (b) comes from Scheffé’s Lemma (Exercise sheet 7, exercise 2).

– for (d) =⇒ (a), we note that (Nn) is a non-negative martingale, which converges a.s. to a
random variable denoted by N∞. If

∏∞
k=1 ak > 0, this implies that

E [N 2n ] =
E [Mn]∏n
k=1 ak

≤ 1∏∞
k=1 ak

<∞.

As a consequence, (Nn) is bounded in L2 and converges in L2 to
√
M∞/

∏∞
k=1 ak. As a conse-

quence, E [N 2n ]→ E [M2∞] /(
∏∞

k=1 ak)2, so 1 = E [Mn]→ E [M∞].

– for (a) =⇒ (d), we argue by contraposition. Assume that
∏∞

k=1 ak = 0. Then as above the
non-negative martingale (Nn) converges a.s. to a random variable denoted by N∞. Since
N∞ <∞ and

∏n
k=1 ak→ 0, we must have Mn→ 0 a.s. so that M∞ = 0 a.s.

(3) We use the previous questions to give a counterexample in the case p = 2. Set

P (Xn) =


(n+1)2

n2
with probability n2

(n+1)2

0 with probability 1− n2

(n+1)2 ,

so that E [Xn] = 1 and E

[√
Xn

]
= n

n+1 . Finally, set Sn =
√
Mn.

The computations of question (2) show that (Sn) is a non-negative supermartingale bounded in
L2. But since

∑
n≥1(1− n

n+1 ) =∞, Mn→ 0 almost surely, so E [S2n]→ 0, so Sn does not converge in
L2.
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Remark. By taking (−Sn) we get a (non-positive) submartingale bounded in L2 which does not
converge in L2.

□

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 6. Suppose your friend is turning over cards from a face-down shuffled deck, and at any point
you can call ”Next”, and if the next card is red, you win a prize.

Clearly, if you immediately shout “Next”, your chances of winning are 1/2. Can you devise a strategy
that does better than 1/2 – for example, waiting until there are slightly more red cards remaining and
then calling ”Next”, even though you might never reach a state where there are slightly more red cards?

Solution:
The answer is no: every strategy has probability 1/2 of winning.

To see this, let Rn denote the number of red cards remaining the deck after n cards have been
shown. Set Fn = σ (R0, . . . ,Rn) and Mn = Rn

52−n the fraction of remaining red cards. We claim that (Mn) is
a martingale. Indeed, given Fn, the probability that the next card is red is Mn, so

E [Rn+1 | Fn] = Rn −
Rn

52−n
=
51−n
52−n

Rn,

so that E [Mn+1|Fn] = Mn. Since M0 = 1/2, this martingale has mean 1/2.
Now consider any strategy and let N be number of cards after which “Next” has been called. Since

(Mn∧N )n≥0 is a bounded martingale and thus uniformly integrable, the optional stopping theorem
implies E [MN ] = 1/2. Denote by W the event of winning. It’s probability is the probability that the
next card is red, which given FN happens with probability MN , so

P (W ) = E [E [1W | RN ]] = E [MN ] = 1/2.

□
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