Week 12: convergence in distribution

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 11/12/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. random variables following the uniform distribution on $[0,1]$.
(1) Show that $n \min \left(X_{1}, \ldots, X_{n}\right)$ converges in distribution to a random variable Z when $n \rightarrow \infty$ and give the law of Z.
(2) Show that

$$
\left(X_{1}+\cdots+X_{n}\right) \min \left(X_{1}, \ldots, X_{n}\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} Z / 2 .
$$

2 Training exercises

Exercise 2. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables such that X_{n} has density p_{n}. Assume that there is a measurable function p such that $p_{n}(x) \rightarrow p(x)$ for λ almost all x (where λ is the Lebesgue measure).
(1) Is p always the density of some random variable? Justify your answer.
(2) Assume that there is an integrable (with respect to λ) measurable function $q: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that for every $n \geq 1, p_{n}(x) \leq q(x)$ for λ-almost all x. Show that p is the density of some random variable X and that X_{n} converges in distribution to X.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ and X be real-valued random variables such that $\mathbb{P}(X=t)=o$ for every $t \in \mathbb{R}$. Show that X_{n} converges in distribution to X if and only if $\mathbb{P}\left(X_{n}<t\right) \rightarrow \mathbb{P}(X<t)=\mathbb{P}(X \leq t)$ for every $t \in \mathbb{R}$.

Exercise 4. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a C^{1} (continuously differentiable) weakly increasing function with $f(0)=$ o.
(1) Let X be a non-negative real-valued random variable. Show that

$$
\mathbb{E}[f(X)]=\int_{0}^{\infty} f^{\prime}(x) \mathbb{P}(X>x) \mathrm{d} x
$$

(2) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of non-negative real valued random variables converging in distribution to X.
(a) Show that $\mathbb{P}(X \geq 0)=1$.
(b) Show that $\mathbb{E}[f(X)] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[f\left(X_{n}\right)\right]$.

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables converging in distribution to a uniform random variable on $[0,1]$. Let $\left(Y_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables converging in probability to o. Show that $\mathbb{P}\left(X_{n}<Y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

3 More involved exercise (optional, will not be covered in the exercise class)

Exercise 6. A stick of length 1 is broken at n points chosen uniformly and independently at random. Let L_{n} be the length of the longest of the $n+1$ pieces obtained. How does L_{n} behave when $n \rightarrow \infty$?

The aim of this exercise is to show that $(n+1) L_{n}-\ln (n+1)$ converges in distribution to a real-valued random variable whose cdf is $x \mapsto e^{e^{-x}}$ on \mathbb{R} (called a Gumbel distribution).

Part 1. To model the problem, let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. uniform random variables on [0,1] representing the locations where the stick is broken.
(1) Show that $\mathbb{P}\left(\exists i, j \in\{1,2, \ldots, n\}: i \neq j\right.$ and $\left.U_{i}=U_{j}\right)=0$.
(2) Show that there exists a random permutation σ such that $\mathbb{P}\left(U_{\sigma(1)}<\cdots<U_{\sigma(n)}\right)=1$

Thus if $\left(\Delta_{1}, \ldots, \Delta_{n+1}\right)$ denote the lenghts of the pieces, we have $\Delta_{i}=U_{\sigma_{i}}-U_{\sigma_{i-1}}$ for $1 \leq i \leq n+1$ (with the convention $U_{\sigma_{n+1}}=1$ and $U_{\sigma_{o}}=0$).
(3) Show that $\left(U_{\sigma(1)}, \ldots, U_{\sigma(n)}\right)$ has density

$$
n!\mathbb{1}_{\left\{0 \leq x_{1}<\ldots<x_{n} \leq 1\right\}} d x_{1} \ldots d x_{n}
$$

Part 2. Let $\left(X_{i}\right)_{1 \leq i \leq n+1}$ be exponential i.i.d. random variables with parameter 1 . For $1 \leq i \leq n+1$, set

$$
S_{i}=X_{1}+\cdots+X_{i}, \quad Y_{i}=\frac{X_{i}}{S_{n+1}}
$$

(4) Determine the joint law of $\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)$ and deduce that of $\left(Y_{1}, \ldots, Y_{n}\right)$.
(5) Show that $\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ have the same distribution. Deduce that max $\left(Y_{1}, \ldots, Y_{n+1}\right)$ has the same law as L_{n}.
(6) Show that for $x \in \mathbb{R},(x+\ln (n+1))\left(\frac{S_{n+1}}{n+1}-1\right)$ converges in probability to o.
(7) Deduce the desired result.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 7. Let $n \geq 1$ be an integer. An urn contains n white balls and n colored balls. The balls are drawn successively and without replacement until there are only balls of one color left in the urn. As $n \rightarrow \infty$, what is the behavior of the number of remaining balls?

