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Week 12: convergence in distribution

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 11/12/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (Xi)i≥1 be a sequence of i.i.d. random variables following the uniform distribution on
[0,1].

(1) Show that nmin(X1, . . . ,Xn) converges in distribution to a random variable Z when n→∞ and give
the law of Z.

(2) Show that

(X1 + · · ·+Xn)min(X1, . . . ,Xn)
(d)
−→
n→∞

Z/2.

2 Training exercises

Exercise 2. Let (Xn)n≥1 be a sequence of real-valued random variables such that Xn has density pn. As-
sume that there is a measurable function p such that pn(x) → p(x) for λ almost all x (where λ is the
Lebesgue measure).

(1) Is p always the density of some random variable? Justify your answer.

(2) Assume that there is an integrable (with respect to λ) measurable function q : R→ R+ such that for
every n ≥ 1, pn(x) ≤ q(x) for λ-almost all x. Show that p is the density of some random variable X

and that Xn converges in distribution to X.

Exercise 3. Let (Xn)n≥1 and X be real-valued random variables such that P (X = t) = 0 for every t ∈ R.
Show that Xn converges in distribution to X if and only if P (Xn < t)→ P (X < t) = P (X ≤ t) for every t ∈R.

Exercise 4. Let f :R+→R+ be a C1 (continuously differentiable) weakly increasing function with f (0) =
0.
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(1) Let X be a non-negative real-valued random variable. Show that

E [f (X)] =
∫ ∞
0

f ′(x)P(X > x)dx.

(2) Let (Xn)n≥1 be a sequence of non-negative real valued random variables converging in distribution
to X.

(a) Show that P (X ≥ 0) = 1.

(b) Show that E [f (X)] ≤ liminfn→∞E [f (Xn)].

Exercise 5. Let (Xn)n≥1 be a sequence of real-valued random variables converging in distribution to a
uniform random variable on [0,1]. Let (Yn)n≥1 be a sequence of real-valued random variables converging
in probability to 0. Show that P (Xn < Yn)→ 0 as n→∞.

3 More involved exercise (optional, will not be covered in the exercise class)

Exercise 6. A stick of length 1 is broken at n points chosen uniformly and independently at random. Let
Ln be the length of the longest of the n+ 1 pieces obtained. How does Ln behave when n→∞?

The aim of this exercise is to show that (n + 1)Ln − ln(n + 1) converges in distribution to a real-valued
random variable whose cdf is x 7→ ee

−x
on R (called a Gumbel distribution).

Part 1. To model the problem, let (Ui)1≤i≤n be i.i.d. uniform random variables on [0,1] representing
the locations where the stick is broken.

(1) Show that P
(
∃i, j ∈ {1,2, . . . ,n} : i , j and Ui =Uj

)
= 0.

(2) Show that there exists a random permutation σ such that P
(
Uσ (1) < · · · < Uσ (n)

)
= 1

Thus if (∆1, . . . ,∆n+1) denote the lenghts of the pieces, we have ∆i = Uσi −Uσi−1 for 1 ≤ i ≤ n + 1 (with the
convention Uσn+1 = 1 and Uσ0 = 0).

(3) Show that (Uσ (1), . . . ,Uσ (n)) has density

n!1{0≤x1<...<xn≤1}dx1 . . .dxn.

Part 2. Let (Xi)1≤i≤n+1 be exponential i.i.d. random variables with parameter 1. For 1 ≤ i ≤ n+ 1, set

Si = X1 + · · ·+Xi , Yi =
Xi

Sn+1
.

(4) Determine the joint law of (X1, . . . ,Xn,Sn+1) and deduce that of (Y1, . . . ,Yn).

(5) Show that (∆1, . . . ,∆n) and (Y1, . . . ,Yn) have the same distribution. Deduce that max(Y1, . . . ,Yn+1) has
the same law as Ln.

(6) Show that for x ∈R, (x+ ln(n+ 1))
(
Sn+1
n+1 − 1

)
converges in probability to 0.

(7) Deduce the desired result.
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4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 7. Let n ≥ 1 be an integer. An urn contains nwhite balls and n colored balls. The balls are drawn
successively and without replacement until there are only balls of one color left in the urn. As n→ ∞,
what is the behavior of the number of remaining balls?
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