Week 12: convergence in distribution

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 11/12/2023 17:00 (online) following the instructions on the course website

```
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/
```

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

* * *

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let $(X_i)_{i \ge 1}$ be a sequence of i.i.d. random variables following the uniform distribution on [0, 1].

- (1) Show that $n\min(X_1,...,X_n)$ converges in distribution to a random variable Z when $n \to \infty$ and give the law of Z.
- (2) Show that

$$(X_1 + \dots + X_n) \min(X_1, \dots, X_n) \xrightarrow[n \to \infty]{(d)} Z/2.$$

2 Training exercises

Exercise 2. Let $(X_n)_{n\geq 1}$ be a sequence of real-valued random variables such that X_n has density p_n . Assume that there is a measurable function p such that $p_n(x) \to p(x)$ for λ almost all x (where λ is the Lebesgue measure).

- (1) Is *p* always the density of some random variable? Justify your answer.
- (2) Assume that there is an integrable (with respect to λ) measurable function $q : \mathbb{R} \to \mathbb{R}_+$ such that for every $n \ge 1$, $p_n(x) \le q(x)$ for λ -almost all x. Show that p is the density of some random variable X and that X_n converges in distribution to X.

Exercise 3. Let $(X_n)_{n \ge 1}$ and X be real-valued random variables such that $\mathbb{P}(X = t) = 0$ for every $t \in \mathbb{R}$. Show that X_n converges in distribution to X if and only if $\mathbb{P}(X_n < t) \to \mathbb{P}(X < t) = \mathbb{P}(X \le t)$ for every $t \in \mathbb{R}$.

Exercise 4. Let $f : \mathbb{R}_+ \to \mathbb{R}_+$ be a C^1 (continuously differentiable) weakly increasing function with f(o) = o.

(1) Let *X* be a non-negative real-valued random variable. Show that

$$\mathbb{E}[f(X)] = \int_0^\infty f'(x) \mathbb{P}(X > x) \mathrm{d}x.$$

- (2) Let $(X_n)_{n \ge 1}$ be a sequence of non-negative real valued random variables converging in distribution to X.
 - (a) Show that $\mathbb{P}(X \ge 0) = 1$.
 - (b) Show that $\mathbb{E}[f(X)] \leq \liminf_{n \to \infty} \mathbb{E}[f(X_n)].$

Exercise 5. Let $(X_n)_{n \ge 1}$ be a sequence of real-valued random variables converging in distribution to a uniform random variable on [0, 1]. Let $(Y_n)_{n \ge 1}$ be a sequence of real-valued random variables converging in probability to 0. Show that $\mathbb{P}(X_n < Y_n) \to 0$ as $n \to \infty$.

3 More involved exercise (optional, will not be covered in the exercise class)

Exercise 6. A stick of length 1 is broken at *n* points chosen uniformly and independently at random. Let L_n be the length of the longest of the n + 1 pieces obtained. How does L_n behave when $n \to \infty$?

The aim of this exercise is to show that $(n + 1)L_n - \ln(n + 1)$ converges in distribution to a real-valued random variable whose cdf is $x \mapsto e^{e^{-x}}$ on \mathbb{R} (called a Gumbel distribution).

Part 1. To model the problem, let $(U_i)_{1 \le i \le n}$ be i.i.d. uniform random variables on [0, 1] representing the locations where the stick is broken.

- (1) Show that $\mathbb{P}(\exists i, j \in \{1, 2, \dots, n\} : i \neq j \text{ and } U_i = U_j) = 0.$
- (2) Show that there exists a random permutation σ such that $\mathbb{P}(U_{\sigma(1)} < \cdots < U_{\sigma(n)}) = 1$

Thus if $(\Delta_1, \dots, \Delta_{n+1})$ denote the lenghts of the pieces, we have $\Delta_i = U_{\sigma_i} - U_{\sigma_{i-1}}$ for $1 \le i \le n+1$ (with the convention $U_{\sigma_{n+1}} = 1$ and $U_{\sigma_0} = 0$).

(3) Show that $(U_{\sigma(1)}, \ldots, U_{\sigma(n)})$ has density

$$n! \mathbb{1}_{\{0 \le x_1 < \dots < x_n \le 1\}} dx_1 \dots dx_n.$$

Part 2. Let $(X_i)_{1 \le i \le n+1}$ be exponential i.i.d. random variables with parameter 1. For $1 \le i \le n+1$, set

$$S_i = X_1 + \dots + X_i, \qquad Y_i = \frac{X_i}{S_{n+1}}.$$

- (4) Determine the joint law of $(X_1, \ldots, X_n, S_{n+1})$ and deduce that of (Y_1, \ldots, Y_n) .
- (5) Show that $(\Delta_1, ..., \Delta_n)$ and $(Y_1, ..., Y_n)$ have the same distribution. Deduce that $\max(Y_1, ..., Y_{n+1})$ has the same law as L_n .
- (6) Show that for $x \in \mathbb{R}$, $(x + \ln(n+1))\left(\frac{S_{n+1}}{n+1} 1\right)$ converges in probability to o.
- (7) Deduce the desired result.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 7. Let $n \ge 1$ be an integer. An urn contains n white balls and n colored balls. The balls are drawn successively and without replacement until there are only balls of one color left in the urn. As $n \to \infty$, what is the behavior of the number of remaining balls?