
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 12: convergence in distribution

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 11/12/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (Xi)i≥1 be a sequence of i.i.d. random variables following the uniform distribution on
[0,1].

(1) Show that nmin(X1, . . . ,Xn) converges in distribution to a random variable Z when n→∞ and give
the law of Z.

(2) Show that

(X1 + · · ·+Xn)min(X1, . . . ,Xn)
(d)
−→
n→∞

Z/2.

Solution:

(1) We calculate the limit of the cumulative distribution function of nmin(X1, . . . ,Xn). For y < 0, we
have P (nmin(X1, . . . ,Xn) ≤ y) = 0. For y ≥ 0 and n > y we write

P (nmin(X1, . . . ,Xn) ≤ y) = 1−P
(
min(X1, . . . ,Xn) >

y

n

)
= 1−P

(
X1 >

y

n
, . . . ,Xn >

y

n

)
= 1−

(
1−

y

n

)n
,

where we have used independence for the last equality. But(
1−

y

n

)n
= exp

(
n ln

(
1−

y

n

))
= exp

(
n
(
−
y

n
+ o

(1
n

)))
−→
n→∞

e−y .

We conclude that
P (nmin(X1, . . . ,Xn) ≤ y) −→

n→∞
1− e−y .

So the cdf of nmin(X1, . . . ,Xn) converges pointwise to the cdf of an exponential distribution with
parameter 1, which is continuous. We conclude that nmin(X1, . . . ,Xn) converges in law to an
exponential random variable of parameter 1.
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(2) Set Zn = nmin(X1, . . . ,Xn) and Yn = X1+···+Xn
n . Then (X1+ · · ·+Xn)min(X1, . . . ,Xn) = YnZn. By (1), Zn

converges in distribution to Z. By the strong law of large numbers, Yn converges a.s. and thus in
probability to E [X1] = 1/2. By Slutsky’s theorem (Yn,Zn) converges in distribution to (1/2,Z).

By using the continuity of f (y,z) = yz, this implies that YnZn converges in distribution to Z/2.

□

2 Training exercises

Exercise 2. Let (Xn)n≥1 be a sequence of real-valued random variables such that Xn has density pn. As-
sume that there is a measurable function p such that pn(x) → p(x) for λ almost all x (where λ is the
Lebesgue measure).

(1) Is p always the density of some random variable? Justify your answer.

(2) Assume that there is an integrable (with respect to λ) measurable function q : R→ R+ such that for
every n ≥ 1, pn(x) ≤ q(x) for λ-almost all x. Show that p is the density of some random variable X

and that Xn converges in distribution to X.

Solution:

(1) No, for example if Xn is uniform on [n,n+ 1] then pn converges pointwise to 0, which is not the
density of some random variable.

(2) First p ≥ 0 almost everywhere since pn ≥ 0. Let f : R→R be a continuous bound function. Using
the transfer theorem, write:

E [f (Xn)] =
∫
R

f (x)pn(x)dx.

Observe that f (x)pn(x)→ f (x)p(x) for almost all x and that |f (x)pn(x)| ≤ q(x)∥f ∥∞, which is inte-
grable by assumption. By dominated convergence we thus get that∫

R

f (x)pn(x)dx −→
n→∞

∫
R

f (x)p(x)dx.

By taking f to be the constant function equal to 1, we get
∫
R
p(x)dx = 1, so that p is the density

of some random variable X. In addition, by the transfer theorem again∫
R

f (x)p(x)dx = E [f (X)] ,

so E [f (Xn)]→ E [f (X)], which establishes convergence in distribution.
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□

Exercise 3. Let (Xn)n≥1 and X be real-valued random variables such that P (X = t) = 0 for every t ∈ R.
Show that Xn converges in distribution to X if and only if P (Xn < t)→ P (X < t) = P (X ≤ t) for every t ∈R.

Solution:
For every t ∈R since P (X = t) = 0, we have P (X ≤ t) = P (X < t).

For the implication, we use the Portemanteau theorem with the set B = (−∞, t): since B\B̊ = {t} and
P (X ∈ {t}) = 0, this implies that P (Xn < t)→ P (X < t).

For the converse, assume that P (Xn < t) → P (X ≤ t) for every t ∈ R. We show that P (Xn ≤ t) →
P (X ≤ t) for every t ∈R by adapting a proof seen in the lecture.

First, clearly P (Xn < t) ≤ P (Xn ≤ t), so

P (X ≤ t) = P (X ≤ t) = lim
n→∞

P (Xn < t) ≤ liminf
n→∞

P (Xn ≤ t) ≤ limsup
n→∞

P (Xn ≤ t) .

Next, take u > t and write

limsup
n→∞

P (Xn ≤ t) ≤ limsup
n→∞

P (Xn < u) = P (X ≤ u) .

Thus, for every u > t,

P (X ≤ t) ≤ liminf
n→∞

P (Xn ≤ t) ≤ limsup
n→∞

P (Xn ≤ t) ≤ P (X ≤ u) .

But as u → t with u > t we have P (X ≤ u) ↓ P (X ≤ t) by right-continuity of the cdf at t. This shows
that P (Xn ≤ t)→ P (X ≤ t) and completes the proof. □

Exercise 4. Let f : R+→R+ be a C1 (continuously differentiable) weakly increasing function with f (0) =
0.

(1) Let X be a non-negative real-valued random variable. Show that

E [f (X)] =
∫ ∞
0

f ′(x)P(X > x)dx.

(2) Let (Xn)n≥1 be a sequence of non-negative real valued random variables converging in distribution
to X.

(a) Show that P (X ≥ 0) = 1.

(b) Show that E [f (X)] ≤ liminfn→∞E [f (Xn)].
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Solution:

(1) Using Fubini-Tonelli (observe that f ′ ≥ 0), write∫ ∞
0

f ′(x)P(X > x)dx =
∫ ∞
0

f ′(x)E [1X>x]dx = E

[∫ ∞
0

f ′(x)1X>xdx
]

= E

[∫ X

0
f ′(x)dx

]
= E [f (X)] .

(2) (a) Since (−∞,0) is open, by the Portemanteau Theorem we have

0 = liminf
n→∞

P (Xn < 0) ≥ P (X < 0) ,

so P (X < 0) = 0, which implies P (X ≥ 0) = 1.

(b) Using (1) write

E [f (Xn)] =
∫ ∞
0

f ′(x)P(Xn > x)dx.

Since Xn → X in distribution, we know that P(Xn > x) → P(X > x) for every x where the
cdf of X is continuous. Since the cdf of X has at most a countable amount of discontinuity
points, it follows that P(Xn > x) → P(X > x) for almost Lebesgue-all x. Thus, by Fatou’s
Lemma:

E [f (X)] =
∫ ∞
0

f ′(x)P(X > x)dx

=
∫ ∞
0

liminf
n→∞

f ′(x)P(Xn > x)dx

≤ liminf
n→∞

∫ ∞
0

f ′(x)P(Xn > x)dx

= E [f (Xn)] .

□

Exercise 5. Let (Xn)n≥1 be a sequence of real-valued random variables converging in distribution to a
uniform random variable on [0,1]. Let (Yn)n≥1 be a sequence of real-valued random variables converging
in probability to 0. Show that P (Xn < Yn)→ 0 as n→∞.

Solution:
Fix ϵ ∈ (0,1) and write

P (Xn < Yn) = P (Xn < Yn,Yn > ε) +P (Xn < Yn,Yn ≤ ε)

≤ P (Yn > ε) +P (Xn < ε)

Denote by X a uniform random variable on [0,1]. But P (Yn > ε)→ 0 because Yn → 0 in probability,
and by Portemanteau’s theorem limsupn→∞P (Xn < ε) ≤ P (X < ε) = ε because Xn→ X in distribution
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and P (X = ε) = 0. We conclude that

limsup
n→∞

P (Xn < Yn) ≤ ε,

which entails the desired result. □

3 More involved exercise (optional, will not be covered in the exercise class)

Exercise 6. A stick of length 1 is broken at n points chosen uniformly and independently at random. Let
Ln be the length of the longest of the n+ 1 pieces obtained. How does Ln behave when n→∞?

The aim of this exercise is to show that (n + 1)Ln − ln(n + 1) converges in distribution to a real-valued
random variable whose cdf is x 7→ ee

−x
on R (called a Gumbel distribution).

Part 1. To model the problem, let (Ui)1≤i≤n be i.i.d. uniform random variables on [0,1] representing
the locations where the stick is broken.

(1) Show that P
(
∃i, j ∈ {1,2, . . . ,n} : i , j and Ui = Uj

)
= 0.

(2) Show that there exists a random permutation σ such that P
(
Uσ (1) < · · · < Uσ (n)

)
= 1

Thus if (∆1, . . . ,∆n+1) denote the lenghts of the pieces, we have ∆i = Uσi −Uσi−1 for 1 ≤ i ≤ n + 1 (with the
convention Uσn+1

= 1 and Uσ0 = 0).

(3) Show that (Uσ (1), . . . ,Uσ (n)) has density

n!1{0≤x1<...<xn≤1}dx1 . . .dxn.

Part 2. Let (Xi)1≤i≤n+1 be exponential i.i.d. random variables with parameter 1. For 1 ≤ i ≤ n+ 1, set

Si = X1 + · · ·+Xi , Yi =
Xi

Sn+1
.

(4) Determine the joint law of (X1, . . . ,Xn,Sn+1) and deduce that of (Y1, . . . ,Yn).

(5) Show that (∆1, . . . ,∆n) and (Y1, . . . ,Yn) have the same distribution. Deduce that max(Y1, . . . ,Yn+1) has
the same law as Ln.

(6) Show that for x ∈R, (x+ ln(n+ 1))
(
Sn+1
n+1 − 1

)
converges in probability to 0.

(7) Deduce the desired result.

Solution:

(1) We have
P

(
∃i, j ∈ {1,2, . . . ,n} : i , j et Ui = Uj

)
≤

∑
i,j∈{1,2,...,n},i,j

P

(
Ui = Uj

)
.
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But using the transfer theorem

P

(
Ui = Uj

)
= E

[
1Ui=Uj

]
=

∫
[0,1]n

dx1dx2 · · ·dxn1xi=xj

=
∫

[0,1]2
dxdy1x=y

=
∫

[0,1]
dx

∫ x

x
dy

= 0,

and the result follows.

(2) Let A be the event {∀i, j ∈ {1,2, . . . ,n} : we have Ui ,Uj if i , j}, so that P (A) = 1 by (1). On event
A (i.e. if ω ∈ A), the numbers U1, . . . ,Un can be arranged in (strictly) increasing order. We can
therefore define σ so that Uσ (1) < · · · < Uσ (n) when ω ∈ A. If ω , A, we define σ to be equal to the
identity, so that σ is well defined on the whole set Ω. Since P (Ac) = 0, we have

P

(
Uσ (1) < · · · < Uσ (n)

)
= P

(
Uσ (1) < · · · < Uσ (n) ∩A

)
= P (A) = 1

because by construction the events {Uσ (1) < · · · < Uσ (n)} ∩A and A are equal.

Remark. σ depends on ω, but as usual in probability theory, this dependence is not explicitly
written down. Another tricky point is that we need to define σ on the whole domain Ω, since a
random variable is by definition an application defined on Ω. That’s why we had to define σ on
A on the one hand, and on the complementary of A on the other.

Now let τ be a fixed permutation of {1,2, . . . ,n}. Then by the transfer theorem

P

(
Uτ(1) < · · · < Uτ(n)

)
=

∫
[0,1]n

dx1 · · ·dxn1xτ(1)<xτ(2)<···<xτ(n)
=

∫
[0,1]n

dx1 · · ·dxn1x1<x2<···<xn

by the change of variables x′i = xτ(i). The last quantity is P (U1 < · · · < Un) and thus, the probability

P (σ = τ) = P

(
Uτ(1) < · · · < Uτ(n)

)
does not depend on the permutation τ . The random permutation σ therefore follows the uniform
law on permutations of {1,2, . . . ,n}.

(3) Let f : [0,1]n→ R+ be measurable. Denote by Sn the set of all permuations of {1,2, . . . ,n}. As in
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the computations of (2), write

E

[
f (Uσ (1), . . . ,Uσ (n))

]
=

∑
τ∈Sn

E

[
f (Uσ (1), . . . ,Uσ (n))1σ=τ

]
=

∑
τ∈Sn

E

[
f (Uτ(1), . . . ,Uτ(n))1Uτ(1)<···<Uτ(n)

]
=

∑
τ∈Sn

∫
[0,1]n

dx1dx2 · · ·dxn1xτ(1)<xτ(2)<···<xτ(n)
f (xτ(1), . . . ,xτ(n)

=
∑
τ∈Sn

∫
[0,1]n

dx1dx2 · · ·dxn1x1<x2<···<xnf (x1, . . . ,xn)

= n!
∫

[0,1]n
dx1dx2 · · ·dxn1x1<x2<···<xnf (x1, . . . ,xn),

which gives the desired result (we can change < into ≤ by (1)).

(4) We start by determining the joint distribution (X1, . . . ,Xn,Sn+1) using the dummy function method.
Let f : Rn+1→R be a continuous bounded function. According to the transfer theorem

E [f (X1, . . . ,Xn,Sn+1)] =
∫

]0,∞[n+1
f (x1,x2, . . . ,x1 + · · ·+ xn+1)e

−(x1+···+xn+1)dx1 · · ·dxn+1
.

By making the change of variable u1 = x1, . . . ,un = xn,un+1 = x1 + · · · + xn + 1 of Jacobian 1, we
obtain

E [f (X1, . . . ,Xn,Sn+1)] =
∫

]0,∞[n+1
f (u1,u2, . . . ,un+1)e

−un+11un+1≥u1+···+undu1 · · ·dun+1

which determines the joint distribution (X1, . . . ,Xn,Sn+1).

We now determine the joint distribution (Y1, . . . ,Yn,Sn+1). Let f : Rn+1 → R be a continuous
bounded function. According to the transfer theorem applied to (X1, . . . ,Xn,Sn+1) :

E [f (Y1, . . . ,Yn,Sn+1)] =
∫

]0,∞[n+1
f

(
x1
xn+1

, . . .
xn
xn+1

,xn+1

)
1xn+1≥x1+···+xne

−xn+1dx1 · · ·dxn+1
.

By making the change of variables

u1 =
x1
xn+1

,u2 =
x2
xn+1

, . . . ,un =
xn
xn+1

,un+1 = xn+1,

avec 0 ≤ u1 + · · ·+un ≤ 1 et xi = uiun+1, with Jacobian un
n+1 we get

E [f (Y1, . . . ,Yn,Sn+1)] =
∫

]0,∞[n+1
f (u1,u2, . . . ,un+1)u

n
n+1e

−un+11u1+···+un<1du1 · · ·dun+1.
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We deduce that for any function f : Rn→R continuous bounded we have

E [f (Y1, . . . ,Yn)] = n!
∫

]0,∞[n
f (u1,u2, . . . ,un)1u1+···+un<1du1 · · ·dun, (1)

which determines the law of (Y1, . . . ,Yn).

(5) Recall that ∆1 = Uσ (1) and ∆i = Zσ (i) −Zσ (i−1) for 2 ≤ i ≤ n. By a change of variable, we deduce
that

E [f (∆1,∆2, . . . ,∆n)] = n!
∫

]0,∞[n
f (u1,u2, . . . ,un)1u1+···+un<1du1 · · ·dun.

Given (1), we deduce that (Y1, . . . ,Yn) and (∆1, . . . ,∆n) have the same distribution. Since Yn+1 =
1−Y1 − · · · −Yn and ∆n+1 = 1−∆1 − · · · −∆n, we conclude that (Y1, . . . ,Yn+1) and (∆1, . . . ,∆n+1) have
the same law. The fact that max(Y1, . . . ,Yn+1) has the same law as Ln follows immediately from
this, since Ln = max(∆1, . . . ,∆n+1).

(6) Let Wn = (x+ln(n+1))
(
Sn+1
n+1 − 1

)
. We have E [W ] = 0 and Var(W ) ∼ ln(n)2

n → 0. From the Bienaymé-
Chebyshev inequality, we deduce that Wn→ 0 in probability.

(7) Let Zn = max(X1, . . . ,Xn+1)− log(n+ 1). From question (5), we have

P ((n+ 1)Ln − ln(n+ 1) ≤ x) = P ((n+ 1)max(Y1, . . . ,Yn+1)− ln(n+ 1) ≤ x)

= P

(
(n+ 1)

max(X1, . . . ,Xn+1)
Sn+1

− ln(n+ 1) ≤ x

)
= P

(
max(X1, . . . ,Xn+1)− ln(n+ 1)

Sn+1

n+ 1
≤ x

Sn+1

n+ 1

)
= P

(
max(X1, . . . ,Xn+1)− ln(n+ 1) ≤ x+ (x+ ln(n+ 1))

( Sn+1

n+ 1
− 1

))
= P (Zn −Wn ≤ x)

Now a little calculation shows that P (max(X1, . . . ,Xn+1)− log(n+ 1) ≤ x)→ ee
−x

for all x ∈ R. So
Zn converges to G, where G is the Gumbel distribution function x 7→ ee

−x
. Now Wn → 0 in

probability, so Zn +Wn converges in law to G according to Slutsky’s lemma. So P (Zn +Wn ≤ x)→
ee
−x

. We conclude that for all x ∈R we have

P ((n+ 1)Ln − ln(n+ 1) ≤ x) −→
n→∞

ee
−x
,

which was the desired result.

□

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 7. Let n ≥ 1 be an integer. An urn contains n white balls and n colored balls. The balls are drawn
successively and without replacement until there are only balls of one color left in the urn. As n→ ∞,
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what is the behavior of the number of remaining balls?

Solution:
Let Hn be the random variable equal to the number of remaining balls. We show that (Hn) converges
in distribution to a G(1/2) distribution, that is for every k ≥ 1

P(Hn = k) −→
n→∞

1

2k
. (2)

Let k ∈ {1,2, . . . ,n}. There are k white balls left in the urn at the end if, and only if, the (2n−k)th draw
results in a colored ball, and all (n − 1) colored balls have already been drawn in the first (2n − k − 1)
draws. There are therefore

(2n−k−1
n−1

)
such configurations. By symmetry, the probability of k white balls

remaining is the same as the probability of k colored balls remaining. Thus,

P(Hn = k) = 2
(2n−k−1

n−1
)(2n

n

) .

According to Stirling’s formula,(
2n
n

)
∼ 4

n

√
πn

,

(
2n− k − 1

n− 1

)
∼ 1

2k+1
4n
√
πn

,

and (2) follows. □
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