Prof. Igor Kortchemski ETHZ - Probability Theory Autumn 2023

Week 12: convergence in di§tribution

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 11/12/2023 17:00 (online) following the in§tructions on the course
website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

* ok %

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

f?cercise 1. Let (X;);>, be a sequence of i.i.d. random variables following the uniform distribution on
[0,1].

(1) Show that nmin(X,,..., X,,) converges in di§tribution to a random variable Z when n — oo and give
the law of Z.

(2) Show that

Solution:

(1) We calculate the limit of the cumulative distribution funtion of nmin(X,,...,X,). For y <o, we
have P (nmin(X,,...,X,,) <y) =o0. For y > 0 and n >y we write

P (nmin(X,,...,X,) <y) = 1 —IP(min(Xl,...,Xn) > 3—’) =1 —IP(Xl SY x> 2) =1 —(1 —Z) ,

T yeeey
n n n

where we have used independence for the last equality. But

-3 =solfe- D)oo 2ol =

We conclude that
P(nmin(X,,...,X,)<y) — 1-¢7.

n—-oo
So the cdf of nmin(X,,..., X,,) converges pointwise to the cdf of an exponential distribution with
parameter 1, which is continuous. We conclude that nmin(X,,...,X,,) converges in law to an
exponential random variable of parameter 1.
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(2) Set Z,, = nmin(X,,...,X,)and Y, = % Then (X, +---+ X,,)min(X,,..., X,) = Y,Z,. By (1), Z,
converges in ditribution to Z. By the §trong law of large numbers, Y,, converges a.s. and thus in
probability to [E[X, ] = 1/2. By Slutsky’s theorem (Y,,, Z,) converges in di$tribution to (1/2,Z).

By using the continuity of f(y,z) = yz, this implies that Y, Z, converges in distribution to Z/>.

2 Training exercises

Z:?(erci.se 2. Let (X,,),>, be a sequence of real-valued random variables such that X,, has density p,. As-
sume that there is a measurable function p such that p,(x) — p(x) for A almost all x (where A is the

Lebesgue measure).
(1) Is p always the density of some random variable? Justify your answer.

(2) Assume that there is an integrable (with respe to 1) measurable funtion g : R — R, such that for
every n > 1, p,(x) < g(x) for A-almost all x. Show that p is the density of some random variable X
and that X,, converges in distribution to X.

Solution:

(1) No, for example if X, is uniform on [n, 1 + 1] then p,, converges pointwise to o, which is not the
density of some random variable.

(2) Fir$t p > o almost everywhere since p,, > o. Let f : R — R be a continuous bound function. Using

xm:fmemw

Observe that f(x)p,(x) = f(x)p(x) for almost all x and that |f (x)p,(x)| < g(x)||f ||, which is inte-
grable by assumpt10n. By dommated convergence we thus get that

[ spons = | soopts

By taking f to be the con$tant fun&tion equal to 1, we get IIR x)dx = 1, so that p is the density

the transfer theorem, write:

of some random variable X. In addition, by the transfer theorem again

ff x)dx = E[f(X)],

so E[f(X,)] = E[f(X)], which e§tablishes convergence in distribution.
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Z:?(ercise 3. Let (X,),>; and X be real-valued random variables such that IP(X =t) = o for every t € R.
Show that X,, converges in diStribution to X if and only if P (X, <t) > P(X <t) =P (X <t) for every t € R.

Solution:
For every t € R since P(X =t) =0, we have P(X <t)=P(X <t).

For the implication, we use the Portemanteau theorem with the set B = (—oo, t): since B\B = {t} and
P (X € {t}) = o, this implies that P(X,, <t) —» P(X < t).

For the converse, assume that P(X,, <t) — IP(X <t) for every t € R. We show that P(X,<t) —
IP(X < t) for every t € R by adapting a proof seen in the leture.

First, clearly P (X, <t) <IP(X, <t), so

P(X<t)=P(X<t)=limP(X,<t)<liminflP(X, <t) <limsuplP(X, <t).

n—-oo n—-o0 n—00

Next, take u > t and write

limsupP (X, <t)<limsupP (X, <u)=P(X <u).

n—o0 n—o0

Thus, for every u > t,

P(X <t) <liminfP (X, <t)<limsuplP(X, <t) <P(X <u).

n—0o00 n—oo

But as u — t with u > t we have P(X < u) | IP(X < t) by right-continuity of the cdf at t. This shows
that P(X,, <t) » IP(X <t) and completes the proof. O

Z}(ercise 4. Let f : R, - R, be a C* (continuously differentiable) weakly increasing function with f (o) =

0.

(1) Let X be a non-negative real-valued random variable. Show that
BIF00I= [ Fpecs nd

2) Let (X,,),>, be a sequence of non-negative real valued random variables converging in distribution
n/nz1 g g g
to X.

(a) Show that P(X >o0) = 1.
(b) Show that E[f(X)] <liminf,_, E[f(X,)].
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Solution:

(1) Using Fubini-Tonelli (observe that f’ > o), write

o0 o) oo X
[ repacxac= | pop e, - IEU f’<x>1X>xdx] - IEU f'(x)dx] ~E[f(X)).

(2) (a) Since (—o0,0) is open, by the Portemanteau Theorem we have

o =liminflP(X,, <o) >P(X <o),

n—o0
so P(X <o) = o, which implies P(X > o) = 1.
(b) Using (1) write
B = [ F (P, > 0

Since X,, — X in distribution, we know that P(X,, > x) — P(X > x) for every x where the
cdf of X is continuous. Since the cdf of X has at mo$t a countable amount of discontinuity
points, it follows that IP(X,, > x) — P(X > x) for almo$t Lebesgue-all x. Thus, by Fatou’s

Lemma:
J. f'(x)P(X > x)d

J liminf f’(x)P(X, > x)dx

E[f(X)]

n—-o0

IA

n—o0

E[f(X

hmmfj f(x)P(X,, > x)d

O

Exercise 5. Let (X,)u>: be a sequence of real-valued random variables converging in distribution to a
uniform random variable on [o,1]. Let (Y},),,>, be a sequence of real-valued random variables converging

in probability to o. Show that P(X,, <Y,,) > 0as n — oo.

Solution:

Fix € € (0,1) and write

P(X,<Y,) = PX,<Y,Y,>e)+P(X,<Y,Y, <e¢)
< P(Y,>e)+IP(X, <e¢)

Denote by X a uniform random variable on [o,1]. But P(Y, > ¢) — o because Y,, — o in probability,

and by Portemanteau’s theorem limsup,_, P(X, <¢) <IP(X <¢) = € because X,, — X in distribution
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and IP (X = ¢) = 0. We conclude that

limsupP (X, <Y,)<e,

n—o00

which entails the desired result. O

3 More involved exercise (optional, will not be covered in the exercise class)

Exercise 6. A §tick of length 1 is broken at n points chosen uniformly and independently at random. Let
L, be the length of the longest of the 1+ 1 pieces obtained. How does L,, behave when n — co0?
The aim of this exercise is to show that (n+ 1)L, —In(n + 1) converges in distribution to a real-valued
random variable whose cdf is x > ¢¢ on R (called a Gumbel distribution).
Part 1. To model the problem, let (U;),<;<, be i.i.d. uniform random variables on [o, 1] representing

the locations where the §tick is broken.
(1) Show that IP(Hi,j e€f1,2,...,n}:i#jand U, = Uj) =o.
(2) Show that there exists a random permutation ¢ such that IP(UG(I) <. < Ug(n)) =1

Thus if (A,,...,A,;,) denote the lenghts of the pieces, we have A; = U, — U, for 1 <i <n+1 (with the

convention U, =1 and U, = o).
(3) Show that (Ug(y),---, Ugs(n)) has density

n! ]l{on1 <..<x,<1} dx,...dx,.

Part 2. Let (X;),<;<,+, be exponential i.i.d. random variables with parameter 1. For 1 <i <n+ 1, set
X;
Sn+1'

(4) Determine the joint law of (X,...,X,,, S,,;;) and deduce that of (Y,,...,Y,).

Si=X;+--+Xj, Y; =

(5) Show that (A,,...,A,) and (Y,,...,Y,) have the same di$tribution. Deduce that max(Y,,...,Y,,,) has
the same law as L,,.

(6) Show that for x e R, (x +In(n+ 1)) (% - 1) converges in probability to o.

(7) Deduce the desired result.

Solution:

(1) We have
P(3i,je{1,2,...,n}i=]et Uj=Uj) < Z P(U; = Uj).

i,je{1,2,..,n},i#]
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(3)

But using the transfer theorem

P(U;=Uj) = E[ly.-y)]

= [ dxldxz"‘dxn]]-xiZXj
Jo,1]"

5

= 2dXdy:H.x:y

Jo,1]

r x
= dxj dy
Jo,1] X

= O’

and the result follows.

Let A be the event {Vi,j € {1,2,...,n}: we have U; # U; if i # j}, so that IP(A) = 1 by (1). On event
A (i.e. if w € A), the numbers U,,..., U, can be arranged in ($§tri¢tly) increasing order. We can
therefore define o so that U, (;) <-+- < Ugy(,) when w € A. If w # A, we define o to be equal to the
identity, so that o is well defined on the whole set (). Since IP(A®) = o, we have

P(Ugr) <+ < Ug(n)) = P(Us(a) < -+ < Uiy NA) =P (A) =1

because by construction the events {U; () <-+- < Uy} N A and A are equal.

Remark. o depends on w, but as usual in probability theory, this dependence is not explicitly
written down. Another tricky point is that we need to define o on the whole domain (), since a
random variable is by definition an application defined on Q. That’s why we had to define o on
A on the one hand, and on the complementary of A on the other.

Now let 7 be a fixed permutation of {1,2,...,n}. Then by the transfer theorem

IP(UT(l) <. < Ur(n)) = L " dxl .. .dx”:H'xr(1)<x"((2)<"'<x’((n) = J dxl .. -dxn]lx1<x2<...<xn
0,1

[0,1]"
by the change of variables x; = x,(;. The la§t quantity is P (U, <--- < U,) and thus, the probability
P(o=7)=P(Ugy) <+ < UT(H))

does not depend on the permutation 7. The random permutation ¢ therefore follows the uniform

law on permutations of {1,2,...,n}.

Let f : [0,1]" = R, be measurable. Denote by S, the set of all permuations of {1,2,...,n}. Asin
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the computations of (2), write

IE[f(UG(l)""l Ua(n))] Z IE[f(UO(l)l"'l UG(?I))I]-O':T]

T€S,
= Z E [f(UT(l)l"'l Ur(n))ﬂUT(1)<--~<UT(,Z)]
TeS,
= Z J dx,dx, - dxn1x1(1)<x1(2)<~--<x1(,1)f(xT(l)’ oo X (n)
€S, [o,1]"
= ZJ dx1dx2"'dxn]lxl<x2<--~<x,,f(x1""'XH)
T€S, [o1]"

= i’l'ﬁ " dxldx2 ..-dxnllxl<x2<,,_<xnf(x1,. . .,Xn),
0,1

which gives the desired result (we can change < into < by (1)).

(4) We $tart by determining the joint di§tribution (X4, ..., X,,, S,..;) using the dummy function method.

Let f : R""" — R be a continuous bounded fun&ion. According to the transfer theorem

IE[f(Xv-'an;Sn+1)] = j f(xllx2""’x1 + "'+xn+1)e_(x1+m+x"+1)dx1 ed

Jo,c0["1 Xnt1®

By making the change of variable u, = x,,...,u, = x,,,u,,,; = x;, +---+ x, + 1 of Jacobian 1, we

obtain
:[E[f(Xl""’Xl/l’ S}’l+1)] = .l; [n+1 f(u1'u2"'"ul’l+1)e_un+1:ﬂ‘un+12u1+'"+undu1 '”duﬂ-l—l
0,00

which determines the joint di$tribution (X,,..., X, S,4.)-

We now determine the joint di$tribution (Y,,...,Y,,S,.;). Let f : R"™" — R be a continuous
bounded function. According to the transfer theorem applied to (X,..., X,, Syiq) :

E[f(Yy, o Vi Spaa)] = J

X1 Xn —x
f reee 1 Xp4a lx,m >x, -+, € " dxl ot danr1 .
]O OO[”+I
’

Xn+1 Xn+1

By making the change of variables

Xq X5 Xn
U, = sy Uy = peee Uy = s Upvr1 = Xt
Xn+1 Xn+1 Xn+1

aveco < u, +---+u, <1 etx; =uju,,,, with Jacobian u);, , we get

IE[f(Y1,..., Ynlsnﬂ)] = J f(ul,uz,...,un+1)uZ+1€_u”“ ]1141+---+un<1du1 "'dun+1-

]o,oo[”ﬂ
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We deduce that for any function f : R” — IR continuous bounded we have

IE[f(Yv'-'J Yn)] = n!J f(uvuz’--"un)1u1+---+un<1du1 "'dun’ (1)

Jo,eo["

which determines the law of (Y,,...,Y}).

(5) Recall that A; = U, (y) and A; = Z(j) — Z (i) for 2 < i < n. By a change of variable, we deduce
that

E[f(A,A,,...,A,)] = n!j flug g, )Ly oy <ty - duy,

Jo,c0["
Given (1), we deduce that (Y,,...,Y,) and (A,,...,A,) have the same di$tribution. Since Y,,,, =
1-Y,—--—Y,and A, ., =1-A, —---—A,, we conclude that (Y,,...,Y,,,) and (A,,...,A,,,) have
the same law. The fact that max(Y,,...,Y,,,) has the same law as L,, follows immediately from
this, since L,, = max(A,,..., A, ;).

(6) Let W, = (x+1n(n+1))(5”4 - 1). We have E[W] = o and Var(W) ~ In(n)” _, . From the Bienaymé-

n+1 n

Chebyshev inequality, we deduce that W, — o in probability.

(7) Let Z, = max(X,,..., X,+;) —log(n + 1). From question (5), we have

P((n+1)L,—-In(n+1)<x) = P((n+1)max(Y,,...,Y,)—In(n+1)<x)
Xiveoor Xpga
= 1P((n+1)max( Y L )—ln(n+1)§x)
Sﬂ+1
= IP(maX(X X )—1n(n+1)S”+1 <x£)
P n+1 n+1
= IP(max(Xl,...,XnH)—ln(n+1)§x+(x+1n(n+1))(%_1))
= IP(Z,-W, <x)

Now a little calculation shows that IP (max(X,,..., X, ) —log(n+1) <x) — ¢ forall x € R. So
Z, converges to G, where G is the Gumbel distribution fundtion x +— e . Now W, — o in
probability, so Z,, + W,, converges in law to G according to Slutsky’s lemma. SoP(Z,,+ W, < x) —

¢ . We conclude that for all x € R we have

P((n+1)L,—-In(n+1)<x) — €,

n—o0

which was the desired result.

4 Fun exercise (optional, will not be covered in the exercise class)

‘Exercise 7. Let n> 1 be an integer. An urn contains n white balls and n colored balls. The balls are drawn
successively and without replacement until there are only balls of one color left in the urn. As n — oo,

8
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what is the behavior of the number of remaining balls?

Solution:
Let H, be the random variable equal to the number of remaining balls. We show that (H,,) converges
in di$tribution to a G(1/2) distribution, that is for every k > 1
P(H,=k) — —. (2)
n—00 2
Let k € {1,2,...,n}. There are k white balls left in the urn at the end if, and only if, the (2n—k)th draw

results in a colored ball, and all (n — 1) colored balls have already been drawn in the fir§t (2n -k —1)
an—k—1

draws. There are therefore (*"

) such configurations. By symmetry, the probability of k white balls

remaining is the same as the probability of k colored balls remaining. Thus,

an—k—1
P(H, = k) = 2@

According to Stirling’s formula,

and (2) follows. O
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