Week 12: convergence in distribution

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 11/12/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. random variables following the uniform distribution on [0,1].
(1) Show that $n \min \left(X_{1}, \ldots, X_{n}\right)$ converges in distribution to a random variable Z when $n \rightarrow \infty$ and give the law of Z.
(2) Show that

$$
\left(X_{1}+\cdots+X_{n}\right) \min \left(X_{1}, \ldots, X_{n}\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \quad Z / 2 .
$$

Solution:

(1) We calculate the limit of the cumulative distribution function of $n \min \left(X_{1}, \ldots, X_{n}\right)$. For $y<0$, we have $\mathbb{P}\left(n \min \left(X_{1}, \ldots, X_{n}\right) \leq y\right)=0$. For $y \geq 0$ and $n>y$ we write

$$
\mathbb{P}\left(n \min \left(X_{1}, \ldots, X_{n}\right) \leq y\right)=1-\mathbb{P}\left(\min \left(X_{1}, \ldots, X_{n}\right)>\frac{y}{n}\right)=1-\mathbb{P}\left(X_{1}>\frac{y}{n}, \ldots, X_{n}>\frac{y}{n}\right)=1-\left(1-\frac{y}{n}\right)^{n}
$$

where we have used independence for the last equality. But

$$
\left(1-\frac{y}{n}\right)^{n}=\exp \left(n \ln \left(1-\frac{y}{n}\right)\right)=\exp \left(n\left(-\frac{y}{n}+o\left(\frac{1}{n}\right)\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} e^{-y} .
$$

We conclude that

$$
\mathbb{P}\left(n \min \left(X_{1}, \ldots, X_{n}\right) \leq y\right) \quad \underset{n \rightarrow \infty}{\longrightarrow} \quad 1-e^{-y} .
$$

So the cdf of $n \min \left(X_{1}, \ldots, X_{n}\right)$ converges pointwise to the $c d f$ of an exponential distribution with parameter 1 , which is continuous. We conclude that $n \min \left(X_{1}, \ldots, X_{n}\right)$ converges in law to an exponential random variable of parameter 1 .
(2) Set $Z_{n}=n \min \left(X_{1}, \ldots, X_{n}\right)$ and $Y_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Then $\left(X_{1}+\cdots+X_{n}\right) \min \left(X_{1}, \ldots, X_{n}\right)=Y_{n} Z_{n}$. By (1), Z_{n} converges in distribution to Z. By the strong law of large numbers, Y_{n} converges a.s. and thus in probability to $\mathbb{E}\left[X_{1}\right]=1 / 2$. By Slutsky's theorem $\left(Y_{n}, Z_{n}\right)$ converges in distribution to $(1 / 2, Z)$.
By using the continuity of $f(y, z)=y z$, this implies that $Y_{n} Z_{n}$ converges in distribution to $Z / 2$.

2 Training exercises

Exercise 2. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables such that X_{n} has density p_{n}. Assume that there is a measurable function p such that $p_{n}(x) \rightarrow p(x)$ for λ almost all x (where λ is the Lebesgue measure).
(1) Is p always the density of some random variable? Justify your answer.
(2) Assume that there is an integrable (with respect to λ) measurable function $q: \mathbb{R} \rightarrow \mathbb{R}_{+}$such that for every $n \geq 1, p_{n}(x) \leq q(x)$ for λ-almost all x. Show that p is the density of some random variable X and that X_{n} converges in distribution to X.

Solution:

(1) No, for example if X_{n} is uniform on $[n, n+1]$ then p_{n} converges pointwise to o, which is not the density of some random variable.
(2) First $p \geq 0$ almost everywhere since $p_{n} \geq 0$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous bound function. Using the transfer theorem, write:

$$
\mathbb{E}\left[f\left(X_{n}\right)\right]=\int_{\mathbb{R}} f(x) p_{n}(x) \mathrm{d} x .
$$

Observe that $f(x) p_{n}(x) \rightarrow f(x) p(x)$ for almost all x and that $\left|f(x) p_{n}(x)\right| \leq q(x)\|f\|_{\infty}$, which is integrable by assumption. By dominated convergence we thus get that

$$
\int_{\mathbb{R}} f(x) p_{n}(x) \mathrm{d} x \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}} f(x) p(x) \mathrm{d} x
$$

By taking f to be the constant function equal to 1 , we get $\int_{\mathbb{R}} p(x) \mathrm{d} x=1$, so that p is the density of some random variable X. In addition, by the transfer theorem again

$$
\int_{\mathbb{R}} f(x) p(x) \mathrm{d} x=\mathbb{E}[f(X)]
$$

so $\mathbb{E}\left[f\left(X_{n}\right)\right] \rightarrow \mathbb{E}[f(X)]$, which establishes convergence in distribution.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ and X be real-valued random variables such that $\mathbb{P}(X=t)=0$ for every $t \in \mathbb{R}$. Show that X_{n} converges in distribution to X if and only if $\mathbb{P}\left(X_{n}<t\right) \rightarrow \mathbb{P}(X<t)=\mathbb{P}(X \leq t)$ for every $t \in \mathbb{R}$.

Solution:

For every $t \in \mathbb{R}$ since $\mathbb{P}(X=t)=0$, we have $\mathbb{P}(X \leq t)=\mathbb{P}(X<t)$.
For the implication, we use the Portemanteau theorem with the set $B=(-\infty, t)$: since $\bar{B} \backslash B=\{t\}$ and $\mathbb{P}(X \in\{t\})=0$, this implies that $\mathbb{P}\left(X_{n}<t\right) \rightarrow \mathbb{P}(X<t)$.

For the converse, assume that $\mathbb{P}\left(X_{n}<t\right) \rightarrow \mathbb{P}(X \leq t)$ for every $t \in \mathbb{R}$. We show that $\mathbb{P}\left(X_{n} \leq t\right) \rightarrow$ $\mathbb{P}(X \leq t)$ for every $t \in \mathbb{R}$ by adapting a proof seen in the lecture.

First, clearly $\mathbb{P}\left(X_{n}<t\right) \leq \mathbb{P}\left(X_{n} \leq t\right)$, so

$$
\mathbb{P}(X \leq t)=\mathbb{P}(X \leq t)=\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<t\right) \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \leq t\right) \leq \limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \leq t\right)
$$

Next, take $u>t$ and write

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \leq t\right) \leq \limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<u\right)=\mathbb{P}(X \leq u)
$$

Thus, for every $u>t$,

$$
\mathbb{P}(X \leq t) \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \leq t\right) \leq \underset{n \rightarrow \infty}{\limsup } \mathbb{P}\left(X_{n} \leq t\right) \leq \mathbb{P}(X \leq u)
$$

But as $u \rightarrow t$ with $u>t$ we have $\mathbb{P}(X \leq u) \downarrow \mathbb{P}(X \leq t)$ by right-continuity of the cdf at t. This shows that $\mathbb{P}\left(X_{n} \leq t\right) \rightarrow \mathbb{P}(X \leq t)$ and completes the proof.

Exercise 4. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a C^{1} (continuously differentiable) weakly increasing function with $f(\mathrm{o})=$ o.
(1) Let X be a non-negative real-valued random variable. Show that

$$
\mathbb{E}[f(X)]=\int_{0}^{\infty} f^{\prime}(x) \mathbb{P}(X>x) \mathrm{d} x
$$

(2) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of non-negative real valued random variables converging in distribution to X.
(a) Show that $\mathbb{P}(X \geq 0)=1$.
(b) Show that $\mathbb{E}[f(X)] \leq \liminf _{n \rightarrow \infty} \mathbb{E}\left[f\left(X_{n}\right)\right]$.

Solution:

(1) Using Fubini-Tonelli (observe that $f^{\prime} \geq 0$), write

$$
\int_{0}^{\infty} f^{\prime}(x) \mathbb{P}(X>x) \mathrm{d} x=\int_{0}^{\infty} f^{\prime}(x) \mathbb{E}\left[\mathbb{1}_{X>x}\right] \mathrm{d} x=\mathbb{E}\left[\int_{0}^{\infty} f^{\prime}(x) \mathbb{1}_{X>x} \mathrm{~d} x\right]=\mathbb{E}\left[\int_{0}^{X} f^{\prime}(x) \mathrm{d} x\right]=\mathbb{E}[f(X)]
$$

(2) (a) Since $(-\infty, 0)$ is open, by the Portemanteau Theorem we have

$$
\mathrm{o}=\liminf _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<0\right) \geq \mathbb{P}(X<0)
$$

so $\mathbb{P}(X<0)=0$, which implies $\mathbb{P}(X \geq 0)=1$.
(b) Using (1) write

$$
\mathbb{E}\left[f\left(X_{n}\right)\right]=\int_{0}^{\infty} f^{\prime}(x) \mathbb{P}\left(X_{n}>x\right) \mathrm{d} x
$$

Since $X_{n} \rightarrow X$ in distribution, we know that $\mathbb{P}\left(X_{n}>x\right) \rightarrow \mathbb{P}(X>x)$ for every x where the cdf of X is continuous. Since the cdf of X has at most a countable amount of discontinuity points, it follows that $\mathbb{P}\left(X_{n}>x\right) \rightarrow \mathbb{P}(X>x)$ for almost Lebesgue-all x. Thus, by Fatou's Lemma:

$$
\begin{aligned}
\mathbb{E}[f(X)] & =\int_{0}^{\infty} f^{\prime}(x) \mathbb{P}(X>x) \mathrm{d} x \\
& =\int_{0}^{\infty} \liminf _{n \rightarrow \infty} f^{\prime}(x) \mathbb{P}\left(X_{n}>x\right) \mathrm{d} x \\
& \leq \liminf _{n \rightarrow \infty}^{\infty} \int_{0}^{\infty} f^{\prime}(x) \mathbb{P}\left(X_{n}>x\right) \mathrm{d} x \\
& =\mathbb{E}\left[f\left(X_{n}\right)\right]
\end{aligned}
$$

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables converging in distribution to a uniform random variable on $[0,1]$. Let $\left(Y_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables converging in probability to o. Show that $\mathbb{P}\left(X_{n}<Y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Solution:

Fix $\epsilon \in(0,1)$ and write

$$
\begin{aligned}
\mathbb{P}\left(X_{n}<Y_{n}\right) & =\mathbb{P}\left(X_{n}<Y_{n}, Y_{n}>\varepsilon\right)+\mathbb{P}\left(X_{n}<Y_{n}, Y_{n} \leq \varepsilon\right) \\
& \leq \mathbb{P}\left(Y_{n}>\varepsilon\right)+\mathbb{P}\left(X_{n}<\varepsilon\right)
\end{aligned}
$$

Denote by X a uniform random variable on $[0,1]$. But $\mathbb{P}\left(Y_{n}>\varepsilon\right) \rightarrow$ o because $Y_{n} \rightarrow o$ in probability, and by Portemanteau's theorem $\limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<\varepsilon\right) \leq \mathbb{P}(X<\varepsilon)=\varepsilon$ because $X_{n} \rightarrow X$ in distribution
and $\mathbb{P}(X=\varepsilon)=o$. We conclude that

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(X_{n}<Y_{n}\right) \leq \varepsilon
$$

which entails the desired result.

3 More involved exercise (optional, will not be covered in the exercise class)

Exercise 6. A stick of length 1 is broken at n points chosen uniformly and independently at random. Let L_{n} be the length of the longest of the $n+1$ pieces obtained. How does L_{n} behave when $n \rightarrow \infty$?

The aim of this exercise is to show that $(n+1) L_{n}-\ln (n+1)$ converges in distribution to a real-valued random variable whose cdf is $x \mapsto e^{e^{-x}}$ on \mathbb{R} (called a Gumbel distribution).

Part 1. To model the problem, let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. uniform random variables on [0,1] representing the locations where the stick is broken.
(1) Show that $\mathbb{P}\left(\exists i, j \in\{1,2, \ldots, n\}: i \neq j\right.$ and $\left.U_{i}=U_{j}\right)=0$.
(2) Show that there exists a random permutation σ such that $\mathbb{P}\left(U_{\sigma(1)}<\cdots<U_{\sigma(n)}\right)=1$

Thus if $\left(\Delta_{1}, \ldots, \Delta_{n+1}\right)$ denote the lenghts of the pieces, we have $\Delta_{i}=U_{\sigma_{i}}-U_{\sigma_{i-1}}$ for $1 \leq i \leq n+1$ (with the convention $U_{\sigma_{n+1}}=1$ and $U_{\sigma_{\mathrm{o}}}=0$).
(3) Show that $\left(U_{\sigma(1)}, \ldots, U_{\sigma(n)}\right)$ has density

$$
n!\mathbb{1}_{\left\{0 \leq x_{1}<\ldots<x_{n} \leq 1\right\}} d x_{1} \ldots d x_{n} .
$$

Part 2. Let $\left(X_{i}\right)_{1 \leq i \leq n+1}$ be exponential i.i.d. random variables with parameter 1 . For $1 \leq i \leq n+1$, set

$$
S_{i}=X_{1}+\cdots+X_{i}, \quad Y_{i}=\frac{X_{i}}{S_{n+1}}
$$

(4) Determine the joint law of $\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)$ and deduce that of $\left(Y_{1}, \ldots, Y_{n}\right)$.
(5) Show that $\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ and $\left(Y_{1}, \ldots, Y_{n}\right)$ have the same distribution. Deduce that max $\left(Y_{1}, \ldots, Y_{n+1}\right)$ has the same law as L_{n}.
(6) Show that for $x \in \mathbb{R},(x+\ln (n+1))\left(\frac{S_{n+1}}{n+1}-1\right)$ converges in probability to o.
(7) Deduce the desired result.

Solution:

(1) We have

$$
\mathbb{P}\left(\exists i, j \in\{1,2, \ldots, n\}: i \neq j \text { et } U_{i}=U_{j}\right) \leq \sum_{i, j \in\{1,2, \ldots,, n\}, i \neq j} \mathbb{P}\left(U_{i}=U_{j}\right)
$$

But using the transfer theorem

$$
\begin{aligned}
\mathbb{P}\left(U_{i}=U_{j}\right) & =\mathbb{E}\left[\mathbb{1}_{U_{i}=U_{j}}\right] \\
& =\int_{[0,1]^{n}} d x_{1} d x_{2} \cdots d x_{n} \mathbb{1}_{x_{i}=x_{j}} \\
& =\int_{[0,1]^{2}} d x d y \mathbb{1}_{x=y} \\
& =\int_{[0,1]} d x \int_{x}^{x} d y \\
& =\mathrm{o},
\end{aligned}
$$

and the result follows.
(2) Let A be the event $\left\{\forall i, j \in\{1,2, \ldots, n\}\right.$: we have $U_{i} \neq U_{j}$ if $\left.i \neq j\right\}$, so that $\mathbb{P}(A)=1$ by (1). On event A (i.e. if $\omega \in A$), the numbers U_{1}, \ldots, U_{n} can be arranged in (strictly) increasing order. We can therefore define σ so that $U_{\sigma(1)}<\cdots<U_{\sigma(n)}$ when $\omega \in A$. If $\omega \neq A$, we define σ to be equal to the identity, so that σ is well defined on the whole set Ω. Since $\mathbb{P}\left(A^{c}\right)=0$, we have

$$
\mathbb{P}\left(U_{\sigma(1)}<\cdots<U_{\sigma(n)}\right)=\mathbb{P}\left(U_{\sigma(1)}<\cdots<U_{\sigma(n)} \cap A\right)=\mathbb{P}(A)=1
$$

because by construction the events $\left\{U_{\sigma(1)}<\cdots<U_{\sigma(n)}\right\} \cap A$ and A are equal.
Remark. σ depends on ω, but as usual in probability theory, this dependence is not explicitly written down. Another tricky point is that we need to define σ on the whole domain Ω, since a random variable is by definition an application defined on Ω. That's why we had to define σ on A on the one hand, and on the complementary of A on the other.

Now let τ be a fixed permutation of $\{1,2, \ldots, n\}$. Then by the transfer theorem

$$
\mathbb{P}\left(U_{\tau(1)}<\cdots<U_{\tau(n)}\right)=\int_{[0,1]^{n}} d x_{1} \cdots d x_{n} \mathbb{1}_{x_{\tau(1)}<x_{\tau(2)}<\cdots<x_{\tau(n)}}=\int_{[0,1]^{n}} d x_{1} \cdots d x_{n} \mathbb{1}_{x_{1}<x_{2}<\cdots<x_{n}}
$$

by the change of variables $x_{i}^{\prime}=x_{\tau(i)}$. The last quantity is $\mathbb{P}\left(U_{1}<\cdots<U_{n}\right)$ and thus, the probability

$$
\mathbb{P}(\sigma=\tau)=\mathbb{P}\left(U_{\tau(1)}<\cdots<U_{\tau(n)}\right)
$$

does not depend on the permutation τ. The random permutation σ therefore follows the uniform law on permutations of $\{1,2, \ldots, n\}$.
(3) Let $f:[0,1]^{n} \rightarrow \mathbb{R}_{+}$be measurable. Denote by \mathcal{S}_{n} the set of all permuations of $\{1,2, \ldots, n\}$. As in
the computations of (2), write

$$
\begin{aligned}
\mathbb{E}\left[f\left(U_{\sigma(1)}, \ldots, U_{\sigma(n)}\right)\right] & =\sum_{\tau \in \mathcal{S}_{n}} \mathbb{E}\left[f\left(U_{\sigma(1)}, \ldots, U_{\sigma(n)}\right) \mathbb{1}_{\sigma=\tau}\right] \\
& =\sum_{\tau \in \mathcal{S}_{n}} \mathbb{E}\left[f\left(U_{\tau(1)}, \ldots, U_{\tau(n)}\right) \mathbb{1}_{U_{\tau(1)}<\cdots<U_{\tau(n)}}\right] \\
& =\sum_{\tau \in \mathcal{S}_{n}} \int_{[0,1]^{n}} d x_{1} d x_{2} \cdots d x_{n} \mathbb{1}_{x_{\tau(1)}<x_{\tau(2)}<\cdots<x_{\tau(n)}} f\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right. \\
& =\sum_{\tau \in \mathcal{S}_{n}} \int_{[0,1]^{n}} d x_{1} d x_{2} \cdots d x_{n} \mathbb{1}_{x_{1}<x_{2}<\cdots<x_{n}} f\left(x_{1}, \ldots, x_{n}\right) \\
& =n!\int_{[0,1]^{n}} d x_{1} d x_{2} \cdots d x_{n} \mathbb{1}_{x_{1}<x_{2}<\cdots<x_{n}} f\left(x_{1}, \ldots, x_{n}\right),
\end{aligned}
$$

which gives the desired result (we can change $<$ into \leq by (1)).
(4) We start by determining the joint distribution $\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)$ using the dummy function method. Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a continuous bounded function. According to the transfer theorem

$$
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)\right]=\int_{\mathrm{lo}, \infty[n+1} f\left(x_{1}, x_{2}, \ldots, x_{1}+\cdots+x_{n+1}\right) e^{-\left(x_{1}+\cdots+x_{n+1}\right)} d x_{1} \cdots d_{x_{n+1}}
$$

By making the change of variable $u_{1}=x_{1}, \ldots, u_{n}=x_{n}, u_{n+1}=x_{1}+\cdots+x_{n}+1$ of Jacobian 1 , we obtain

$$
\mathbb{E}\left[f\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)\right]=\int_{\mathrm{j}, \infty\left[{ }^{[n+1}\right.} f\left(u_{1}, u_{2}, \ldots, u_{n+1}\right) e^{-u_{n+1}} \mathbb{1}_{u_{n+1} \geq u_{1}+\cdots+u_{n}} d u_{1} \cdots d u_{n+1}
$$

which determines the joint distribution $\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)$.
We now determine the joint distribution $\left(Y_{1}, \ldots, Y_{n}, S_{n+1}\right)$. Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a continuous bounded function. According to the transfer theorem applied to $\left(X_{1}, \ldots, X_{n}, S_{n+1}\right)$:

$$
\mathbb{E}\left[f\left(Y_{1}, \ldots, Y_{n}, S_{n+1}\right)\right]=\int_{\mathrm{l}_{0}, \infty\left[\left[^{n+1}\right.\right.} f\left(\frac{x_{1}}{x_{n+1}}, \ldots \frac{x_{n}}{x_{n+1}}, x_{n+1}\right) \mathbb{1}_{x_{n+1} \geq x_{1}+\cdots+x_{n}} e^{-x_{n+1}} d x_{1} \cdots d_{x_{n+1}}
$$

By making the change of variables

$$
u_{1}=\frac{x_{1}}{x_{n+1}}, u_{2}=\frac{x_{2}}{x_{n+1}}, \ldots, u_{n}=\frac{x_{n}}{x_{n+1}}, u_{n+1}=x_{n+1}
$$

avec $\mathrm{o} \leq u_{1}+\cdots+u_{n} \leq 1$ et $x_{i}=u_{i} u_{n+1}$, with Jacobian u_{n+1}^{n} we get

$$
\mathbb{E}\left[f\left(Y_{1}, \ldots, Y_{n}, S_{n+1}\right)\right]=\int_{\mathrm{do}, \infty\left[{ }^{n+1}\right.} f\left(u_{1}, u_{2}, \ldots, u_{n+1}\right) u_{n+1}^{n} e^{-u_{n+1}} \mathbb{1}_{u_{1}+\cdots+u_{n}<1} d u_{1} \cdots d u_{n+1}
$$

We deduce that for any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuous bounded we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(Y_{1}, \ldots, Y_{n}\right)\right]=n!\int_{] \mathrm{o}, \infty\left[{ }^{n}\right.} f\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mathbb{1}_{u_{1}+\cdots+u_{n}<1} d u_{1} \cdots d u_{n} \tag{1}
\end{equation*}
$$

which determines the law of $\left(Y_{1}, \ldots, Y_{n}\right)$.
(5) Recall that $\Delta_{1}=U_{\sigma(1)}$ and $\Delta_{i}=Z_{\sigma(i)}-Z_{\sigma(i-1)}$ for $2 \leq i \leq n$. By a change of variable, we deduce that

$$
\mathbb{E}\left[f\left(\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}\right)\right]=n!\int_{] \mathrm{o}, \infty\left[^{n}\right.} f\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mathbb{1}_{u_{1}+\cdots+u_{n}<1} d u_{1} \cdots d u_{n}
$$

Given (1), we deduce that $\left(Y_{1}, \ldots, Y_{n}\right)$ and $\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ have the same distribution. Since $Y_{n+1}=$ $1-Y_{1}-\cdots-Y_{n}$ and $\Delta_{n+1}=1-\Delta_{1}-\cdots-\Delta_{n}$, we conclude that $\left(Y_{1}, \ldots, Y_{n+1}\right)$ and $\left(\Delta_{1}, \ldots, \Delta_{n+1}\right)$ have the same law. The fact that $\max \left(Y_{1}, \ldots, Y_{n+1}\right)$ has the same law as L_{n} follows immediately from this, since $L_{n}=\max \left(\Delta_{1}, \ldots, \Delta_{n+1}\right)$.
(6) Let $W_{n}=(x+\ln (n+1))\left(\frac{S_{n+1}}{n+1}-1\right)$. We have $\mathbb{E}[W]=\mathrm{o}$ and $\operatorname{Var}(W) \sim \frac{\ln (n)^{2}}{n} \rightarrow \mathrm{o}$. From the BienayméChebyshev inequality, we deduce that $W_{n} \rightarrow o$ in probability.
(7) Let $Z_{n}=\max \left(X_{1}, \ldots, X_{n+1}\right)-\log (n+1)$. From question (5), we have

$$
\begin{aligned}
\mathbb{P}\left((n+1) L_{n}-\ln (n+1) \leq x\right) & =\mathbb{P}\left((n+1) \max \left(Y_{1}, \ldots, Y_{n+1}\right)-\ln (n+1) \leq x\right) \\
& =\mathbb{P}\left((n+1) \frac{\max \left(X_{1}, \ldots, X_{n+1}\right)}{S_{n+1}}-\ln (n+1) \leq x\right) \\
& =\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n+1}\right)-\ln (n+1) \frac{S_{n+1}}{n+1} \leq x \frac{S_{n+1}}{n+1}\right) \\
& =\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n+1}\right)-\ln (n+1) \leq x+(x+\ln (n+1))\left(\frac{S_{n+1}}{n+1}-1\right)\right) \\
& =\mathbb{P}\left(Z_{n}-W_{n} \leq x\right)
\end{aligned}
$$

Now a little calculation shows that $\mathbb{P}\left(\max \left(X_{1}, \ldots, X_{n+1}\right)-\log (n+1) \leq x\right) \rightarrow e^{e^{-x}}$ for all $x \in \mathbb{R}$. So Z_{n} converges to \mathcal{G}, where \mathcal{G} is the Gumbel distribution function $x \mapsto e^{e^{-x}}$. Now $W_{n} \rightarrow$ o in probability, so $Z_{n}+W_{n}$ converges in law to \mathcal{G} according to Slutsky's lemma. So $\mathbb{P}\left(Z_{n}+W_{n} \leq x\right) \rightarrow$ $e^{e^{-x}}$. We conclude that for all $x \in \mathbb{R}$ we have

$$
\mathbb{P}\left((n+1) L_{n}-\ln (n+1) \leq x\right) \quad \underset{n \rightarrow \infty}{\longrightarrow} e^{e^{-x}}
$$

which was the desired result.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 7. Let $n \geq 1$ be an integer. An urn contains n white balls and n colored balls. The balls are drawn successively and without replacement until there are only balls of one color left in the urn. As $n \rightarrow \infty$,
what is the behavior of the number of remaining balls?

Solution:

Let H_{n} be the random variable equal to the number of remaining balls. We show that $\left(H_{n}\right)$ converges in distribution to a $G(1 / 2)$ distribution, that is for every $k \geq 1$

$$
\begin{equation*}
\mathbb{P}\left(H_{n}=k\right) \quad \underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{2^{k}} \tag{2}
\end{equation*}
$$

Let $k \in\{1,2, \ldots, n\}$. There are k white balls left in the urn at the end if, and only if, the $(2 n-k)^{\text {th }}$ draw results in a colored ball, and all $(n-1)$ colored balls have already been drawn in the first $(2 n-k-1)$ draws. There are therefore $\binom{2 n-k-1}{n-1}$ such configurations. By symmetry, the probability of k white balls remaining is the same as the probability of k colored balls remaining. Thus,

$$
\mathbb{P}\left(H_{n}=k\right)=2 \frac{\binom{2 n-k-1}{n-1}}{\binom{2 n}{n}} .
$$

According to Stirling's formula,

$$
\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}}, \quad\binom{2 n-k-1}{n-1} \sim \frac{1}{2^{k+1}} \frac{4^{n}}{\sqrt{\pi n}}
$$

and (2) follows.

