
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 13: characteristic functions, central limit theorem

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 18/12/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1.

(1) Let (Xn)n≥1 be a sequence of real-valued random variables such that

√
n(Xn − a)

(d)
−→
n→∞

N (0,σ2)

with a ∈R and σ > 0.

(a) Show that Xn→ a in probability.

(b) Let u : R → R be a function such that limx→au(x) = 0. Show that
√
n(Xn − a)u(Xn) → 0 in

probability.

Hint. First show that u(Xn)→ 0 in probability using the subsequence Lemma.

(c) Let g : R→R be a function such that it is differentiable at a with g ′(a) , 0. Show that

√
n(g(Xn)− g(a))

(d)
−→
n→∞

N (0, g ′(a)2 · σ2).

Hint. Using Taylor’s expansion, write g(x) = g(a) + (x − a)g ′(a) + (x − a)u(x) with u a function
having limit 0 at a.

(2) Fix p ∈ (0,1] and for n ≥ 1 let Xn be a Bin(n,p) random variable. Show that

√
n
(
ln

(Xn

n

)
− ln(p)

)
(d)
−→
n→∞

N
(
0,
1− p
p

)
.
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2 Training exercises

Exercise 2.

(1) Compute the characteristic function of an exponential random variable of parameter λ.

(2) Let (Xi)1≤i≤n be independent random variables such that Xi follows a Poisson(λi) distribution for
every 1 ≤ i ≤ n. Show that X1 + · · ·+Xn follows a Poisson(λ1 +λ2 + · · ·+λn) random variable.

(3) Find the limit of e−n
∑n

k=0
nk

k! as n→∞.

Hint. Use the central limit theorem.

Exercise 3. Let (Xk)k≥1 be a sequence of i.i.d. standandN (0,1) random variables. Set

Yn =
1
n

n∑
k=1

√
kXk .

Study the convergence in distribution of Yn.

Exercise 4. Let (Xn)n≥1 be a sequence of i.i.d. centered random variables with E [X21 ] ∈ (0,∞). Show that
the sequence given by

Yn =
∑n

k=1Xk

1+
(∑n

k=1X
2
k

)1/2
converges in distribution as n→∞ and identify its limit.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let (Xn)n≥1 be a sequence of i.i.d. real-valued random varirables. Assume that E [X21 ] < ∞.
Set m = E [X1], σ

2 = Var(X1) and Zn = 1√
n

∑n
k=1 (Xk −m).

(1) Recall the convergence in distribution of the sequence (Zn)n≥1.

(2) Show that (Z2n −Zn)n≥1 converges in distribution and identity the limiting law.

Hint. Write Z2n −Zn = aZn + bZ ′n for a,b ∈ R chosen in such a way that Zn and Z ′n are independent
and have the same law.

(3) Deduce that if σ2 > 0, then the sequence (Zn)n≥1 does not converge in probability.

Remark. This shows that the convergence of the central limit theorem does not hold in probability.

Exercise 6. (Riemann-Lebesgue Lemma) Let X be a real-valued random variable having density p.

(1) Show that for every ε > 0 there exists a simple function g of the form
∑

i ci1Ai
, where the Ai are open

intervals of R, such that
∫
R
|p(x)− g(x)|dx < ε.
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(2) Show that the characteristic function ϕ of X satisfies

lim
t→±∞

ϕ(t) = 0.

Exercise 7. Fix λ > 1 and let (Xt)t≥0 be a family of random variables such that for every t ≥ 0, Xt follows
a geometric distribution with parameter 1− e−t, that is

P (Xt = k) = e−t(1− e−t)k−1, k ≥ 1.

Let (Un)n≥1 be a sequence of random variables such that λUn − ln(n) converges in probability to − ln(E)
as n→∞, where E is an exponential random variable of parameter 1. Also assume that the two families
(Xt)t≥0 and (Un)n≥1 are independent.

Show that as n → ∞, XUn
/n1/λ converges in distribution to an exponential random variable, whose

parameter is random and is equal to E1/λ.

4 Fun exercise (optional, will not be covered in the exercise class)

You have a box with n red balls and n blue balls. You take out each time a ball at random but, if the ball
was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box
and take out a red ball.

You keep doing it until left only with balls of the same color. What is the behavior of the number of
balls that will be left as n→∞?
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