Week 13: characteristic functions, central limit theorem

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 18/12/2023 17:00 (online) following the instructions on the course website

```
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/
```

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

* * *

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1.

(1) Let $(X_n)_{n\geq 1}$ be a sequence of real-valued random variables such that

$$\sqrt{n}(X_n - a) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(o, \sigma^2)$$

with $a \in \mathbb{R}$ and $\sigma > 0$.

- (a) Show that $X_n \rightarrow a$ in probability.
- (b) Let $u : \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x\to a} u(x) = 0$. Show that $\sqrt{n}(X_n a)u(X_n) \to 0$ in probability.

Hint. First show that $u(X_n) \rightarrow 0$ in probability using the subsequence Lemma.

(c) Let $g : \mathbb{R} \to \mathbb{R}$ be a function such that it is differentiable at *a* with $g'(a) \neq o$. Show that

$$\sqrt{n}(g(X_n) - g(a)) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(o, g'(a)^2 \cdot \sigma^2)$$

Hint. Using Taylor's expansion, write g(x) = g(a) + (x - a)g'(a) + (x - a)u(x) with u a function having limit o at a.

(2) Fix $p \in (0, 1]$ and for $n \ge 1$ let X_n be a Bin(n, p) random variable. Show that

$$\sqrt{n}\left(\ln\left(\frac{X_n}{n}\right) - \ln(p)\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}\left(o, \frac{1-p}{p}\right).$$

2 Training exercises

Exercise 2.

- (1) Compute the characteristic function of an exponential random variable of parameter λ .
- (2) Let $(X_i)_{1 \le i \le n}$ be independent random variables such that X_i follows a Poisson (λ_i) distribution for every $1 \le i \le n$. Show that $X_1 + \dots + X_n$ follows a Poisson $(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ random variable.
- (3) Find the limit of $e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$ as $n \to \infty$.

Hint. Use the central limit theorem.

Exercise 3. Let $(X_k)_{k \ge 1}$ be a sequence of i.i.d. standand $\mathcal{N}(0, 1)$ random variables. Set

$$Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k.$$

Study the convergence in distribution of Y_n .

Exercise 4. Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. centered random variables with $\mathbb{E}[X_1^2] \in (0, \infty)$. Show that the sequence given by

$$Y_n = \frac{\sum_{k=1}^n X_k}{1 + \left(\sum_{k=1}^n X_k^2\right)^{1/2}}$$

converges in distribution as $n \rightarrow \infty$ and identify its limit.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. real-valued random variables. Assume that $\mathbb{E}[X_1^2] < \infty$. Set $m = \mathbb{E}[X_1]$, $\sigma^2 = \operatorname{Var}(X_1)$ and $Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n (X_k - m)$.

- (1) Recall the convergence in distribution of the sequence $(Z_n)_{n\geq 1}$.
- (2) Show that $(Z_{2n} Z_n)_{n \ge 1}$ converges in distribution and identity the limiting law.

Hint. Write $Z_{2n} - Z_n = aZ_n + bZ'_n$ for $a, b \in \mathbb{R}$ chosen in such a way that Z_n and Z'_n are independent and have the same law.

(3) Deduce that if $\sigma^2 > 0$, then the sequence $(Z_n)_{n \ge 1}$ does not converge in probability.

Remark. This shows that the convergence of the central limit theorem does not hold in probability.

Exercise 6. (Riemann-Lebesgue Lemma) Let X be a real-valued random variable having density p.

(1) Show that for every $\varepsilon > 0$ there exists a simple function g of the form $\sum_i c_i \mathbf{1}_{A_i}$, where the A_i are open intervals of \mathbb{R} , such that $\int_{\mathbb{R}} |p(x) - g(x)| dx < \varepsilon$.

(2) Show that the characteristic function φ of *X* satisfies

$$\lim_{t \to \pm \infty} \varphi(t) = 0.$$

Exercise 7. Fix $\lambda > 1$ and let $(X_t)_{t \ge 0}$ be a family of random variables such that for every $t \ge 0$, X_t follows a geometric distribution with parameter $1 - e^{-t}$, that is

$$\mathbb{P}(X_t = k) = e^{-t}(1 - e^{-t})^{k-1}, \qquad k \ge 1.$$

Let $(U_n)_{n\geq 1}$ be a sequence of random variables such that $\lambda U_n - \ln(n)$ converges in probability to $-\ln(\mathcal{E})$ as $n \to \infty$, where \mathcal{E} is an exponential random variable of parameter 1. Also assume that the two families $(X_t)_{t\geq 0}$ and $(U_n)_{n\geq 1}$ are independent.

Show that as $n \to \infty$, $X_{U_n}/n^{1/\lambda}$ converges in distribution to an exponential random variable, whose parameter is random and is equal to $\mathcal{E}^{1/\lambda}$.

4 Fun exercise (optional, will not be covered in the exercise class)

You have a box with *n* red balls and *n* blue balls. You take out each time a ball at random but, if the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a blue ball.

You keep doing it until left only with balls of the same color. What is the behavior of the number of balls that will be left as $n \to \infty$?