Week 13: characteristic functions, central limit theorem

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 18/12/2023 17:00 (online) following the instructions on the course website

```
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/
```

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

* * *

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1.

(1) Let $(X_n)_{n \ge 1}$ be a sequence of real-valued random variables such that

$$\sqrt{n}(X_n - a) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(o, \sigma^2)$$

with $a \in \mathbb{R}$ and $\sigma > 0$.

- (a) Show that $X_n \rightarrow a$ in probability.
- (b) Let $u : \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x\to a} u(x) = 0$. Show that $\sqrt{n}(X_n a)u(X_n) \to 0$ in probability.

Hint. First show that $u(X_n) \rightarrow o$ in probability using the subsequence Lemma.

(c) Let $g : \mathbb{R} \to \mathbb{R}$ be a function such that it is differentiable at *a* with $g'(a) \neq o$. Show that

$$\sqrt{n}(g(X_n) - g(a)) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(o, g'(a)^2 \cdot \sigma^2)$$

Hint. Using Taylor's expansion, write g(x) = g(a) + (x - a)g'(a) + (x - a)u(x) with u a function having limit o at a.

(2) Fix $p \in (0, 1]$ and for $n \ge 1$ let X_n be a Bin(n, p) random variable. Show that

$$\sqrt{n}\left(\ln\left(\frac{X_n}{n}\right) - \ln(p)\right) \xrightarrow[n \to \infty]{(d)} \mathcal{N}\left(o, \frac{1-p}{p}\right).$$

Solution:

(1) (a) Denote by *N* a $\mathcal{N}(o, \sigma^2)$ random variable. Fix $\varepsilon > o$. We have $\mathbb{P}(|X_n - a| \ge \varepsilon) = \mathbb{P}(\sqrt{n}|X_n - a| \ge \varepsilon\sqrt{n})$. We can find M > o such that $\mathbb{P}(|N| \ge M) \le \varepsilon$. Since the cdf of *N* is continuous, we have

$$\mathbb{P}\left(\sqrt{n}|X_n - a| \ge M\right) \xrightarrow[n \to \infty]{} \mathbb{P}\left(|N| \ge M\right) \le \varepsilon.$$

Thus for n sufficiently large

$$\mathbb{P}\left(\sqrt{n}|X_n - a| \ge M\right) \le 2\varepsilon$$

Also, for *n* sufficiently large $\varepsilon \sqrt{n} \ge M$. Thus for *n* sufficiently large:

$$\mathbb{P}\left(\sqrt{n}|X_n-a| \geq \varepsilon \sqrt{n}\right) \leq \mathbb{P}\left(\sqrt{n}|X_n-a| \geq M\right) \leq 2\varepsilon,$$

which gives the result.

(b) We show that u(X_n) → o in probability by showing that for every subsequence φ there exists a subsequence ψ such that u(X_{φ(ψ(n))} → o almost surely. To this end, observe that since X_{φ(n)} converges in probability to *a*, there exists a subsequence ψ such that X_{φ(ψ(n))} converges almost surely to *a*. Since lim_{x→a} u(x) = o, this implies that u(X_{φ(ψ(n))} → o almost surely.

Now, by Slutsky's theorem, $(\sqrt{n}(X_n - a), u(X_n)) \rightarrow (N, o)$ in distribution, so $\sqrt{n}(X_n - a) \cdot u(X_n)$ converges in distribution to $N \cdot o = o$, which is a constant and thus the convergence also holds in probability.

(c) Let *u* be as defined in the hint. Then write

$$\sqrt{n}(g(X_n) - g(a)) = \sqrt{n}(X_n - a)g'(a) + \sqrt{n}(X_n - a)u(X_n).$$

By assumption, $\sqrt{n}(X_n - a)g'(a) \to g'(a)\mathcal{N}(o, \sigma^2)$ in distribution, and $g'(a)\mathcal{N}(o, \sigma^2)$ has the same distribution as $\mathcal{N}(o, g'(a)^2 \cdot \sigma^2)$. By (b), $\sqrt{n}(X_n - a)u(X_n) \to o$ in probability, and the desired result will follow from Slutsky's theorem.

(2) Let $(B_i)_{i\geq 1}$ be a sequence of i.i.d. random variables following a Bernoulli distribution of parameter p. We know that X_n and $B_1 + \cdots + B_n$ have the same law. Since the variance of B_1 is p(1-p), by the central limit theorem we have

$$\frac{X_n - pn}{\sqrt{nn}} \quad \stackrel{(d)}{\longrightarrow} \quad \mathcal{N}(\mathbf{0}, p(\mathbf{1} - p))$$

Equivalently,

$$\sqrt{n}\left(\frac{X_n}{n}-p\right) \xrightarrow[n\to\infty]{(d)} \mathcal{N}(\mathbf{0}, p(\mathbf{1}-p))$$

and the desired result follows from taking $g(x) = \ln(x)$ with $g'(p) = \frac{1}{p}$.

2 Training exercises

Exercise 2.

- (1) Compute the characteristic function of an exponential random variable of parameter λ .
- (2) Let $(X_i)_{1 \le i \le n}$ be independent random variables such that X_i follows a Poisson (λ_i) distribution for every $1 \le i \le n$. Show that $X_1 + \dots + X_n$ follows a Poisson $(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ random variable.
- (3) Find the limit of $e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$ as $n \to \infty$.

Hint. Use the central limit theorem.

Solution:

(1) Let *X* be an exponential random variable of parameter $\lambda > 0$. Using the transfer theorem, we get for $t \in \mathbb{R}$:

$$\mathbb{E}\left[e^{itX}\right] = \int_{0}^{\infty} e^{itx} \lambda e^{-\lambda x} dx = \int_{0}^{\infty} \lambda e^{-(\lambda - it)x} dx = \frac{\lambda}{\lambda - it}.$$

(2) We argue using characteristic functions. We have seen in class that the characteristic function $\phi(t)$ of a Poi(λ) random variable is

$$\phi(t) = \exp(\lambda(e^{it} - 1)).$$

As a consequence, for $t \in \mathbb{R}$:

$$\phi_{X_1+\dots+X_n}(t) = \mathbb{E}\left[e^{itX_1+\dots+itX_n}\right] = \mathbb{E}\left[\prod_{k=1}^n e^{itX_k}\right] = \prod_{k=1}^n \mathbb{E}\left[e^{itX_k}\right] = \prod_{k=1}^n \exp(\lambda_k(e^{it}-1)).$$

where we have used independence for the third equality. This quantity is equal to $\exp((\lambda_1 + \dots + \lambda_n)(e^{it} - 1))$, and we recognize the characteristic function of a $Poisson(\lambda_1 + \lambda_2 + \dots + \lambda_n)$ random variable.

(3) Observe that $e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \mathbb{P}(\operatorname{Poi}(n) \le n)$. Thus by (2),

$$e^{-n}\sum_{k=0}^n \frac{n^k}{k!} = \mathbb{P}(P_1 + \ldots + P_n \le n),$$

where P_1, \ldots, P_n are independent Poisson random variables of parameter 1 independent. And

$$\mathbb{P}(P_1 + \ldots + P_n \le n) = \mathbb{P}\left(\frac{P_1 + \ldots + P_n - n}{\sqrt{n}} \le 0\right).$$

Since the variance of a Poisson random variable with parameter λ is equal to λ , by the central limit theorem we have

$$\frac{P_1 + \ldots + P_n - n}{\sqrt{n}} \quad \stackrel{\text{(d)}}{\xrightarrow[n \to \infty]{}} \quad N$$

where N is a standard $\mathcal{N}(0, 1)$ Gaussian random variable. Now the cdf of N is continuous, so

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \mathbb{P}(N \le 0) = \frac{1}{2}$$

Exercise 3. Let $(X_k)_{k\geq 1}$ be a sequence of i.i.d. standard $\mathcal{N}(0, 1)$ random variables. Set

$$Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k.$$

Study the convergence in distribution of Y_n .

Solution:

We use Lévy's theorem. For $t \in \mathbb{R}$, we have

$$\mathbb{E}\left[e^{itY_n}\right] = \mathbb{E}\left[e^{\sum_{k=1}^n \frac{it\sqrt{k}}{n}X_k}\right] = \prod_{k=1}^n e^{-\frac{t^2}{2}\frac{k}{n^2}} = e^{-\frac{t^2}{2}\sum_{k=1}^n \frac{k}{n^2}} \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{4}}.$$

We know that $e^{-\frac{t^2}{4}}$ is the characteristic function of a $\mathcal{N}(0, \frac{1}{2})$ random variable. Thus by Lévy's theorem we conclude that Y_n converges in distribution to $\mathcal{N}(0, \frac{1}{2})$.

Exercise 4. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. centered random variables with $\mathbb{E}[X_1^2] \in (0,\infty)$. Show that the sequence given by

$$Y_n = \frac{\sum_{k=1}^n X_k}{1 + \left(\sum_{k=1}^n X_k^2\right)^{1/2}}$$

converges in distribution as $n \to \infty$ and identify its limit.

Solution:

Denote by σ^2 the variance of X_1 . Observe that

$$\frac{\sum_{k=1}^{n} X_{k}}{1 + \left(\sum_{k=1}^{n} X_{k}^{2}\right)^{1/2}} = \frac{\sum_{k=1}^{n} X_{k}}{\sigma \sqrt{n}} \cdot \frac{\sigma \sqrt{n}}{1 + \left(\sum_{k=1}^{n} X_{k}^{2}\right)^{1/2}} = \frac{\sum_{k=1}^{n} X_{k}}{\sigma \sqrt{n}} \cdot \frac{1}{\frac{1}{\sigma \sqrt{n}} + \left(\frac{\sum_{k=1}^{n} X_{k}^{2}}{\sigma^{2} n}\right)^{1/2}}.$$

Setting

$$U_n = \frac{\sum_{k=1}^n X_k}{\sigma \sqrt{n}}, \qquad V_n = \frac{1}{\frac{1}{\sigma \sqrt{n}} + \left(\frac{\sum_{k=1}^n X_k^2}{\sigma^2 n}\right)^{1/2}},$$

the central limit and the strong law of large numbers respectively yield

$$U_n \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0,1), \quad V_n \xrightarrow[n \to \infty]{a.s.} 1.$$

Thus, by Slutsky's theorem, $(U_n, V_n) \rightarrow (\mathcal{N}(0, 1), 1)$ in distribution, and by continuous mapping this implies $U_n V_n \rightarrow \mathcal{N}(0, 1)$ in distribution.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. real-valued random variables. Assume that $\mathbb{E}[X_1^2] < \infty$. Set $m = \mathbb{E}[X_1]$, $\sigma^2 = \operatorname{Var}(X_1)$ and $Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n (X_k - m)$.

- (1) Recall the convergence in distribution of the sequence $(Z_n)_{n \ge 1}$.
- (2) Show that $(Z_{2n} Z_n)_{n \ge 1}$ converges in distribution and identity the limiting law.

Hint. Write $Z_{2n} - Z_n = aZ_n + bZ'_n$ for $a, b \in \mathbb{R}$ chosen in such a way that Z_n and Z'_n are independent and have the same law.

(3) Deduce that if $\sigma^2 > 0$, then the sequence $(Z_n)_{n \ge 1}$ does not converge in probability.

Remark. This shows that the convergence of the central limit theorem does not hold in probability.

Solution:

- (1) By the central limit theorem, Z_n converges in distribution to σN , where N is a standard Gaussian $\mathcal{N}(0, 1)$ random variable.
- (2) We have

$$Z_{2n} - Z_n = \left(\frac{1}{\sqrt{2}} - 1\right) Z_n + \frac{1}{\sqrt{2}} Z'_n \quad \text{avec} \quad Z'_n = \frac{1}{\sqrt{n}} \sum_{k=n+1}^{2n} (X_k - m).$$

Since Z'_n and Z_n are independent and have the same law, we deduce that

$$\begin{split} \phi_{Z_{2n}-Z_n}(t) &= \phi_{Z_n}\left(\left(\frac{1}{\sqrt{2}}-1\right)u\right) \cdot \phi_{Z_n}\left(\frac{1}{\sqrt{2}}u\right) &\longrightarrow \phi_{\sigma N}\left(\left(\frac{1}{\sqrt{2}}-1\right)u\right) \cdot \phi_{\sigma N}\left(\frac{1}{\sqrt{2}}u\right) \\ &= \exp\left(-\frac{u^2}{2}\sigma^2\left(\left(\frac{1}{\sqrt{2}}-1\right)^2+\frac{1}{2}\right)\right). \end{split}$$

Thus $Z_{2n} - Z_n$ converges in distribution to $\sigma \sqrt{2} \sqrt{1 - \frac{1}{\sqrt{2}}} N$.

(3) Assume that $\sigma^2 > 0$ and argue by contradiction by assuming that Z_n converges in probability to o. Then the sequence $(Z_{2n} - Z_n)$ converges in probability to o (because then $(Z_n, Z_{2n}) \rightarrow (0, 0)$ in probability, and then we apply the continuous mapping f(x, y) = x - y). We conclude using the previous question that $\sigma = 0$, which is a contradiction.

Exercise 6. (Riemann-Lebesgue Lemma) Let X be a real-valued random variable having density p.

- (1) Show that for every $\varepsilon > 0$ there exists a simple function g of the form $\sum_i c_i \mathbf{1}_{A_i}$, where the A_i are open intervals of \mathbb{R} , such that $\int_{\mathbb{R}} |p(x) g(x)| dx < \varepsilon$.
- (2) Show that the characteristic function φ of *X* satisfies

$$\lim_{t \to \pm \infty} \varphi(t) = 0.$$

Solution:

(1) Since $\int_{\mathbb{R}\setminus[-M,M]} p(x) dx \to 0$ as $M \to \infty$, without loss of generality we may work on [-M,M]. There exists a sequence f_n of simple functions such that $0 \le f_n \uparrow p$ on [-M,M]. The convergence is pointwise and thus in L^1 by dominated convergence. Thus it enough to show that for $A \subset [-M,M]$ there exists a finite collection $(I_i)_{1 \le i \le k}$ of open intervals such that

$$\int_{\mathbb{R}} |\mathbb{1}_A(x) - \mathbb{1}_{I_1 \cup I_2 \cup \dots \cup I_k}(x)| dx < \varepsilon.$$
⁽¹⁾

To see this, by a general fact from measure theory, denoting by λ the Lebesgue measure, we can find an open set O such that $A \subset O$ and $\lambda(O \setminus A) \leq \varepsilon/2$ (outer regularity of λ). Since O is open, we can write it is an at most countable union of pairwise disjoint intervals $O = \bigcup_{i \in I} I_i$. We can than find a finite subcollection such that $\lambda(O \setminus \bigcup_{1 \leq i \leq k} I_i) \leq \varepsilon/2$ and (1) follows.

(2) Let $\varepsilon > 0$. Let $g = \sum_i c_i \mathbf{1}_{A_i}$, where the A_i are open intervals of \mathbb{R} , be such that $\int_{\mathbb{R}} |p(x) - g(x)| dx < \varepsilon$. Then, for every $t \in \mathbb{R}$

$$\left|\varphi(t)-\int_{\mathbb{R}}g(x)e^{itx}dx\right|<\varepsilon.$$

We observe that if $A_i = (a, b)$, then

$$\int_{a}^{b} e^{itx} dx = 2e^{it\frac{a+b}{2}} \cdot \frac{\sin(\frac{a-b}{2}t)}{t},$$

which goes to o as $|t| \to \infty$. Then, we can find *M* large enough such that for all *t* such that |t| > M,

$$\left|\int_{\mathbb{R}} g(x)e^{itx}dx\right| = \left|\sum_{i} c_{i} \int_{A_{i}} e^{itx}dx\right| < \varepsilon.$$

Therefore, for |t| > M, $|\varphi(t)| < \varepsilon$, which concludes the proof.

Exercise 7. Fix $\lambda > 1$ and let $(X_t)_{t \ge 0}$ be a family of random variables such that for every $t \ge 0$, X_t follows a geometric distribution with parameter $1 - e^{-t}$, that is

$$\mathbb{P}(X_t = k) = e^{-t}(1 - e^{-t})^{k-1}, \qquad k \ge 1.$$

Let $(U_n)_{n\geq 1}$ be a sequence of random variables such that $\lambda U_n - \ln(n)$ converges in probability to $-\ln(\mathcal{E})$ as $n \to \infty$, where \mathcal{E} is an exponential random variable of parameter 1. Also assume that the two families $(X_t)_{t\geq 0}$ and $(U_n)_{n\geq 1}$ are independent.

Show that as $n \to \infty$, $X_{U_n}/n^{1/\lambda}$ converges in distribution to an exponential random variable, whose parameter is random and is equal to $\mathcal{E}^{1/\lambda}$.

Solution:

We use Lévy's theorem. To this end, we first compute the characteristic function of X_t :

$$\mathbb{E}\left[e^{iuX_t}\right] = \frac{1}{1 - e^t(1 - e^{-iu})}, \qquad u \in \mathbb{R}.$$

By independence of $(X_t)_{t \ge 0}$ and U_n , we thus have

$$\mathbb{E}\left[e^{iuX_{U_n}/n^{1/\lambda}}\right] = \mathbb{E}\left[\frac{1}{1-e^{U_n}(1-e^{-iu/n^{1/\lambda}})}\right].$$

By using a Taylor expansion we get

$$\frac{1}{1 - e^{U_n}(1 - e^{-iu/n^{1/\lambda}})} \xrightarrow[n \to \infty]{} \frac{\mathcal{E}^{1/\lambda}}{\mathcal{E}^{1/\lambda} - iu}$$

But

$$\forall s \ge 0, \quad \forall t \in \mathbb{R}, \qquad \left| \frac{1}{1 - e^s (1 - e^{-it})} \right| \le 1.$$

By dominated convergence we get

$$\mathbb{E}\left[e^{iuX_{U_n}/n^{1/\lambda}}\right] \xrightarrow[n\to\infty]{} \mathbb{E}\left[\frac{\mathcal{E}^{1/\lambda}}{\mathcal{E}^{1/\lambda}-iu}\right]$$

The result follows, because $x/(x - iu) = \mathbb{E}\left[e^{iu \operatorname{Exp}(x)}\right]$, where $\operatorname{Exp}(x)$ is an exponential random variable of parameter *x*.

4 Fun exercise (optional, will not be covered in the exercise class)

You have a box with *n* red balls and *n* blue balls. You take out each time a ball at random but, if the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. What is the behavior of the number of balls that will be left as $n \to \infty$?

Solution:

If R_n denotes the number of balls left, it turns out that

$$\frac{R_n}{n^{3/4}} \quad \stackrel{(d)}{\longrightarrow} \quad \left(\frac{8}{3}\right)^{1/4} \sqrt{|Z|},$$

where Z is a standard $\mathcal{N}(0, 1)$ random variable, see https://pi.math.cornell.edu/~levine/erosion. pdf (it not at all easy to prove!).