
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 13: characteristic functions, central limit theorem

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 18/12/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1.

(1) Let (Xn)n≥1 be a sequence of real-valued random variables such that

√
n(Xn − a)

(d)
−→
n→∞

N (0,σ2)

with a ∈R and σ > 0.

(a) Show that Xn→ a in probability.

(b) Let u : R → R be a function such that limx→au(x) = 0. Show that
√
n(Xn − a)u(Xn) → 0 in

probability.

Hint. First show that u(Xn)→ 0 in probability using the subsequence Lemma.

(c) Let g : R→R be a function such that it is differentiable at a with g ′(a) , 0. Show that

√
n(g(Xn)− g(a))

(d)
−→
n→∞

N (0, g ′(a)2 · σ2).

Hint. Using Taylor’s expansion, write g(x) = g(a) + (x − a)g ′(a) + (x − a)u(x) with u a function
having limit 0 at a.

(2) Fix p ∈ (0,1] and for n ≥ 1 let Xn be a Bin(n,p) random variable. Show that

√
n
(
ln

(Xn
n

)
− ln(p)

)
(d)
−→
n→∞

N
(
0,
1− p
p

)
.
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Solution:

(1) (a) Denote byN aN (0,σ2) random variable. Fix ε > 0. We have P (|Xn − a| ≥ ε) = P

(√
n|Xn − a| ≥ ε

√
n
)
.

We can find M > 0 such that P (|N | ≥M) ≤ ε. Since the cdf of N is continuous, we have

P

(√
n|Xn − a| ≥M

)
−→
n→∞

P (|N | ≥M) ≤ ε.

Thus for n sufficiently large
P

(√
n|Xn − a| ≥M

)
≤ 2ε.

Also, for n sufficiently large ε
√
n ≥M. Thus for n sufficiently large:

P

(√
n|Xn − a| ≥ ε

√
n
)
≤ P

(√
n|Xn − a| ≥M

)
≤ 2ε,

which gives the result.

(b) We show that u(Xn) → 0 in probability by showing that for every subsequence φ there
exists a subsequence ψ such that u(Xφ(ψ(n)) → 0 almost surely. To this end, observe that
since Xφ(n) converges in probability to a, there exists a subsequence ψ such that Xφ(ψ(n))

converges almost surely to a. Since limx→au(x) = 0, this implies that u(Xφ(ψ(n))→ 0 almost
surely.

Now, by Slutsky’s theorem, (
√
n(Xn − a),u(Xn))→ (N,0) in distribution, so

√
n(Xn − a) ·u(Xn)

converges in distribution to N · 0 = 0, which is a constant and thus the convergence also
holds in probability.

(c) Let u be as defined in the hint. Then write

√
n(g(Xn)− g(a)) =

√
n(Xn − a)g ′(a) +

√
n(Xn − a)u(Xn).

By assumption,
√
n(Xn − a)g ′(a) → g ′(a)N (0,σ2) in distribution, and g ′(a)N (0,σ2) has the

same distribution as N (0, g ′(a)2 · σ2). By (b),
√
n(Xn − a)u(Xn)→ 0 in probability, and the

desired result will follow from Slutsky’s theorem.

(2) Let (Bi)i≥1 be a sequence of i.i.d. random variables following a Bernoulli distribution of param-
eter p. We know that Xn and B1 + · · ·+Bn have the same law. Since the variance of B1 is p(1− p),
by the central limit theorem we have

Xn − pn√
nn

(d)
−→
n→∞

N (0,p(1− p)).
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Equivalently,
√
n
(Xn
n
− p

)
(d)
−→
n→∞

N (0,p(1− p))

and the desired result follows from taking g(x) = ln(x) with g ′(p) = 1p .

□

2 Training exercises

Exercise 2.

(1) Compute the characteristic function of an exponential random variable of parameter λ.

(2) Let (Xi)1≤i≤n be independent random variables such that Xi follows a Poisson(λi) distribution for
every 1 ≤ i ≤ n. Show that X1 + · · ·+Xn follows a Poisson(λ1 +λ2 + · · ·+λn) random variable.

(3) Find the limit of e−n
∑n
k=0

nk

k! as n→∞.

Hint. Use the central limit theorem.

Solution:

(1) Let X be an exponential random variable of parameter λ > 0. Using the transfer theorem, we get
for t ∈R:

E

[
eitX

]
=

∫ ∞
0
eitxλe−λxdx =

∫ ∞
0
λe−(λ−it)xdx =

λ
λ− it

.

(2) We argue using characteristic functions. We have seen in class that the characteristic function
φ(t) of a Poi(λ) random variable is

φ(t) = exp(λ(eit − 1)).

As a consequence, for t ∈R:

φX1+···+Xn(t) = E

[
eitX1+···+itXn

]
= E

 n∏
k=1

eitXk

 =
n∏
k=1

E

[
eitXk

]
=

n∏
k=1

exp(λk(e
it − 1)).

where we have used independence for the third equality. This quantity is equal to exp((λ1+ · · ·+
λn)(eit − 1)), and we recognize the characteristic function of a Poisson(λ1 +λ2 + · · ·+λn) random
variable.
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(3) Observe that e−n
∑n
k=0

nk

k! = P (Poi(n) ≤ n). Thus by (2),

e−n
n∑
k=0

nk

k!
= P(P1 + . . .+ Pn ≤ n),

where P1, . . . , Pn are independent Poisson random variables of parameter 1 independent. And

P(P1 + . . .+ Pn ≤ n) = P

(
P1 + . . .+ Pn −n√

n
≤ 0

)
.

Since the variance of a Poisson random variable with parameter λ is equal to λ, by the central
limit theorem we have

P1 + . . .+ Pn −n√
n

(d)
−→
n→∞

N,

where N is a standardN (0,1) Gaussian random variable. Now the cdf of N is continuous, so

lim
n→∞

e−n
n∑
k=0

nk

k!
= P (N ≤ 0) =

1
2
.

□

Exercise 3. Let (Xk)k≥1 be a sequence of i.i.d. standandN (0,1) random variables. Set

Yn =
1
n

n∑
k=1

√
kXk .

Study the convergence in distribution of Yn.

Solution:
We use Lévy’s theorem. For t ∈R, we have

E

[
eitYn

]
= E

[
e
∑n
k=1

it
√
k

n Xk
]

=
n∏
k=1

e−
t2
2

k
n2 = e−

t2
2

∑n
k=1

k
n2 −→

n→∞
e−

t2
4 .

We know that e−
t2
4 is the characteristic function of aN (0, 12 ) random variable. Thus by Lévy’s theorem

we conclude that Yn converges in distribution toN (0, 12 ). □

Exercise 4. Let (Xn)n≥1 be a sequence of i.i.d. centered random variables with E [X21 ] ∈ (0,∞). Show that
the sequence given by

Yn =
∑n
k=1Xk

1+
(∑n

k=1X
2
k

)1/2
converges in distribution as n→∞ and identify its limit.
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Solution:
Denote by σ2 the variance of X1. Observe that∑n

k=1Xk

1+
(∑n

k=1X
2
k

)1/2 =
∑n
k=1Xk
σ
√
n
· σ

√
n

1+
(∑n

k=1X
2
k

)1/2 =
∑n
k=1Xk
σ
√
n
· 1

1
σ
√
n

+
(∑n

k=1X
2
k

σ2n

)1/2 .
Setting

Un =
∑n
k=1Xk
σ
√
n

, Vn =
1

1
σ
√
n

+
(∑n

k=1X
2
k

σ2n

)1/2 ,
the central limit and the strong law of large numbers respectively yield

Un
(d)
−→
n→∞

N (0,1), Vn
a.s.−→
n→∞

1.

Thus, by Slutsky’s theorem, (Un,Vn) → (N (0,1),1) in distribution, and by continuous mapping this
implies UnVn→N (0,1) in distribution. □

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let (Xn)n≥1 be a sequence of i.i.d. real-valued random varirables. Assume that E [X21 ] < ∞.
Set m = E [X1], σ

2 = Var(X1) and Zn = 1√
n

∑n
k=1 (Xk −m).

(1) Recall the convergence in distribution of the sequence (Zn)n≥1.

(2) Show that (Z2n −Zn)n≥1 converges in distribution and identity the limiting law.

Hint. Write Z2n −Zn = aZn + bZ ′n for a,b ∈ R chosen in such a way that Zn and Z ′n are independent
and have the same law.

(3) Deduce that if σ2 > 0, then the sequence (Zn)n≥1 does not converge in probability.

Remark. This shows that the convergence of the central limit theorem does not hold in probability.

Solution:

(1) By the central limit theorem, Zn converges in distribution to σN , whereN is a standard Gaussian
N (0,1) random variable.

(2) We have

Z2n −Zn =
(
1
√
2
− 1

)
Zn +

1
√
2
Z ′n avec Z ′n =

1
√
n

2n∑
k=n+1

(Xk −m).

Since Z ′n and Zn are independent and have the same law, we deduce that
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φZ2n−Zn(t) = φZn

((
1
√
2
− 1

)
u

)
·φZn

(
1
√
2
u

)
−→ φσN

((
1
√
2
− 1

)
u

)
·φσN

(
1
√
2
u

)
= exp

(
−u
2

2
σ2

((
1
√
2
− 1

)2
+
1
2

))
.

Thus Z2n −Zn converges in distribution to σ
√
2
√
1− 1√

2
N .

(3) Assume that σ2 > 0 and argue by contradiction by assuming that Zn converges in probability to
0. Then the sequence (Z2n −Zn) converges in probability to 0 (because then (Zn,Z2n)→ (0,0) in
probability, and then we apply the continuous mapping f (x,y) = x − y). We conclude using the
previous question that σ = 0, which is a contradiction.

□

Exercise 6. (Riemann-Lebesgue Lemma) Let X be a real-valued random variable having density p.

(1) Show that for every ε > 0 there exists a simple function g of the form
∑
i ci1Ai , where the Ai are open

intervals of R, such that
∫
R
|p(x)− g(x)|dx < ε.

(2) Show that the characteristic function ϕ of X satisfies

lim
t→±∞

ϕ(t) = 0.

Solution:

(1) Since
∫
R\[−M,M]p(x)dx → 0 as M → ∞, without loss of generality we may work on [−M,M].

There exists a sequence fn of simple functions such that 0 ≤ fn ↑ p on [−M,M]. The convergence
is pointwise and thus in L1 by dominated convergence. Thus it enough to show that for A ⊂
[−M,M] there exists a finite collection (Ii)1≤i≤k of open intervals such that∫

R

|1A(x)−1I1∪I2∪···∪Ik (x)|dx < ε. (1)

To see this, by a general fact from measure theory, denoting by λ the Lebesgue measure, we can
find an open set O such that A ⊂O and λ(O\A) ≤ ε/2 (outer regularity of λ). Since O is open, we
can write it is an at most countable union of pairwise disjoint intervals O = ∪i∈I Ii . We can than
find a finite subcollection such that λ(O\∪1≤i≤k Ii) ≤ ε/2 and (1) follows.

(2) Let ε > 0. Let g =
∑
i ci1Ai , where the Ai are open intervals of R, be such that

∫
R
|p(x)−g(x)|dx < ε.

Then, for every t ∈R ∣∣∣∣∣ϕ(t)−
∫
R

g(x)eitxdx
∣∣∣∣∣ < ε.
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We observe that if Ai = (a,b), then∫ b

a
eitxdx = 2eit

a+b
2 ·

sin(a−b2 t)
t

,

which goes to 0 as |t| →∞. Then, we can findM large enough such that for all t such that |t| >M,∣∣∣∣∣∫
R

g(x)eitxdx
∣∣∣∣∣ =

∣∣∣∣∣∣∣∑i ci
∫
Ai

eitxdx

∣∣∣∣∣∣∣ < ε.
Therefore, for |t| >M, |ϕ(t)| < ε, which concludes the proof.

□

Exercise 7. Fix λ > 1 and let (Xt)t≥0 be a family of random variables such that for every t ≥ 0, Xt follows
a geometric distribution with parameter 1− e−t, that is

P (Xt = k) = e−t(1− e−t)k−1, k ≥ 1.

Let (Un)n≥1 be a sequence of random variables such that λUn − ln(n) converges in probability to − ln(E)
as n→∞, where E is an exponential random variable of parameter 1. Also assume that the two families
(Xt)t≥0 and (Un)n≥1 are independent.

Show that as n → ∞, XUn/n
1/λ converges in distribution to an exponential random variable, whose

parameter is random and is equal to E1/λ.

Solution:
We use Lévy’s theorem. To this end, we first compute the characteristic function of Xt:

E

[
eiuXt

]
=

1

1− et(1− e−iu)
, u ∈R.

By independence of (Xt)t≥0 and Un, we thus have

E

[
eiuXUn /n

1/λ
]

= E

 1

1− eUn(1− e−iu/n
1/λ

)

 .
By using a Taylor expansion we get

1

1− eUn(1− e−iu/n
1/λ

)
−→
n→∞

E1/λ

E1/λ − iu
.

But

∀s ≥ 0, ∀t ∈R,
∣∣∣∣∣∣ 1

1− es(1− e−it)

∣∣∣∣∣∣ ≤ 1.
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By dominated convergence we get

E

[
eiuXUn /n

1/λ
]
−→
n→∞

E

[
E1/λ

E1/λ − iu

]
.

The result follows, because x/(x− iu) = E

[
eiuExp(x)

]
, where Exp(x) is an exponential random variable of

parameter x. □

4 Fun exercise (optional, will not be covered in the exercise class)

You have a box with n red balls and n blue balls. You take out each time a ball at random but, if the ball
was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box
and take out a red ball.

You keep doing it until left only with balls of the same color. What is the behavior of the number of
balls that will be left as n→∞?

Solution:
If Rn denotes the number of balls left, it turns out that

Rn
n3/4

(d)
−→
n→∞

(
8
3

)1/4√
|Z |,

whereZ is a standardN (0,1) random variable, see https://pi.math.cornell.edu/˜levine/erosion.
pdf (it not at all easy to prove!). □
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