Week 13: characteristic functions, central limit theorem

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 18/12/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1.

(1) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real-valued random variables such that

$$
\sqrt{n}\left(X_{n}-a\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \mathcal{N}\left(\mathrm{o}, \sigma^{2}\right)
$$

with $a \in \mathbb{R}$ and $\sigma>0$.
(a) Show that $X_{n} \rightarrow a$ in probability.
(b) Let $u: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\lim _{x \rightarrow a} u(x)=0$. Show that $\sqrt{n}\left(X_{n}-a\right) u\left(X_{n}\right) \rightarrow 0$ in probability.
Hint. First show that $u\left(X_{n}\right) \rightarrow o$ in probability using the subsequence Lemma.
(c) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that it is differentiable at a with $g^{\prime}(a) \neq 0$. Show that

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(a)\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \mathcal{N}\left(\mathrm{o}, g^{\prime}(a)^{2} \cdot \sigma^{2}\right) .
$$

Hint. Using Taylor's expansion, write $g(x)=g(a)+(x-a) g^{\prime}(a)+(x-a) u(x)$ with u a function having limit o at a.
(2) Fix $p \in(0,1]$ and for $n \geq 1$ let X_{n} be a $\operatorname{Bin}(n, p)$ random variable. Show that

$$
\sqrt{n}\left(\ln \left(\frac{X_{n}}{n}\right)-\ln (p)\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \mathcal{N}\left(\mathrm{o}, \frac{1-p}{p}\right) .
$$

Solution:

(1) (a) Denote by N a $\mathcal{N}\left(o, \sigma^{2}\right)$ random variable. Fix $\varepsilon>$ o. We have $\mathbb{P}\left(\left|X_{n}-a\right| \geq \varepsilon\right)=\mathbb{P}\left(\sqrt{n}\left|X_{n}-a\right| \geq \varepsilon \sqrt{n}\right)$. We can find $M>$ o such that $\mathbb{P}(|N| \geq M) \leq \varepsilon$. Since the cdf of N is continuous, we have

$$
\mathbb{P}\left(\sqrt{n}\left|X_{n}-a\right| \geq M\right) \quad \underset{n \rightarrow \infty}{\longrightarrow} \quad \mathbb{P}(|N| \geq M) \leq \varepsilon
$$

Thus for n sufficiently large

$$
\mathbb{P}\left(\sqrt{n}\left|X_{n}-a\right| \geq M\right) \leq 2 \varepsilon
$$

Also, for n sufficiently large $\varepsilon \sqrt{n} \geq M$. Thus for n sufficiently large:

$$
\mathbb{P}\left(\sqrt{n}\left|X_{n}-a\right| \geq \varepsilon \sqrt{n}\right) \leq \mathbb{P}\left(\sqrt{n}\left|X_{n}-a\right| \geq M\right) \leq 2 \varepsilon
$$

which gives the result.
(b) We show that $u\left(X_{n}\right) \rightarrow$ o in probability by showing that for every subsequence ϕ there exists a subsequence ψ such that $u\left(X_{\phi(\psi(n))} \rightarrow\right.$ o almost surely. To this end, observe that since $X_{\phi(n)}$ converges in probability to a, there exists a subsequence ψ such that $X_{\phi(\psi(n))}$ converges almost surely to a. Since $\lim _{x \rightarrow a} u(x)=0$, this implies that $u\left(X_{\phi(\psi(n))} \rightarrow 0\right.$ almost surely.
Now, by Slutsky's theorem, $\left(\sqrt{n}\left(X_{n}-a\right), u\left(X_{n}\right)\right) \rightarrow(N, o)$ in distribution, so $\sqrt{n}\left(X_{n}-a\right) \cdot u\left(X_{n}\right)$ converges in distribution to $N \cdot o=0$, which is a constant and thus the convergence also holds in probability.
(c) Let u be as defined in the hint. Then write

$$
\sqrt{n}\left(g\left(X_{n}\right)-g(a)\right)=\sqrt{n}\left(X_{n}-a\right) g^{\prime}(a)+\sqrt{n}\left(X_{n}-a\right) u\left(X_{n}\right) .
$$

By assumption, $\sqrt{n}\left(X_{n}-a\right) g^{\prime}(a) \rightarrow g^{\prime}(a) \mathcal{N}\left(\mathrm{o}, \sigma^{2}\right)$ in distribution, and $g^{\prime}(a) \mathcal{N}\left(\mathrm{o}, \sigma^{2}\right)$ has the same distribution as $\mathcal{N}\left(\mathrm{o}, g^{\prime}(a)^{2} \cdot \sigma^{2}\right)$. By (b), $\sqrt{n}\left(X_{n}-a\right) u\left(X_{n}\right) \rightarrow \mathrm{o}$ in probability, and the desired result will follow from Slutsky's theorem.
(2) Let $\left(B_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. random variables following a Bernoulli distribution of parameter p. We know that X_{n} and $B_{1}+\cdots+B_{n}$ have the same law. Since the variance of B_{1} is $p(1-p)$, by the central limit theorem we have

$$
\frac{X_{n}-p n}{\sqrt{n} n} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \mathcal{N}(\mathrm{o}, p(1-p))
$$

Equivalently,

$$
\sqrt{n}\left(\frac{X_{n}}{n}-p\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \mathcal{N}(\mathrm{o}, p(1-p))
$$

and the desired result follows from taking $g(x)=\ln (x)$ with $g^{\prime}(p)=\frac{1}{p}$.

2 Training exercises

Exercise 2.

(1) Compute the characteristic function of an exponential random variable of parameter λ.
(2) Let $\left(X_{i}\right)_{1 \leq i \leq n}$ be independent random variables such that X_{i} follows a Poisson $\left(\lambda_{i}\right)$ distribution for every $1 \leq i \leq n$. Show that $X_{1}+\cdots+X_{n}$ follows a Poisson $\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right)$ random variable.
(3) Find the limit of $e^{-n} \sum_{k=o}^{n} \frac{n^{k}}{k!}$ as $n \rightarrow \infty$.

Hint. Use the central limit theorem.

Solution:

(1) Let X be an exponential random variable of parameter $\lambda>0$. Using the transfer theorem, we get for $t \in \mathbb{R}$:

$$
\mathbb{E}\left[e^{i t X}\right]=\int_{0}^{\infty} e^{i t x} \lambda e^{-\lambda x} d x=\int_{0}^{\infty} \lambda e^{-(\lambda-i t) x} \mathrm{~d} x=\frac{\lambda}{\lambda-i t}
$$

(2) We argue using characteristic functions. We have seen in class that the characteristic function $\phi(t)$ of a $\operatorname{Poi}(\lambda)$ random variable is

$$
\phi(t)=\exp \left(\lambda\left(e^{i t}-1\right)\right)
$$

As a consequence, for $t \in \mathbb{R}$:

$$
\phi_{X_{1}+\cdots+X_{n}}(t)=\mathbb{E}\left[e^{i t X_{1}+\cdots+i t X_{n}}\right]=\mathbb{E}\left[\prod_{k=1}^{n} e^{i t X_{k}}\right]=\prod_{k=1}^{n} \mathbb{E}\left[e^{i t X_{k}}\right]=\prod_{k=1}^{n} \exp \left(\lambda_{k}\left(e^{i t}-1\right)\right) .
$$

where we have used independence for the third equality. This quantity is equal to $\exp \left(\left(\lambda_{1}+\cdots+\right.\right.$ $\left.\lambda_{n}\right)\left(e^{i t}-1\right)$), and we recognize the characteristic function of a Poisson $\left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}\right)$ random variable.
(3) Observe that $e^{-n} \sum_{k=o}^{n} \frac{n^{k}}{k!}=\mathbb{P}(\operatorname{Poi}(n) \leq n)$. Thus by (2),

$$
e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\mathbb{P}\left(P_{1}+\ldots+P_{n} \leq n\right)
$$

where P_{1}, \ldots, P_{n} are independent Poisson random variables of parameter 1 independent. And

$$
\mathbb{P}\left(P_{1}+\ldots+P_{n} \leq n\right)=\mathbb{P}\left(\frac{P_{1}+\ldots+P_{n}-n}{\sqrt{n}} \leq \mathrm{o}\right)
$$

Since the variance of a Poisson random variable with parameter λ is equal to λ, by the central limit theorem we have

$$
\frac{P_{1}+\ldots+P_{n}-n}{\sqrt{n}} \underset{n \rightarrow \infty}{\xrightarrow{(\mathrm{~d})}} N,
$$

where N is a standard $\mathcal{N}(0,1)$ Gaussian random variable. Now the cdf of N is continuous, so

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\mathbb{P}(N \leq 0)=\frac{1}{2}
$$

Exercise 3. Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. standand $\mathcal{N}(0,1)$ random variables. Set

$$
Y_{n}=\frac{1}{n} \sum_{k=1}^{n} \sqrt{k} X_{k}
$$

Study the convergence in distribution of Y_{n}.

Solution:

We use Lévy's theorem. For $t \in \mathbb{R}$, we have

$$
\mathbb{E}\left[e^{i t Y_{n}}\right]=\mathbb{E}\left[e^{\sum_{k=1}^{n} \frac{i t \sqrt{k}}{n} X_{k}}\right]=\prod_{k=1}^{n} e^{-\frac{t^{2}}{2} \frac{k}{n^{2}}}=e^{-\frac{t^{2}}{2} \sum_{k=1}^{n} \frac{k}{n^{2}}} \underset{n \rightarrow \infty}{\longrightarrow} e^{-\frac{t^{2}}{4}}
$$

We know that $e^{-\frac{t^{2}}{4}}$ is the characteristic function of a $\mathcal{N}\left(0, \frac{1}{2}\right)$ random variable. Thus by Lévy's theorem we conclude that Y_{n} converges in distribution to $\mathcal{N}\left(0, \frac{1}{2}\right)$.

Exercise 4. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. centered random variables with $\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Show that the sequence given by

$$
Y_{n}=\frac{\sum_{k=1}^{n} X_{k}}{1+\left(\sum_{k=1}^{n} X_{k}^{2}\right)^{1 / 2}}
$$

converges in distribution as $n \rightarrow \infty$ and identify its limit.

Solution:

Denote by σ^{2} the variance of X_{1}. Observe that

$$
\frac{\sum_{k=1}^{n} X_{k}}{1+\left(\sum_{k=1}^{n} X_{k}^{2}\right)^{1 / 2}}=\frac{\sum_{k=1}^{n} X_{k}}{\sigma \sqrt{n}} \cdot \frac{\sigma \sqrt{n}}{1+\left(\sum_{k=1}^{n} X_{k}^{2}\right)^{1 / 2}}=\frac{\sum_{k=1}^{n} X_{k}}{\sigma \sqrt{n}} \cdot \frac{1}{\frac{1}{\sigma \sqrt{n}}+\left(\frac{\sum_{k=1}^{n} X_{k}^{2}}{\sigma^{2} n}\right)^{1 / 2}} .
$$

Setting

$$
U_{n}=\frac{\sum_{k=1}^{n} X_{k}}{\sigma \sqrt{n}}, \quad V_{n}=\frac{1}{\frac{1}{\sigma \sqrt{n}}+\left(\frac{\sum_{k=1}^{n} X_{k}^{2}}{\sigma^{2} n}\right)^{1 / 2}},
$$

the central limit and the strong law of large numbers respectively yield

$$
U_{n} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(\mathrm{o}, 1), \quad V_{n} \underset{n \rightarrow \infty}{\text { a.s. }} 1 .
$$

Thus, by Slutsky's theorem, $\left(U_{n}, V_{n}\right) \rightarrow(\mathcal{N}(0,1), 1)$ in distribution, and by continuous mapping this implies $U_{n} V_{n} \rightarrow \mathcal{N}(0,1)$ in distribution.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. real-valued random varirables. Assume that $\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Set $m=\mathbb{E}\left[X_{1}\right], \sigma^{2}=\operatorname{Var}\left(X_{1}\right)$ and $Z_{n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n}\left(X_{k}-m\right)$.
(1) Recall the convergence in distribution of the sequence $\left(Z_{n}\right)_{n \geq 1}$.
(2) Show that $\left(Z_{2 n}-Z_{n}\right)_{n \geq 1}$ converges in distribution and identity the limiting law.

Hint. Write $Z_{2 n}-Z_{n}=a Z_{n}+b Z_{n}^{\prime}$ for $a, b \in \mathbb{R}$ chosen in such a way that Z_{n} and Z_{n}^{\prime} are independent and have the same law.
(3) Deduce that if $\sigma^{2}>0$, then the sequence $\left(Z_{n}\right)_{n \geq 1}$ does not converge in probability.

Remark. This shows that the convergence of the central limit theorem does not hold in probability.

Solution:

(1) By the central limit theorem, Z_{n} converges in distribution to σN, where N is a standard Gaussian $\mathcal{N}(0,1)$ random variable.
(2) We have

$$
Z_{2 n}-Z_{n}=\left(\frac{1}{\sqrt{2}}-1\right) Z_{n}+\frac{1}{\sqrt{2}} Z_{n}^{\prime} \quad \text { avec } \quad Z_{n}^{\prime}=\frac{1}{\sqrt{n}} \sum_{k=n+1}^{2 n}\left(X_{k}-m\right) .
$$

Since Z_{n}^{\prime} and Z_{n} are independent and have the same law, we deduce that

$$
\begin{aligned}
\phi_{Z_{2 n}-Z_{n}}(t)=\phi_{Z_{n}}\left(\left(\frac{1}{\sqrt{2}}-1\right) u\right) \cdot \phi_{Z_{n}}\left(\frac{1}{\sqrt{2}} u\right) & \longrightarrow \phi_{\sigma N}\left(\left(\frac{1}{\sqrt{2}}-1\right) u\right) \cdot \phi_{\sigma N}\left(\frac{1}{\sqrt{2}} u\right) \\
& =\exp \left(-\frac{u^{2}}{2} \sigma^{2}\left(\left(\frac{1}{\sqrt{2}}-1\right)^{2}+\frac{1}{2}\right)\right) .
\end{aligned}
$$

Thus $Z_{2 n}-Z_{n}$ converges in distribution to $\sigma \sqrt{2} \sqrt{1-\frac{1}{\sqrt{2}}} N$.
(3) Assume that $\sigma^{2}>o$ and argue by contradiction by assuming that Z_{n} converges in probability to o. Then the sequence $\left(Z_{2 n}-Z_{n}\right)$ converges in probability to o (because then $\left(Z_{n}, Z_{2 n}\right) \rightarrow(\mathrm{o}, \mathrm{o})$ in probability, and then we apply the continuous mapping $f(x, y)=x-y)$. We conclude using the previous question that $\sigma=0$, which is a contradiction.

Exercise 6. (Riemann-Lebesgue Lemma) Let X be a real-valued random variable having density p.
(1) Show that for every $\varepsilon>0$ there exists a simple function g of the form $\sum_{i} c_{i} 1_{A_{i}}$, where the A_{i} are open intervals of \mathbb{R}, such that $\int_{\mathbb{R}}|p(x)-g(x)| d x<\varepsilon$.
(2) Show that the characteristic function φ of X satisfies

$$
\lim _{t \rightarrow \pm \infty} \varphi(t)=0
$$

Solution:

(1) Since $\left.\int_{\mathbb{R} \backslash[-M, M}\right] p(x) \mathrm{d} x \rightarrow \mathrm{o}$ as $M \rightarrow \infty$, without loss of generality we may work on $[-M, M]$. There exists a sequence f_{n} of simple functions such that $\mathrm{o} \leq f_{n} \uparrow p$ on $[-M, M]$. The convergence is pointwise and thus in L^{1} by dominated convergence. Thus it enough to show that for $A \subset$ $[-M, M]$ there exists a finite collection $\left(I_{i}\right)_{1 \leq i \leq k}$ of open intervals such that

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\mathbb{1}_{A}(x)-\mathbb{1}_{I_{1} \cup I_{2} \cup \cdots \cup I_{k}}(x)\right| \mathrm{d} x<\varepsilon \tag{1}
\end{equation*}
$$

To see this, by a general fact from measure theory, denoting by λ the Lebesgue measure, we can find an open set O such that $A \subset O$ and $\lambda(O \backslash A) \leq \varepsilon / 2$ (outer regularity of λ). Since O is open, we can write it is an at most countable union of pairwise disjoint intervals $O=\cup_{i \in I} I_{i}$. We can than find a finite subcollection such that $\lambda\left(O \backslash \cup_{1 \leq i \leq k} I_{i}\right) \leq \varepsilon / 2$ and (1) follows.
(2) Let $\varepsilon>0$. Let $g=\sum_{i} c_{i} 1_{A_{i}}$, where the A_{i} are open intervals of \mathbb{R}, be such that $\int_{\mathbb{R}}|p(x)-g(x)| d x<\varepsilon$. Then, for every $t \in \mathbb{R}$

$$
\left|\varphi(t)-\int_{\mathbb{R}} g(x) e^{i t x} d x\right|<\varepsilon
$$

We observe that if $A_{i}=(a, b)$, then

$$
\int_{a}^{b} e^{i t x} d x=2 e^{i t \frac{a+b}{2}} \cdot \frac{\sin \left(\frac{a-b}{2} t\right)}{t}
$$

which goes to o as $|t| \rightarrow \infty$. Then, we can find M large enough such that for all t such that $|t|>M$,

$$
\left|\int_{\mathbb{R}} g(x) e^{i t x} d x\right|=\left|\sum_{i} c_{i} \int_{A_{i}} e^{i t x} d x\right|<\varepsilon
$$

Therefore, for $|t|>M,|\varphi(t)|<\varepsilon$, which concludes the proof.

Exercise 7. Fix $\lambda>1$ and let $\left(X_{t}\right)_{t \geq 0}$ be a family of random variables such that for every $t \geq 0, X_{t}$ follows a geometric distribution with parameter $1-e^{-t}$, that is

$$
\mathbb{P}\left(X_{t}=k\right)=e^{-t}\left(1-e^{-t}\right)^{k-1}, \quad k \geq 1
$$

Let $\left(U_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $\lambda U_{n}-\ln (n)$ converges in probability to $-\ln (\mathcal{E})$ as $n \rightarrow \infty$, where \mathcal{E} is an exponential random variable of parameter 1 . Also assume that the two families $\left(X_{t}\right)_{t \geq 0}$ and $\left(U_{n}\right)_{n \geq 1}$ are independent.

Show that as $n \rightarrow \infty, X_{U_{n}} / n^{1 / \lambda}$ converges in distribution to an exponential random variable, whose parameter is random and is equal to $\mathcal{E}^{1 / \lambda}$.

Solution:

We use Lévy's theorem. To this end, we first compute the characteristic function of X_{t} :

$$
\mathbb{E}\left[e^{i u X_{t}}\right]=\frac{1}{1-e^{t}\left(1-e^{-i u}\right)}, \quad u \in \mathbb{R}
$$

By independence of $\left(X_{t}\right)_{t \geq 0}$ and U_{n}, we thus have

$$
\mathbb{E}\left[e^{i u X_{U_{n}} / n^{1 / \lambda}}\right]=\mathbb{E}\left[\frac{1}{1-e^{U_{n}}\left(1-e^{-i u / n^{1 / \lambda}}\right)}\right]
$$

By using a Taylor expansion we get

$$
\frac{1}{1-e^{U_{n}}\left(1-e^{-i u / n^{1 / \lambda}}\right)} \quad \underset{n \rightarrow \infty}{\longrightarrow} \frac{\mathcal{E}^{1 / \lambda}}{\mathcal{E}^{1 / \lambda}-i u}
$$

But

$$
\forall s \geq 0, \quad \forall t \in \mathbb{R}, \quad\left|\frac{1}{1-e^{s}\left(1-e^{-i t}\right)}\right| \leq 1
$$

By dominated convergence we get

$$
\mathbb{E}\left[e^{i u X_{U_{n}} / n^{1 / \lambda}}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\frac{\mathcal{E}^{1 / \lambda}}{\mathcal{E}^{1 / \lambda}-i u}\right]
$$

The result follows, because $x /(x-i u)=\mathbb{E}\left[e^{i u \operatorname{Exp}(x)}\right]$, where $\operatorname{Exp}(x)$ is an exponential random variable of parameter x.

4 Fun exercise (optional, will not be covered in the exercise class)

You have a box with n red balls and n blue balls. You take out each time a ball at random but, if the ball was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. What is the behavior of the number of balls that will be left as $n \rightarrow \infty$?

Solution:

If R_{n} denotes the number of balls left, it turns out that

$$
\frac{R_{n}}{n^{3 / 4}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{8}{3}\right)^{1 / 4} \sqrt{|Z|},
$$

where Z is a standard $\mathcal{N}(o, 1)$ random variable, see https://pi.math.cornell.edu/~levine/erosion. $p d f$ (it not at all easy to prove!).

