Prof. Igor Kortchemski ETHZ - Probability Theory Autumn 2023

Week 13: chara&teristic funétions, central limit theorem

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 18/12/2023 17:00 (online) following the in§trutions on the course
website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/
Please pay attention to the quality, the precision and the presentation of your mathematical writing.

* % %

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Z?(ercise 1.

(1) Let (X,),>, be a sequence of real-valued random variables such that

VilX,—a) 5 N(o,0?)

n—-oo

withae€ R and o > o.

(a) Show that X,, — a in probability.

(b) Let u : R — R be a funé&ion such that lim,_,,u(x) = o. Show that yn(X,, — a)u(X,,) — o in
probability.
Hint. First show that u(X,,) — o in probability using the subsequence Lemma.

(c) Let g: R — R be a funétion such that it is differentiable at a with ¢’(a) # o. Show that

Vin(g(X,)-gla) —  N(o,g'(a)* o?).

Hint. Using Taylor’s expansion, write g(x) = g(a) + (x — a)¢’(a) + (x — a)u(x) with u a fun&ion
having limit o at a.

(2) Fix p € (o,1] and for n > 1 let X,, be a Bin(n, p) random variable. Show that

\/ﬁ(ln(%)—ln(p)) A N(o,l;p).

n—-oo
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Solution:

(1) (a) Denote by N a N (o,0?) random variable. Fix ¢ > 0. We have IP(|X,, —a| > ¢) = IP(\/ﬁan —al > e

We can find M > o such that P(|N| > M) < ¢. Since the cdf of N is continuous, we have
P(Vn|X, -l ZM) — P(N|>M)<e.
n—-oo

Thus for n sufficiently large
P(VnlX, —al > M) < 2¢.

Also, for n sufficiently large ¢y/n > M. Thus for n sufficiently large:
P(ValX, —al > eVn) <P(VnlX, —al > M) < 2¢,

which gives the result.

We show that u(X,,) — o in probability by showing that for every subsequence ¢ there
exists a subsequence ¥ such that u(Xg(y(n) — o almost surely. To this end, observe that
since X, converges in probability to a, there exists a subsequence 1 such that Xy )
converges almost surely to a. Since lim,_,, u(x) = o, this implies that u(Xgy () — o almost
surely.

Now, by Slutsky’s theorem, (\n(X,, —a), u(X,)) — (N, o) in di§tribution, so vn(X,, —a) - u(X,,)
converges in di§tribution to N - o = o, which is a cons$tant and thus the convergence also

holds in probability.

Let u be as defined in the hint. Then write

\/E(g(Xn) - g(ﬂ)) = \/E(Xn - a)g’(“) + \/E(Xn - a)u(Xn)-

By assumption, Vn(X,, —a)¢g’(a) — ¢’(a)N(o,0?) in diStribution, and ¢’(a)N (o,0°) has the
same diStribution as N (o,¢’(a)* - ). By (b), Vn(X, —a)u(X,) — o in probability, and the

desired result will follow from Slutsky’s theorem.

(2) Let (B;);>, be a sequence of i.i.d. random variables following a Bernoulli di§tribution of param-

eter p. We know that X,, and B, +--- + B, have the same law. Since the variance of B, is p(1 —p),

by the central limit theorem we have

X, —pn ﬂ

N

al
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Equivalently,

n—0o0

ViZ2-p) D Nopt-p)

1

and the desired result follows from taking g(x) = In(x) with ¢’(p) = b

2 Training exercises
f?(ercise 2.

(1) Compute the characteristic fun&tion of an exponential random variable of parameter A.

(2) Let (X;);<i<, be independent random variables such that X; follows a Poisson(};) di§tribution for
every 1 <i <n. Show that X, +---+ X,, follows a Poisson(A; + A, +---+ A,,) random variable.

(3) Find the limitof e™ ) }__ ’7{—],{ as n — oo.

Hint. Use the central limit theorem.

Solution:

(1) Let X be an exponential random variable of parameter A > o. Using the transfer theorem, we get
forteR:

IE[eitX] — J‘OO eiter_/\de — Im /\e—(/\—it)xdx _ < /\lt
o o -

(2) We argue using charalteristic functions. We have seen in class that the charateristic function
¢(t) of a Poi(A) random variable is

(1) = exp(A(e’ —1)).

As a consequence, for t € R:

n

| | eli’Xk

k=1

n

= [ [E[¢™] =] Jexp(rete’ = 1)),
k=1

k=1

Ox 4ix, (1) = ]E[eitX1+...+itXn - E

where we have used independence for the third equality. This quantity is equal to exp((A, +---+
A,)(ef —1)), and we recognize the characteristic funétion of a Poisson(A, + A, +---+ A,,) random
variable.
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(3) Observe thate™) /_ Z—T =P (Poi(n) < n). Thus by (2),

n._k
n

e_”E F:H’(P1+...+Pn3n),
k=o

where P,,..., P, are independent Poisson random variables of parameter 1 independent. And

P +...+P,—
IP(P1+...+PHSn):IP( LT ).

Vn -
Since the variance of a Poisson random variable with parameter A is equal to A, by the central
limit theorem we have

P+...+P,—n ﬂ N,

\/ﬁ n—oo

where N is a §tandard N (o, 1) Gaussian random variable. Now the cdf of N is continuous, so

n—o0

nk
lim e‘”Z% =P(N<o)=-—-.
k=o

E}(ercise 3. Let (Xy)k>; be a sequence of i.i.d. §tandand N (o, 1) random variables. Set
1 n
Y, == kZ\/EXk.
=1

Study the convergence in di$tribution of Y,,.

Solution:
We use Lévy’s theorem. For t € R, we have

. itVk _2k _2yn  k _
IE[eltY,l] -F eZZ:l ZTXk — e 22 =¢ 2 Zk:l ) SN e 4.
| | n—o0

We know that ¢” 7 is the chara@erigtic fun&ion of a A (0, %) random variable. Thus by Lévy’s theorem
we conclude that Y,, converges in distribution to N (o, ). O

Fxercise 4. Let (X,,)n>1 be a sequence of i.i.d. centered random variables with [E[X?] € (0, 00). Show that
the sequence given by

Yo Xk
1/2
1+ (ZZ:1 X,f)

converges in di§tribution as n — co and identify its limit.

Y, =




Prof. Igor Kortchemski ETHZ - Probability Theory Autumn 2023

Solution:

Denote by o the variance of X,. Observe that

Yiea Xk L Xk ovn X Xk 1
1/2 - 1/2 - n 2 1/2.
cE )T O ()T oV (L)
Setting
n
_ X
Up= Zk_l kt V= 111 2\1/2’
o\n . (zk_l Xk)
on a’n
the central limit and the §trong law of large numbers respectively yield
d
U, 9, N(o,1), v, 5 1.
n—-oo n—-oo

Thus, by Slutsky’s theorem, (U,,V,) — (N (0,1),1) in di§tribution, and by continuous mapping this
implies U,,V,, —» N (o, 1) in di$tribution. O

3 More il‘lVOlVGd exercises (optional, will not be covered in the exercise class)

E}(ercise 5. Let (X,),>, be a sequence of i.i.d. real-valued random varirables. Assume that E[X}] < co.
Set m =E[X,], 0> =Var(X,)and Z, = \/Lﬁ Yo, (X —m).

(1) Recall the convergence in distribution of the sequence (Z,,),,>,-

(2) Show that (Z,, —Z,,),>, converges in distribution and identity the limiting law.

Hint. Write Z,,, — Z,, = aZ, + bZ, for a,b € R chosen in such a way that Z, and Z, are independent
and have the same law.

(3) Deduce that if 0 > o, then the sequence (Z,,),,», does not converge in probability.

Remark. This shows that the convergence of the central limit theorem does not hold in probability.

Solution:

(1) By the central limit theorem, Z, converges in di§tribution to 0 N, where N is a §tandard Gaussian

N (o,1) random variable.

(2) We have
2n
; L PEE
Zzn - Zn = (@ — I)Zn + %ZTZ avec Zn = \/ﬁ (Xk m)

k=n+1

Since Z,, and Z,, are independent and have the same law, we deduce that
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¢zzn-zn<t>=¢zn((%—1) )-cpzn(%u) — %N((%l)u)-%i(%u)
)

Thus Z,, — Z,, converges in di§tribution to ov2 _[1 - \/%N :

(3) Assume that 6> > o and argue by contradi¢tion by assuming that Z,, converges in probability to
o. Then the sequence (Z,, — Z,,) converges in probability to o (because then (Z,,Z,,) — (0,0) in
probability, and then we apply the continuous mapping f(x,y) = x —y). We conclude using the
previous question that o = o, which is a contradiction.

‘Exercise 6. (Riemann-Lebesgue Lemma) Let X be a real-valued random variable having density p.

(1) Show that for every ¢ > o there exists a simple function g of the form }_; ¢;1,,, where the A; are open
intervals of IR, such that LR lp(x) —g(x)|dx < €.

(2) Show that the charadteristic function ¢ of X satisfies

lim ¢(t) =o.

t—+o0

Solution:

(1) Since LR\[_M’M]p(x)dx — 0 as M — oo, without loss of generality we may work on [-M, M].
There exists a sequence f,, of simple funtions such that o < f,, T p on [-M, M]. The convergence
is pointwise and thus in L' by dominated convergence. Thus it enough to show that for A C
[-M, M| there exi$ts a finite collection (I;),<;<x of open intervals such that

fmmm oo (Dldx <. (1)

To see this, by a general fact from measure theory, denoting by A the Lebesgue measure, we can
find an open set O such that A € O and A(O\A) < ¢/2 (outer regularity of 1). Since O is open, we
can write it is an at mos$t countable union of pairwise disjoint intervals O = U;c;I;. We can than
find a finite subcollection such that A(O\ U, <;<x I;) < &/2 and (1) follows.

(2) Lete>o. Let g =} ;ci14, where the A; are open intervals of R, be such that f]R lp(x)—g(x)|dx < e.
Then, for every t € R

<E.

()= | stwreas
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We observe that if A; = (a,b), then

b . ra=b
: arb SIN(E2E)
eztxdx:zezt > . 2 ,
a t

which goes to o as [t| — co. Then, we can find M large enough such that for all ¢ such that |t| > M,

(x)e'™*dx| = c'j e*dx| < e.
JI‘Rg IZ ],

Therefore, for |t| > M, |p(t)| < €, which concludes the proof.

O

‘Exercise 7. Fix A > 1 and let (X})>o be a family of random variables such that for every t > o, X; follows
a geometric di§tribution with parameter 1 — e, that is

P(X,=k)=ef(1-¢",  k>1.

Let (U,),>, be a sequence of random variables such that AU, —1In(n) converges in probability to —In(€)
as n — oo, where £ is an exponential random variable of parameter 1. Also assume that the two families
(Xt)t>0 and (U,,),;>, are independent.

Show that as 1 — oo, XUn/nl/ A converges in distribution to an exponential random variable, whose
parameter is random and is equal to £/*.

Solution:

We use Lévy’s theorem. To this end, we fir§t compute the characteristic function of X;:

]E[ei”Xt] = ! —, uelR.
1-e'(1—e'")

By independence of (X;);>, and U,,, we thus have

IE[eiuXUn/nl//\] = ! |-
: 1
1—eUn(1 e/

By using a Taylor expansion we get

1 51//\
— e
s 1/A 1/A .
1_eU‘rl(1_e m/n ) n—o0 (.c/. _lu

But

1
<1.

Vs>o0, VYtelR,

1—eS(1—e't)
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By dominated convergence we get

/A
IE[ei”XUn/”l//\:I N IE 81
n—00 51//\_1'” ’

ezuExp(x

The result follows, because x/(x —iu) = IE[ )], where Exp(x) is an exponential random variable of

parameter x. O

4 Fun exercise (optional, will not be covered in the exercise class)

You have a box with #n red balls and #n blue balls. You take out each time a ball at random but, if the ball
was red, you put it back in the box and take out a blue ball. If the ball was blue, you put it back in the box
and take out a red ball.

You keep doing it until left only with balls of the same color. What is the behavior of the number of
balls that will be left as n — oc0?

Solution:
If R,, denotes the number of balls left, it turns out that

R i 1/4
w1 (§) 2]
Tl3/4 n—oo 3

where Z is a Standard N (o, 1) random variable, see https://pi.math.cornell.edu/~levine/erosion.

pdf (it not at all easy to prove!). O
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