## Week 2: Dynkin Lemma, independent $\sigma$-fields

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 2/10/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

## 1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{F}$ be collections of measurable sets. Assume that $\mathcal{A}$ and $\mathcal{B}$ are stable by finite intersections and that for every $A \in \mathcal{A}, B \in \mathcal{B}: \mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)$. Show that for every $U \in \sigma(\mathcal{A})$ and $V \in \sigma(\mathcal{B})$ we have: $\mathbb{P}(U \cap V)=\mathbb{P}(U) \cdot \mathbb{P}(V)$.

Hint: mimick the proof of the Dynkin Lemma by first introducing

$$
G_{1}=\{U \in \mathcal{F} ; \forall B \in \mathcal{B}, \mathbb{P}(U \cap B)=\mathbb{P}(U) \cdot \mathbb{P}(B)\}
$$

and checking that it is a Dynkin system.

## 2 Training exercises

Exercise 2. (Independences) Alix has four books: a mathematics book, a biology book, a chemistry book and a mathematics-biology-chemistry book. Alix chooses one of the four books at random, with uniform probability. Denote by $M, B$ and $C$ the events "the chosen book has mathematics in it" (respectively biology, chemistry). Are the events $M, B$ and $C$ independent?
Exercise 3. (Cylinders) Sasha models coin tosses as follows. Let $\Omega=\{0,1\}^{\{1,2,3, \ldots\}}$, so that an element of $\Omega$ is a sequence of o and 1 's. For $\omega=\left(\omega_{n}\right)_{n \geq 1} \in \Omega$ we interpret $\omega_{k}$ as the result of the $k$-th throw ( 1 for heads, o for tails). For all $k \geq 1$ and $u_{1}, \ldots, u_{k} \in\{0,1\}$ we define the following set, called a cylinder:

$$
\begin{equation*}
C_{u_{1}, u_{2}, \ldots, u_{k}}=\left\{\left(\omega_{n}\right)_{n \geq 1}: \omega_{1}=u_{1}, \ldots, \omega_{k}=u_{k}\right\} \tag{1}
\end{equation*}
$$

(1) Express (using unions, intersections and complements) the following events in terms of sets of type (1) :
(a) $B_{n}$ : "We get tails for the first time on the $n$th throw"
(b) A : "The result of the second throw is tails".
(c) $C$ : "You never get tails".
(d) $D_{n}$ : "you get tails at least twice in the first $n$ throws".

We assume the existence the existence of a probability $\mathbb{P}$ on $(\Omega, \mathcal{A})$, where $\mathcal{A}$ is the $\sigma$-field generated by sets of the form (1) (cylinder $\sigma$-algebra) such that

$$
\begin{equation*}
\mathbb{P}\left(C_{u_{1}, u_{2}, \ldots, u_{k}}\right)=\frac{1}{2^{k}} . \tag{2}
\end{equation*}
$$

(2) Compute the probabilities of the previous events $A, B_{n}, C, D_{n}$.

Exercise 4. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of independent events on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that

$$
\mathbb{P}\left(\bigcap_{n \geq 1} A_{n}\right)=\prod_{n \geq 1} \mathbb{P}\left(A_{n}\right)
$$

Exercise 5. Let $\left(\mathcal{F}_{n}\right)$ be a sequence of independent $\sigma$-fields and consider a bijection $\sigma:\{1,2,3, \ldots\} \rightarrow$ $\{1,2,3, \ldots\}$. Show that $\left(\mathcal{F}_{\sigma(n)}\right)$ is still a sequence of independent $\sigma$-fields.

## 3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. Fix $\alpha>0, a \in\{0,1\}^{k}$ and let $k_{*}=a_{1}+\cdots+a_{k}$. Now consider a sequence of independent events $\left(A_{n}\right)$ with $\mathbb{P}\left(A_{n}\right)=1 / n^{\alpha}$ for all $n \in \mathbb{N}$ and let

$$
N=\#\left\{n \in \mathbb{N}:\left(1_{A_{n}}, \mathbf{1}_{A_{n+1}}, \ldots, 1_{A_{n+k-1}}\right)=a\right\}
$$

If $\alpha k_{*}>1$ show that $N<\infty$ almost surely. If $\alpha k_{*} \leq 1$ show that $N=\infty$ almost surely.
Exercise 7. (Diophantine approximation and Borel-Cantelli) We denote by $\lambda$ the Lebesgue measure and work on the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$.
(1) Let $\epsilon>0$ be fixed. Show that

$$
\lambda\left(\left\{x \in[0,1]: \exists \text { an infinite number of rationals } p / q \text { with } \operatorname{gcd}(p, q)=1 \text { s.t. }\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2+\epsilon}}\right\}\right)=0
$$

Thus, almost all $x$ are "badly approximated by rationals at order $2+\epsilon$ ".
Indication. For any $q \geq 1$, consider

$$
A_{q}:=[0,1] \cap \bigcup_{p=0}^{q}\left[\frac{p}{q}-\frac{1}{q^{2+\epsilon}}, \frac{p}{q}+\frac{1}{q^{2+\epsilon}}\right] .
$$

(2) Show that

$$
\lambda\left(\left\{x \in[0,1]: \exists \text { an infinite number of rationals } p / q \text { with } \operatorname{gcd}(p, q)=1 \text { s.t. }\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2}}\right\}\right)=1
$$

Thus, almost all $x$ are "well approximated by rationals at order 2 ".

## 4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 8. The names of 100 mathematicians are placed in 100 wooden boxes, one name to a box, and the boxes are lined up on a table in a room. One by one, the mathematicians are led into the room; each may look in at most 50 boxes, but must leave the room exactly as she found it and is permitted no further communication with the others. The mathematicians have a chance to plot their strategy in advance, and they are going to need it, because unless every single mathematician finds her own name all will subsequently lose their funding. Find a strategy for them which has probability of success (mathematics survive) exceeding $30 \%$.

Remark. If each mathematician examines a random set of 50 boxes, their probability of success is $\frac{1}{2^{100}}$ (each mathematician that opens 50 boxes at random among 100 has a probability $\frac{1}{2}$ to find her name), which is very very small.

