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Week 2: Dynkin Lemma, independent σ -fields

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 2/10/2023 17:00 (online) following the instructions on the course website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (Ω,F ,P) be a probability space. Let A,B ⊂ F be collections of measurable sets. Assume
that A and B are stable by finite intersections and that for every A ∈ A,B ∈ B: P (A∩B) = P (A) ·P (B) .
Show that for every U ∈ σ (A) and V ∈ σ (B) we have: P (U ∩V ) = P (U ) ·P (V ) .

Hint: mimick the proof of the Dynkin Lemma by first introducing

G1 = {U ∈ F ; ∀B ∈ B,P (U ∩B) = P (U ) ·P (B)}

and checking that it is a Dynkin system.

2 Training exercises

Exercise 2. (Independences) Alix has four books: a mathematics book, a biology book, a chemistry book
and a mathematics-biology-chemistry book. Alix chooses one of the four books at random, with uniform
probability. Denote by M, B and C the events “the chosen book has mathematics in it” (respectively
biology, chemistry). Are the events M, B and C independent?

Exercise 3. (Cylinders) Sasha models coin tosses as follows. Let Ω = {0,1}{1,2,3,...}, so that an element of
Ω is a sequence of 0 and 1’s. For ω = (ωn)n≥1 ∈ Ω we interpret ωk as the result of the k-th throw (1 for
heads, 0 for tails). For all k ≥ 1 and u1, . . . ,uk ∈ {0,1} we define the following set, called a cylinder:

Cu1,u2,...,uk = {(ωn)n≥1 : ω1 = u1, . . . ,ωk = uk}, (1)

(1) Express (using unions, intersections and complements) the following events in terms of sets of type
(1) :
(a) Bn: ”We get tails for the first time on the nth throw”
(b) A : “The result of the second throw is tails”.
(c) C: ”You never get tails”.
(d) Dn: “you get tails at least twice in the first n throws”.
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We assume the existence the existence of a probability P on (Ω,A), where A is the σ -field generated by
sets of the form (1) (cylinder σ -algebra) such that

P

(
Cu1,u2,...,uk

)
=
1

2k
. (2)

(2) Compute the probabilities of the previous events A,Bn,C,Dn.

Exercise 4. Let (An)n≥1 be a sequence of independent events on a probability space (Ω,A,P). Show that

P

⋂
n≥1

An

 =
∏
n≥1

P(An).

Exercise 5. Let (Fn) be a sequence of independent σ -fields and consider a bijection σ : {1,2,3, . . .} →
{1,2,3, . . .}. Show that (Fσ (n)) is still a sequence of independent σ -fields.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. Fix α > 0, a ∈ {0,1}k and let k∗ = a1 + · · ·+ ak. Now consider a sequence of independent events
(An) with P(An) = 1/nα for all n ∈N and let

N = #{n ∈N : (1An
,1An+1

, . . . ,1An+k−1) = a} .

If αk∗ > 1 show that N <∞ almost surely. If αk∗ ≤ 1 show that N =∞ almost surely.

Exercise 7. (Diophantine approximation and Borel-Cantelli) We denote by λ the Lebesgue measure
and work on the probability space ([0,1],B([0,1]),λ).

(1) Let ϵ > 0 be fixed. Show that

λ

({
x ∈ [0,1] : ∃ an infinite number of rationals p/q with gcd(p,q) = 1 s.t.

∣∣∣∣∣x − p

q

∣∣∣∣∣ ≤ 1
q2+ϵ

})
= 0.

Thus, almost all x are “badly approximated by rationals at order 2+ ϵ”.
Indication. For any q ≥ 1, consider

Aq B [0,1]∩
q⋃

p=0

[
p

q
− 1
q2+ϵ

,
p

q
+
1

q2+ϵ

]
.

(2) Show that

λ

({
x ∈ [0,1] : ∃ an infinite number of rationals p/q with gcd(p,q) = 1 s.t.

∣∣∣∣∣x − p

q

∣∣∣∣∣ ≤ 1q2
})

= 1.

Thus, almost all x are “well approximated by rationals at order 2”.
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4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 8. The names of 100 mathematicians are placed in 100 wooden boxes, one name to a box, and
the boxes are lined up on a table in a room. One by one, the mathematicians are led into the room; each
may look in at most 50 boxes, but must leave the room exactly as she found it and is permitted no further
communication with the others. The mathematicians have a chance to plot their strategy in advance,
and they are going to need it, because unless every single mathematician finds her own name all will
subsequently lose their funding. Find a strategy for them which has probability of success (mathematics
survive) exceeding 30%.

Remark. If each mathematician examines a random set of 50 boxes, their probability of success is 1
2100

(each mathematician that opens 50 boxes at random among 100 has a probability 12 to find her name),
which is very very small.
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