Week 2: Dynkin Lemma, independent σ-fields

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday $2 / 10 / 2023$ 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{F}$ be collections of measurable sets. Assume that \mathcal{A} and \mathcal{B} are stable by finite intersections and that for every $A \in \mathcal{A}, B \in \mathcal{B}: \mathbb{P}(A \cap B)=\mathbb{P}(A) \cdot \mathbb{P}(B)$. Show that for every $U \in \sigma(\mathcal{A})$ and $V \in \sigma(\mathcal{B})$ we have: $\mathbb{P}(U \cap V)=\mathbb{P}(U) \cdot \mathbb{P}(V)$.

Hint: mimick the proof of the Dynkin Lemma by first introducing

$$
G_{1}=\{U \in \mathcal{F} ; \forall B \in \mathcal{B}, \mathbb{P}(U \cap B)=\mathbb{P}(U) \cdot \mathbb{P}(B)\}
$$

Solution:

First step. Introduce

$$
G_{1}=\{U \in \mathcal{F} ; \forall B \in \mathcal{B}, \mathbb{P}(U \cap B)=\mathbb{P}(U) \cdot \mathbb{P}(B)\}
$$

We check that G_{1} is a λ-system containing \mathcal{A}, which is stable by finite intersections. Indeed:
$-\Omega \in G_{1}$ since $\mathbb{P}(\Omega)=1$.

- If $U \in G_{1}$, we check that $U^{c} \in G_{1}$. To this end, take $B \in \mathcal{B}$ and write

$$
\mathbb{P}\left(U^{c} \cap B\right)=\mathbb{P}(B)-\mathbb{P}(U \cap B)=\mathbb{P}(B)-\mathbb{P}(U) \mathbb{P}(B)=\mathbb{P}\left(U^{c}\right) \mathbb{P}(B)
$$

- If $\left(U_{n}\right)_{n \geq 1}$ is a sequence of pairwise disjoint events in G_{1}, we check that $\cup_{n} U_{n} \in G_{1}$. To this end, take $B \in \mathcal{B}$ and write

$$
\mathbb{P}\left(\left(\bigcup_{n \geq 1} U_{n}\right) \cap B\right)=\mathbb{P}\left(\bigcup_{n \geq 1}\left(U_{n} \cap B\right)\right)=\sum_{n \geq 1} \mathbb{P}\left(U_{n} \cap B\right)=\sum_{n \geq 1} \mathbb{P}\left(U_{n}\right) \mathbb{P}(B)=\mathbb{P}\left(\bigcup_{n \geq 1} U_{n}\right) \mathbb{P}(B) .
$$

The second and last equalities comes from the fact that the measure of a union of pairwise disjoint events is the sum of their measures. The third equality comes from the fact that $U_{n} \in G_{1}$. Hence, by Dynkin's Lemma, $\sigma(\mathcal{A})=\lambda(\mathcal{A}) \subset G_{1}$.

Second step. Introduce

$$
G_{2}=\{V \in \mathcal{F} ; \forall U \in \sigma(A), \mathbb{P}(U \cap V)=\mathbb{P}(U) \cdot \mathbb{P}(V)\} .
$$

We similarly check that G_{2} is a λ-system containing \mathcal{B} (by the first step), which is stable by finite intersections. So, by by Dynkin's Lemma, $\sigma(\mathcal{B})=\lambda\left(G_{2}\right) \subset G_{2}$, which completes the proof.

2 Training exercises

Exercise 2. (Independences) Alix has four books: a mathematics book, a biology book, a chemistry book and a mathematics-biology-chemistry book. Alix chooses one of the four books at random, with uniform probability. Denote by M, B and C the events "the chosen book has mathematics in it" (respectively biology, chemistry). Are the events M, B and C independent?

Solution:

To model this problem, consider the probability space $\Omega=\{m, b, c, m b c\}, \mathcal{A}=\mathcal{P}(\Omega)$ and \mathbb{P} the uniform probability on Ω, so that $M=\{m, m b c\}, B=\{b, m b c\}$ and $C=\{c, m b c\}$. Note that $M \cap B=M \cap C=B \cap C=$ $\{m b c\}$. So

$$
\mathbb{P}(M \cap B)=\frac{1}{4}=\mathbb{P}(M) \mathbb{P}(B), \quad \mathbb{P}(M \cap C)=\frac{1}{4}=\mathbb{P}(M) \mathbb{P}(C), \quad \mathbb{P}(B \cap C)=\frac{1}{4}=\mathbb{P}(B) \mathbb{P}(C) .
$$

Thus, the events M, B, C are pairwise independent.
However,

$$
\mathbb{P}(M \cap B \cap C)=\frac{1}{4} \neq \frac{1}{8}=\mathbb{P}(M) \mathbb{P}(B) \mathbb{P}(C),
$$

so events M, B, C are not (mutually) independent.
Exercise 3. (Cylinders) Sasha models coin tosses as follows. Let $\Omega=\{0,1\}^{\{1,2,3, \ldots\}}$, so that an element of Ω is a sequence of o and 1's. For $\omega=\left(\omega_{n}\right)_{n \geq 1} \in \Omega$ we interpret ω_{k} as the result of the k-th throw (1 for heads, o for tails). For all $k \geq 1$ and $u_{1}, \ldots, u_{k} \in\{0,1\}$ we define the following set, called a cylinder:

$$
\begin{equation*}
C_{u_{1}, u_{2}, \ldots, u_{k}}=\left\{\left(\omega_{n}\right)_{n \geq 1}: \omega_{1}=u_{1}, \ldots, \omega_{k}=u_{k}\right\}, \tag{1}
\end{equation*}
$$

(1) Express (using unions, intersections and complements) the following events in terms of sets of type (1):
(a) B_{n} : "We get tails for the first time on the nth throw"
(b) A : "The result of the second throw is tails".
(c) C : "You never get tails".
(d) D_{n} : "you get tails at least twice in the first n throws".

We assume the existence the existence of a probability \mathbb{P} on (Ω, \mathcal{A}), where \mathcal{A} is the σ-field generated by sets of the form (1) (cylinder σ-algebra) such that

$$
\begin{equation*}
\mathbb{P}\left(C_{u_{1}, u_{2}, \ldots, u_{k}}\right)=\frac{1}{2^{k}} . \tag{2}
\end{equation*}
$$

(2) Compute the probabilities of the previous events A, B_{n}, C, D_{n}.

Solution:

(1) We have

$$
B_{n}=\underbrace{C_{1,1, \ldots, 1,0}}_{n-1 \text { times }}, \quad A=C_{1,1} \cup C_{0,1}, \quad C=C_{1} \cap C_{1,1} \cap C_{1,1,1} \cap \cdots
$$

and
$D_{n}=\left(C_{1,1, \ldots, 1} \cup C_{0,1, \ldots, 1} \cup C_{1,0,1, \ldots, 1} \cup \cdots \cup C_{1,1, \ldots, 0}\right)^{c}=C_{1,1, \ldots, 1}{ }^{c} \cap C_{0,1, \ldots, 1}{ }^{c} \cap C_{1,0,1, \ldots, 1}{ }^{c} \cap \cdots \cap C_{1,1, \ldots, 0}{ }^{c}$.
(2) First of all, all these events are in the cylinder σ-field by the first question. We have $\mathbb{P}\left(B_{n}\right)=$ $1 / 2^{n}$ by definition of $\mathbb{P}, \mathbb{P}(A)=\mathbb{P}\left(C_{0,1}\right)+\mathbb{P}\left(C_{1,0}\right)=1 / 4+1 / 4=1 / 2$. To calculate $\mathbb{P}(C)$, enter $C_{n}=C_{1,1, \ldots, 1}$ where o appears n times. Then $C=\cap_{n \geq 0} C_{n}$ and the events C_{n} are decreasing in n, so (decreasing limit property)

$$
\mathbb{P}(C)=\lim _{n \rightarrow \infty} \mathbb{P}\left(C_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

To calculate $\mathbb{P}\left(D_{n}\right)$, given the expression for D_{n}, it's natural to use the complementary event:

$$
\mathbb{P}\left(D_{n}\right)=1-\mathbb{P}\left(D_{n}^{c}\right)=1-\left(\mathbb{P}\left(C_{1,1, \ldots, 1}\right)+\mathbb{P}\left(C_{0,1, \ldots, 1}\right)+\mathbb{P}\left(C_{1,0,1, \ldots, 1}\right)+\cdots \mathbb{P}\left(C_{1,1, \ldots, \mathrm{o}}\right)\right)
$$

which is therefore $1-\frac{n+1}{2^{n}}$.

Exercise 4. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of independent events on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Show that

$$
\mathbb{P}\left(\bigcap_{n \geq 1} A_{n}\right)=\prod_{n \geq 1} \mathbb{P}\left(A_{n}\right)
$$

Solution:

Write

$$
\mathbb{P}\left(\bigcap_{n \geq 1} A_{n}\right)=\lim _{N \rightarrow \infty} \mathbb{P}\left(\bigcap_{n=1}^{N} A_{n}\right)=\lim _{N \rightarrow \infty} \prod_{n=1}^{N} \mathbb{P}\left(A_{n}\right)=\prod_{n \geq 1} \mathbb{P}\left(A_{n}\right) .
$$

The first equality comes from the fact that the sequence of events $\bigcap_{n=1}^{N} A_{n}$ is decreasing in N, the second equality comes from the fact that A_{1}, \ldots, A_{N} are independant, and the last equality comes from the definition of the infinite product.

Exercise 5. Let $\left(\mathcal{F}_{n}\right)$ be a sequence of independent σ-fields and consider a bijection $\sigma:\{1,2,3, \ldots\} \rightarrow$ $\{1,2,3, \ldots\}$. Show that $\left(\mathcal{F}_{\sigma(n)}\right)$ is still a sequence of independent σ-fields.

Solution:

Let us fix $n \geq 1$ and let $\left\{i_{1}, \ldots, i_{k}\right\}$ be an arbitrary subset of $\{1, \ldots, n\}$. Take arbitrary $A_{i_{1}} \in \mathcal{F}_{\sigma\left(i_{1}\right)}, \ldots, A_{i_{k}} \in$ $\mathcal{F}_{\sigma\left(i_{k}\right)}$. Let m the biggest element of $\{\sigma(1), \ldots, \sigma(n)\}$. Since the sequence $\left(\mathcal{F}_{n}\right)$ is independent we know that $\mathcal{F}_{1}, \ldots, \mathcal{F}_{m}$ are independent. In particular, given that $\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right\} \subset\{1, \ldots, m\}$, we have that

$$
\mathbb{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \cdots \mathbb{P}\left(A_{i_{k}}\right) .
$$

which shows the independence of $\mathcal{F}_{\sigma\left(i_{1}\right)}, \ldots, \mathcal{F}_{\sigma\left(i_{k}\right)}$ and therefore the independence of $\left(\mathcal{F}_{\sigma(n)}\right)$.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. Fix $\alpha>0, a \in\{0,1\}^{k}$ and let $k_{*}=a_{1}+\cdots+a_{k}$. Now consider a sequence of independent events $\left(A_{n}\right)$ with $\mathbb{P}\left(A_{n}\right)=1 / n^{\alpha}$ for all $n \in \mathbb{N}$ and let

$$
N=\#\left\{n \in \mathbb{N}:\left(1_{A_{n}}, 1_{A_{n+1}}, \ldots, 1_{A_{n+k-1}}\right)=a\right\} .
$$

If $\alpha k_{*}>1$ show that $N<\infty$ almost surely. If $\alpha k_{*} \leq 1$ show that $N=\infty$ almost surely.

Solution:

Let us define for every $n \in \mathbb{N}$ the event

$$
B_{n}=\left\{\left(1_{A_{n}}, 1_{A_{n+1}}, \ldots, 1_{A_{n+k-1}}\right)=a\right\} .
$$

Notice that by independence of $\left(A_{i}\right)$, we have

$$
\mathbb{P}\left(B_{n}\right)=\mathbb{P}\left(1_{A_{n}}=a_{1}\right) \cdots \mathbb{P}\left(1_{A_{n+k-1}}=a_{k}\right) .
$$

We know that if $a_{i}=1$, then $\mathbb{P}\left(1_{A_{n+i-1}}=a_{i}\right)=\mathbb{P}\left(A_{n+i-1}\right)=1 /(n+i-1)^{\alpha} \leq 1 / n^{\alpha}$. On the other hand, if $a_{i}=$ o we can use the trivial bound $\mathbb{P}\left(1_{A_{n+i-1}}=a_{i}\right) \leq 1$. Therefore $\mathbb{P}\left(B_{n}\right) \leq 1 / n^{\alpha k_{*}}$. Therefore, if we have that $\alpha k_{*}>1$, then $\sum_{n \geq 1} \mathbb{P}\left(B_{n}\right)<\infty$. By the first Borel-Cantelli Lemma, $\left(B_{n}\right)$ occurs only a finite number of times almost surely, and thus $N<\infty$ almost surely.

For the second part of the exercise, let us define for $n \in \mathbb{N}$

$$
B_{n}=\left\{\left(1_{A_{k n+1}}, 1_{A_{k n}}, \ldots, 1_{A_{k(n+1)}}\right)=a\right\} .
$$

By independence of $\left(A_{i}\right)$, we have that $\left(B_{i}\right)$ is a sequence of independent events and similarly as before, for $n>1$ we have $\mathbb{P}\left(B_{n}\right) \geq 1 /(k(n+1))^{\alpha k_{*}}\left(1-1 / 2^{\alpha}\right)^{k-k_{*}}$. The second part of the bound comes from the
fact that for $n>1, k n+1+j \geq 2$ for every $j=0,1, \ldots, k-1$. Hence,

$$
\sum_{n \geq 1} \mathbb{P}\left(B_{n}\right) \geq\left(1-\frac{1}{2^{\alpha}}\right)^{k-k_{*}} \frac{1}{k^{\alpha k_{*}}} \sum_{n>1} \frac{1}{(n+1)^{\alpha k_{*}}}
$$

If $\alpha k_{*} \leq 1$, we have that the series on the right hand side above is divergent, and by the second BorelCantelli Lemma, we conclude that B_{n} happens infinitely often almost surely. Therefore $N=\infty$ almost surely.

Exercise 7. (Diophantine approximation and Borel-Cantelli) We denote by λ the Lebesgue measure and work on the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$.
(1) Let $\epsilon>0$ be fixed. Show that

$$
\lambda\left(\left\{x \in[0,1]: \exists \text { an infinite number of rationals } p / q \text { with } \operatorname{gcd}(p, q)=1 \text { s.t. }\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2+\epsilon}}\right\}\right)=0
$$

Thus, almost all x are "badly approximated by rationals at order $2+\epsilon$ ".
Indication. For any $q \geq 1$, consider

$$
A_{q}:=[0,1] \cap \bigcup_{p=0}^{q}\left[\frac{p}{q}-\frac{1}{q^{2+\epsilon}}, \frac{p}{q}+\frac{1}{q^{2+\epsilon}}\right] .
$$

(2) Show that
$\lambda\left(\left\{x \in[0,1]: \exists\right.\right.$ an infinite number of rationals p / q with $\operatorname{gcd}(p, q)=1$ s.t. $\left.\left.\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2}}\right\}\right)=1$.
Thus, almost all x are "well approximated by rationals at order 2 ".

Solution:

(1) For all $q \geq 1$, we set

$$
A_{q}:=[0,1] \cap \bigcup_{p=0}^{q}\left[\frac{p}{q}-\frac{1}{q^{2+\epsilon}}, \frac{p}{q}+\frac{1}{q^{2+\epsilon}}\right] .
$$

Thus $\lambda\left(A_{q}\right) \leq 2 / q^{1+\epsilon}$. Consequently,

$$
\sum_{q \geq 1} \mathbb{P}\left(A_{q}\right)<+\infty .
$$

By the First Borel-Cantelli lemma, $\mathbb{P}\left(\limsup _{q \rightarrow \infty} A_{q}\right)=0$, so the set $\limsup q_{q \rightarrow \infty} A_{q}$ contains the set of all reel numbers which are well approximated by rationals of order $2+\epsilon$. See http: //en.wikipedia.org/wiki/Thue-Siegel-Roth_theorem
(2) We shall actually show that any irrational number can be approximated by rationals at order 2 . Indeed, the set of irrational numbers has probability 1 , since its complementary is countable and
therefore has probability o for the Lebesgue measure, this concludes.
First, we prove the following result:

Dirichlet's theorem. Let α be a real number. For any integer $N \geq 2$, there exist two integers p and q, with $o<q<N$ such that $|q \alpha-p|<\frac{1}{N}$.
(in this statement, we do not necessarily have $\operatorname{gcd}(p, q)=1$)
To do this, denote by $\{x\}$ the fractional part of x and $\lfloor x\rfloor$ the integer part of x, consider the $N+1$ numbers $0,1,\{\alpha\},\{2 \alpha\}, \ldots,\{(N-1) \alpha\}$ and the N intervals $[0,1 / N],[1 / N, 2 / N], \ldots,[(N-1) / N, 1]$. According to the pigeon-hole principle, there are two of these $N+1$ numbers belonging to the same drawer.

If one of these numbers is 1 and the other $\{m \alpha\}$ with $o \leq m \leq N-1$, then

$$
|m \alpha-(\lfloor m \alpha\rfloor+1)|=|\{m \alpha\}-1|<\frac{1}{N}
$$

We can therefore take $q=m$ and $p=\lfloor m \alpha\rfloor+1$.
Otherwise, we can find $\mathrm{o} \leq \ell<m \leq N-1$ such that $|\{m \alpha\}-\{\ell \alpha\}|<1 / N$. So

$$
|(m-\ell) \alpha-(\lfloor m \alpha\rfloor-\lfloor\ell \alpha\rfloor)|=|(m \alpha-\lfloor m \alpha\rfloor)-(\ell \alpha-\lfloor\ell \alpha\rfloor)|=|\{m \alpha\}-\{\ell \alpha\}|<\frac{1}{N}
$$

and we can take $q=m-\ell$ and $p=\lfloor m \alpha\rfloor-\lfloor\ell \alpha\rfloor($ we have $\mathrm{o}<q<N)$.
In particular, we have

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q N}<\frac{1}{q^{2}}
$$

This result implies that if α is irrational, there is an infinite number of rationals p / q with $\operatorname{gcd}(p, q)=1$ such that $\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}$.
Now assume that α is irrational. According to Dirichlet's theorem, there are infinitely many integers p, q such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q N}<\frac{1}{q^{2}} .
$$

Let's assume for the sake of contradiction that the fractions $\frac{p}{q}$ take a finite number of values in irreducible form. By extraction, there exists a pair (p, q) and sequence $\left(p_{n}, q_{n}\right)$ with $q_{n} \rightarrow \infty$ such that $\frac{p_{n}}{q_{n}}=\frac{p}{q}$ for all $n \geq 1$ and

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{q_{n}^{2}} .
$$

Passing to the limit, we find $\alpha=\frac{p}{q}$, absurd.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 8. The names of 100 mathematicians are placed in 100 wooden boxes, one name to a box, and the boxes are lined up on a table in a room. One by one, the mathematicians are led into the room; each may look in at most 50 boxes, but must leave the room exactly as she found it and is permitted no further communication with the others. The mathematicians have a chance to plot their strategy in advance, and they are going to need it, because unless every single mathematician finds her own name all will subsequently lose their funding. Find a strategy for them which has probability of success (mathematics survive) exceeding 30%.

Remark. If each mathematician examines a random set of 50 boxes, their probability of success is $\frac{1}{2^{100}}$ (each mathematician that opens 50 boxes at random among 100 has a probability $\frac{1}{2}$ to find her name), which is very very small.

Solution:

See https://en.wikipedia.org/wiki/ 100_prisoners_problem.

