
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 5: classical laws and independence

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 23/10/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (X,Y ) be a random variable with values in R
2 whose joint distribution has the density

f(X,Y )(x,y) = 14(1+ xy)1−1≤x,y≤1.

(1) Find the law of X.

(2) Compute E [X1X<1/2].

(3) Compute E

[
1
X

]
.

(4) Compute E [XY ].

(5) Compute P (X ≤ Y ). Is the result surprising?

(6) Are the random variables X and Y independent? Jus-
tify your answer.

2 Training exercises

Exercise 2. Let U be a uniform random variable on [−1,1]. Compute E[eU ].

Exercise 3. Let X be a real random variable that follows an exponential distribution with parameter 1.
Let λ > 0. Show that λX follows an exponential distribution with parameter 1/λ.

Exercise 4. Let Z be a real random variable with density 1π ·
1
1+x2 (it is a so-called Cauchy random variable).

For which values of α ∈Z is the random variable Zα integrable?

Exercise 5. Let X and Y be two independent random variables, where X follows an exponential distri-
bution with parameter λ > 0, and Y follows a geometric distribution with parameter p ∈ (0,1). Compute
P (X > Y ).

Exercise 6. Let X and Y be two independent real variables. Let F : R×R→R+ be a measurable function.
Show that E [F(X,Y )] = E [g(Y )], where g : R→R is the function defined by g(y) = E [F(X,y)] for y ∈R.
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3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 7. Let X be an exponential random variable with a parameter of 1, and a > 0. Does the random
variable min(X,a) have a density?

Exercise 8. Let T be an exponential random variable and U an independent uniform random variable on
[0,1]. Set X =

√
T cos(2πU ) and Y =

√
T sin(2πU ). Find the law of (X,Y ).

Exercise 9. Let (Xn) be a sequence of independent real random variables.
(1) Show that the radius of convergence R of the power series

∑
n≥0Xnz

n is almost surely constant.
(2) Now assume that the random variables (Xn)n≥0 have the same law. Show that if E

[
ln(|X1|)+] =∞,

then R = 0 almost surely, and if E
[
ln(|X1|)+] <∞, then R ≥ 1 almost surely (here x+ = max(x,0) represents

the positive part of a real number x).

Exercise 10. Let (Xn)n≥1 be a sequence of i.i.d. random variables with law given by

P (Xn = 1) = P (Xn = −1) = 1/2, n = 0,1, . . . .

Show that with probability 1, there is no point z0 on the unit cercle such that the power series F(z) =∑
n≥0Xnz

n can be extended in an open ball around z0 into a function which can be expanded in a power
series around z0.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 11. We have a biased coin that comes up heads with a probability of p, and we want to use it to
generate a fair coin toss. John von Neumann came up with the following algorithm:

throw
the coin

heads

headstails

tails

tails

heads

Output:
“ tails”

Output:
“ heads”

Start

  END

  END

throw
the coin

throw
the coin

Show that this works and compute the average number of times the coin is tossed.
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