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Week 5: classical laws and independence

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 23/10/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let (X,Y ) be a random variable with values in R
2 whose joint distribution has the density

f(X,Y )(x,y) = 14(1+ xy)1−1≤x,y≤1.

(1) Find the law of X.

(2) Compute E [X1X<1/2].

(3) Compute E

[
1
X

]
.

(4) Compute E [XY ].

(5) Compute P (X ≤ Y ). Is the result surprising?

(6) Are the random variables X and Y independent? Jus-
tify your answer.

Solution:

(1) Since (X,Y ) has a density, we know that X has a density, and its density is obtained by integrating
f(X,Y ) with respect to the second variable. Thus, for −1 ≤ x ≤ 1:

fX(x) =
∫ ∞
−∞

dyf(X,Y )(x,y) =
∫ 1
−1

dy
1
4

(1+ xy)1−1≤x≤1 =
1
2
.

Therefore, X follows the uniform distribution on [−1,1].

(2) According to the transfer theorem,

E [X1X<1/2] =
∫
R

x1x<1/2fX(x)dx =
∫ 1/2
−1

x
2

dx = − 3
16

.

(3) It’s a trap: 1X is not integrable, because

E

[ 1
|X |

]
=

∫ 1
−1

1
|x|

dx =∞,
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so the expression E

[
1
X

]
doesn’t make sense.

(4) According to the transfer theorem,

E [XY ] =
∫

[−1,1]2
dxdy

1
4

(xy + x2y2) =
1
4
·
(∫ 1
−1

x2dx
)2

=
1
9
.

(5) According to the transfer theorem,

P (X ≤ Y ) = E [1X≤Y ] =
∫

[−1,1]2
dxdy1x≤y

1
4

(1+ xy) =
∫ 1
−1

dx
∫ 1
x

dy
1
4

(1+ xy).

so

P (X ≤ Y ) =
∫ 1
−1

dx

(
1
4
− x
8
− x3

8

)
=
1
2
.

This is not surprising because

1 = P (X < Y ) +P (X = Y ) +P (X > Y ) ,

and since (X,Y ) and (Y ,X) have the same density due to symmetry, we have P (X < Y ) = P (X > Y ),
and because (X,Y ) has a density, P (X = Y ) = 0.

(6) Intuitively, X and Y are not independent because f(X,Y ) cannot be expressed as a function of
x times a function of y. Formally, if X and Y were independent, we would have E[XY ] =
E[X]E[Y ] = 0, which is not the case according to question 4.

□

2 Training exercises

Exercise 2. Let U be a uniform random variable on [−1,1]. Compute E[eU ].

Solution:
The function ex is positive, so we can apply the transfer theorem:

E

[
eU

]
=

∫ 1
−1

ex
dx
2

=
e − e−1

2
.

□

Exercise 3. Let X be a real random variable that follows an exponential distribution with parameter 1.
Let λ > 0. Show that λX follows an exponential distribution with parameter 1/λ.

Solution:

2
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We use the dummy function method. Let f : R→R+ be measurable. Then by the transfer theorem

E [f (λX)] =
∫ ∞
0

f (λx)e−xdx.

By the change of variables λx = u we get

E [f (λX)] =
∫ ∞
0

f (u)e−u/λ/λdu.

This shows that λX has density e−x/λ/λ1x≥0 on R+, which is the density of an exponential random
variable of parameter 1/λ. □

Exercise 4. Let Z be a real random variable with density 1π ·
1
1+x2 (it is a so-called Cauchy random variable).

For which values of α ∈Z is the random variable Zα integrable?

Solution:

By definition, Zα is integrable if and only if |Z |α is integrable, which by the transfer theorem is
equivalent to: ∫ ∞

−∞

|x|α

1+ x2
dx = 2

∫ ∞
0

xα

1+ x2
dx <∞.

Set f (x) = xα/(1+ x2), which is continuous on R
∗
+.

Let’s analyze this for different values of α:
Behavior at +∞. As f (x) ∼ 1

x2−α
when x→∞, f is integrable at +∞ if and only if α < 1.

Behavior at 0. Since f (x) ∼ xα as x→ 0, f is integrable at 0 if and only if α > −1.
In conclusion, |Z |α is integrable if and only if α = 0.

□

Exercise 5. Let X and Y be two independent random variables, where X follows an exponential distri-
bution with parameter λ > 0, and Y follows a geometric distribution with parameter p ∈ (0,1). Compute
P (X > Y ).

Solution:
We can apply the law of total probability using the complete system of events Y = k : k ≥ 1:

P (X > Y ) =
∑
k≥1

P (X > Y ,Y = k) .

Now, we have the equality of events {X > Y ,Y = k} = {X > k,Y = k}. So, using the independence of X
and Y :

P (X > Y ) =
∑
k≥1

P (X > k,Y = k) =
∑
k≥1

P (X > k)P (Y = k) =
∑
k≥1

e−λkp(1− p)k−1

3
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Therefore

P (X > Y ) = pe−λ
∑
k≥1

(
e−λ(1− p)

)k−1
=

pe−λ

1− e−λ(1− p)
=

p

eλ + p − 1
□

Exercise 6. Let X and Y be two independent real variables. Let F : R×R→R+ be a measurable function.
Show that E [F(X,Y )] = E [g(Y )], where g : R→R is the function defined by g(y) = E [F(X,y)] for y ∈R.

Solution:
By independence of X and Y we have P(X,Y )(dxdy) = PX(dx)⊗PY (dy), so by Fubini-Tonnelli’s theorem:

E [F(X,Y )] =
∫
R×R

F(x,y)P(X,Y )(dxdy) =
∫
R×R

F(x,y)PX(dx)⊗PY (dy)

=
∫
R

PY (dy)
(∫

R

F(x,y)PX(dx)
)

=
∫
R

PY (dy)g(y) = E [g(Y )] .

□

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 7. Let X be an exponential random variable with a parameter of 1, and a > 0. Does the random
variable min(X,a) have a density?

Solution:
Let’s compute the cumulative distribution function of Z = min(X,a). For u ≥ a, we have P (Z ≤ u) = 1.
For u < 0, we have P (Z < 0) = 0. For 0 ≤ u < a, we have P (Z ≤ u) = P (X ≤ u et u < a) = P (X ≤ u) =
1−e−λu . The cumulative distribution function of Z is not continuous at a, so min(X,a) is not a random
variable with density. □

Exercise 8. Let T be an exponential random variable and U an independent uniform random variable on
[0,1]. Set X =

√
T cos(2πU ) and Y =

√
T sin(2πU ). Find the law of (X,Y ).

Solution:
We apply the “dummy function method”: let f ,g : R→ R+ be measurable functions. We compute
E [f (X)g(Y )]:

E [f (X)g(Y )] = E

[
f (
√
T cos(2πU ))g(

√
T sin(2πU ))

]
=

∫ ∞
0

dte−t
∫ 1
0
duf (

√
t cos(2πu))g(

√
t sin(2πu))

=
∫ ∞
0

dr2re−r
2
∫ 1
0
duf (r cos(2πu))g(r sin(2πu))

by using the change of variables t = r2. We then use the change of variables r cos(2πu) = x and
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r sin(2πu) = y. We have ∣∣∣∣∣∣ cos(2πu) −2πr sin(2πu)
sin(2πu) 2πr cos(2πu)

∣∣∣∣∣∣ = 2πr

so that 2πrdrdu = dxxy. Hence

E [f (X)g(Y )] =
1
π

∫ ∞
−∞

∫ ∞
−∞

dxdye−x
2−y2f (x)g(y).

By taking f ≡ g ≡ 1, we get
∫∞
−∞

∫∞
−∞dxdye−x

2−y2 = π, so that

E [f (X)g(Y )] =
(
1
√
π

∫ ∞
−∞

f (x)e−x
2
dx

)(
1
√
π

∫ ∞
−∞

g(y)e−y
2
dy

)
.

We conclude that X and Y are independent standard Gaussian random variables. □

Exercise 9. Let (Xn) be a sequence of independent real random variables.
(1) Show that the radius of convergence R of the power series

∑
n≥0Xnz

n is almost surely constant.
(2) Now assume that the random variables (Xn)n≥0 have the same law. Show that if E

[
ln(|X1|)+] =∞,

then R = 0 almost surely, and if E
[
ln(|X1|)+] <∞, then R ≥ 1 almost surely (here x+ = max(x,0) represents

the positive part of a real number x).

Solution:

a) The radious of convergence R is given by the formula

R =
1

limsup
n→∞

|Xn|1/n
.

But the random variable limsupn→∞ |Xn|1/n is measurable with respect to the tail σ -algebra of
(Xn)n≥1, it is therefore almost surely constant by an Exercise 4 (1) of Exercise Sheet 4.

b) Write

|Xn|1/n = exp
(

ln(|Xn|)+

n

)
exp

(
− ln(|Xn|)−

n

)
.

If E
[
ln(|X1|)+] <∞, then by the previous exercise limsupn→∞ ln(|Xn|)+/n = 0 so that we have

ln(|Xn|)+/n→ 0. Hence R ≥ 1 since exp
(
− ln(|Xn|)−

n

)
≤ 1.

If E

[
ln(|X1|)+] = ∞, then by a result seen in the lecture, limsupn→∞ ln(|Xn|)+/n = ∞. This

implies that almost surely limsupn→∞ ln(|Xn|)/n =∞ so that R = 0 almost surely.

□

Exercise 10. Let (Xn)n≥1 be a sequence of i.i.d. random variables with law given by

P (Xn = 1) = P (Xn = −1) = 1/2, n = 0,1, . . . .
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Show that with probability 1, there is no point z0 on the unit cercle such that the power series F(z) =∑
n≥0Xnz

n can be extended in an open ball around z0 into a function which can be expanded in a power
series around z0.

Solution:
We say that a complex-valued function defined on an open set U ⊂ C is analytic on U if it can be
expanded in a power series at each point of U . Recall that a power series is analytic in every point of
its open disk of convergence.

Set S = {z ∈ C; |z| = 1}, D = {z ∈ C; |z| < 1} and for ζ ∈ D,r > 0 write Dζ(r) = {z ∈ C; |z − ζ| < r}.
Finally set

AF = {z ∈ S; F can be extended around z into a function expandable in a power series around z}.

We reason by contradiction and assume that P(AF , ∅) > 0. By a density argument, we start by
showing that it is enough to show an almost sure property for one point and not all points of S. To
this end, let (qn)n≥1 be a dense sequence in S. By the first paragraphe, almost surely AF is open, so
that

{ω;AF , ∅} ⊂ {ω; ∃qn tq qn ∈ AF}.

Therefore
P(∃qn tq qn ∈ AF) > 0.

But
P(∃qn tq qn ∈ AF}) ≤

∑
n≥1

P(qn ∈ AF)

It follows that there exists n ≥ 1 such thatP(qn ∈ AF) > 0. To simplify, set qn = q.
But if F can be extended in a function expandable in a power series around q, one can find a

sequence of points rn ∈ C such that |rn| < 1 and q belongs to open disk of convergence of the expansion
around rn. By the same reasoning as in the previous paragraph, we get the existence of ζ ∈D and r > 0
such that Dζ(r) 1D and:

P(F extends to an analytic function D ∪Dζ(r)) > 0.

To simplify, set A = {ω;F extends to an analytic function on D ∪Dζ(r)}.
Let us first show that P(A) = 1.To this end, for |u| < 1− |ζ| write:

F(ζ +u) =
∞∑
n=0

Xn(ζ +u)n =
∞∑

m=0

um

 ∞∑
n=m

(
n
m

)
Xnζ

n−m
 .

To simplify, let am =
∑∞

n=m
(n
m

)
Xnζ

n−m be the coefficients of the expansion of F around ζ. The function
F is analytic on Dζ(r) if the radius of convergence of this power series is at least r. It follows that
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{F is analytic on Dζ(r)} belongs to the tail σ -algebra of (Xn)n≥1, implying that P(A) = 0 or 1 be the
Kolmogorov -1 law. SinceP(A) > 0, we must have P(A) = 1.

Now, by construction, the arc Dζ(r) ∩ S is non empty. We can therefore fix an integer k ≥ 1
sufficiently large so that this arc has length at least 2π/k. Then set

Yn(ω) =

Xn(ω) if n . 0 mod k

−Xn(ω) if n ≡ 0 mod k

and introduce

G(z) =
∞∑
n=0

Ynz
n.

Since the two sequences (Yn)n≥1 and (Xn)n≥1 have the same distribution, we have

P(G extends to an analytic function onD ∪Dζ(r)) = 1.

But

F(z)−G(z) = 2
∞∑

m=0

Xmkz
mk .

By replacing z with ze2πi/k, this expression does not change. Therefore, by setting D
(l)
ζ (r) = {ze2πil/k; z ∈

D
(l)
ζ } for every l ≥ 1, it follows that F(z)−G(z) can almost surely be extended into an analytic function

on {|z| < 1+ ϵ} for a certain ϵ > 0 (here we use the fact that a finite union of events with probability 1
has probability 1). This is a contradiction, because the radius of convergence of F −G is almost surely
1. □

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 11. We have a biased coin that comes up heads with a probability of p, and we want to use it to
generate a fair coin toss. John von Neumann came up with the following algorithm:

throw
the coin

heads

headstails

tails

tails

heads

Output:
“ tails”

Output:
“ heads”

Start

  END

  END

throw
the coin

throw
the coin

Show that this works and compute the average number of times the coin is tossed.
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Solution:

We denote by T ∈ {2,4,6, . . .} the random variable representing the number of tosses required for
the algorithm to terminate, and R ∈ {heads, tails} the outcome.

Observe that the algorithm comes back to the beginning when one gets the same result twice in a
row.

We first show that the algorithm terminates almost surely. Let (Xi)i≥1 be a sequence of i.i.d. random
variables that are independent and follow a Bernoulli distribution with parameter p (representing a
”heads” result on the i-th toss if Xi = 1). First, let’s compute A = P (X1 = X2) and B = P (X1 , X2). We
have

A = P (X1 = 1,X1 = 1) +P (X1 = 0,X2 = 0) = p2 + (1− p)2, B = 1−A = 2p(1− p).

Then
P (T = 2k) = P

(
X1 = X2,X3 = X4, . . . ,X2k−3 = X2k−2,X2k−1 , X2k

)
.

By independence it follows that

P (T = 2k) = Ak−1B = (p2 + (1− p)2)k−12p(1− p).

Since
∑

k≥1P (T = 2k) = 1, we indeed have P (T <∞) = 1.
Now let us check that we get a fair coin toss in the end. By the formula of total probability,

P (R = heads ) =
∑
k≥1

P (T = 2k,X2k = 1) =
∑
k≥1

Ak−1
P (X2k−1 = 0)P (X2k = 1) =

p(1− p)
1−A

.

Thus P (R = heads ) = 1/2. Since P (R = heads ) +P (R = tails ) = 1, the result follows.
Let us finally compute E [T ]. Let Y be the random variable such that

P (Y = k) = (p2 + (1− p)2)k−12p(1− p)

for k ≥ 1. We recognize a geometric random variable with parameter 2p(1−p), so E [Y ] = 1
2p(1−p) . Thus,

E [T ] =
∑
k≥1
2kP (T = 2k) = 2E [Y ] =

1
p(1− p)

.

□
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