Week 5: classical laws and independence

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 23/10/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. Let (X, Y) be a random variable with values in \mathbb{R}^{2} whose joint distribution has the density $f_{(X, Y)}(x, y)=\frac{1}{4}(1+x y) \mathbb{1}_{-1 \leq x, y \leq 1}$.
(1) Find the law of X.
(4) Compute $\mathbb{E}[X Y]$.
(2) Compute $\mathbb{E}\left[X \mathbb{1}_{X<1 / 2}\right]$.
(5) Compute $\mathbb{P}(X \leq Y)$. Is the result surprising?
(3) Compute $\mathbb{E}\left[\frac{1}{X}\right]$.
(6) Are the random variables X and Y independent? Justify your answer.

Solution:

(1) Since (X, Y) has a density, we know that X has a density, and its density is obtained by integrating $f_{(X, Y)}$ with respect to the second variable. Thus, for $-1 \leq x \leq 1$:

$$
f_{X}(x)=\int_{-\infty}^{\infty} \mathrm{d} y f_{(X, Y)}(x, y)=\int_{-1}^{1} \mathrm{~d} y \frac{1}{4}(1+x y) \mathbb{1}_{-1 \leq x \leq 1}=\frac{1}{2} .
$$

Therefore, X follows the uniform distribution on $[-1,1]$.
(2) According to the transfer theorem,

$$
\mathbb{E}\left[X \mathbb{1}_{X<1 / 2}\right]=\int_{\mathbb{R}} x \mathbb{1}_{x<1 / 2} f_{X}(x) \mathrm{d} x=\int_{-1}^{1 / 2} \frac{x}{2} \mathrm{~d} x=-\frac{3}{16}
$$

(3) It's a trap: $\frac{1}{X}$ is not integrable, because

$$
\mathbb{E}\left[\frac{1}{|X|}\right]=\int_{-1}^{1} \frac{1}{|x|} \mathrm{d} x=\infty
$$

so the expression $\mathbb{E}\left[\frac{1}{X}\right]$ doesn't make sense.
(4) According to the transfer theorem,

$$
\mathbb{E}[X Y]=\int_{[-1,1]^{2}} \mathrm{~d} x \mathrm{~d} y \frac{1}{4}\left(x y+x^{2} y^{2}\right)=\frac{1}{4} \cdot\left(\int_{-1}^{1} x^{2} \mathrm{~d} x\right)^{2}=\frac{1}{9}
$$

(5) According to the transfer theorem,

$$
\mathbb{P}(X \leq Y)=\mathbb{E}\left[\mathbb{1}_{X \leq Y}\right]=\int_{[-1,1]^{2}} \mathrm{~d} x \mathrm{~d} y \mathbb{1}_{x \leq y} \frac{1}{4}(1+x y)=\int_{-1}^{1} \mathrm{~d} x \int_{x}^{1} \mathrm{~d} y \frac{1}{4}(1+x y) .
$$

so

$$
\mathbb{P}(X \leq Y)=\int_{-1}^{1} d x\left(\frac{1}{4}-\frac{x}{8}-\frac{x^{3}}{8}\right)=\frac{1}{2}
$$

This is not surprising because

$$
1=\mathbb{P}(X<Y)+\mathbb{P}(X=Y)+\mathbb{P}(X>Y)
$$

and since (X, Y) and (Y, X) have the same density due to symmetry, we have $\mathbb{P}(X<Y)=\mathbb{P}(X>Y)$, and because (X, Y) has a density, $\mathbb{P}(X=Y)=0$.
(6) Intuitively, X and Y are not independent because $f_{(X, Y)}$ cannot be expressed as a function of x times a function of y. Formally, if X and Y were independent, we would have $\mathbb{E}[X Y]=$ $\mathbb{E}[X] \mathbb{E}[Y]=0$, which is not the case according to question 4 .

2 Training exercises

Exercise 2. Let U be a uniform random variable on $[-1,1]$. Compute $\mathbb{E}\left[e^{U}\right]$.

Solution:

The function e^{x} is positive, so we can apply the transfer theorem:

$$
\mathbb{E}\left[e^{U}\right]=\int_{-1}^{1} e^{x} \frac{\mathrm{~d} x}{2}=\frac{e-e^{-1}}{2}
$$

Exercise 3. Let X be a real random variable that follows an exponential distribution with parameter 1. Let $\lambda>0$. Show that λX follows an exponential distribution with parameter $1 / \lambda$.

Solution:

We use the dummy function method. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable. Then by the transfer theorem

$$
\mathbb{E}[f(\lambda X)]=\int_{0}^{\infty} f(\lambda x) e^{-x} \mathrm{~d} x
$$

By the change of variables $\lambda x=u$ we get

$$
\mathbb{E}[f(\lambda X)]=\int_{0}^{\infty} f(u) e^{-u / \lambda} / \lambda \mathrm{d} u
$$

This shows that λX has density $e^{-x / \lambda} / \lambda_{1_{x \geq 0}}$ on \mathbb{R}_{+}, which is the density of an exponential random variable of parameter $1 / \lambda$.

Exercise 4. Let Z be a real random variable with density $\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}$ (it is a so-called Cauchy random variable). For which values of $\alpha \in \mathbb{Z}$ is the random variable Z^{α} integrable?

Solution:

By definition, Z^{α} is integrable if and only if $|Z|^{\alpha}$ is integrable, which by the transfer theorem is equivalent to:

$$
\int_{-\infty}^{\infty} \frac{|x|^{\alpha}}{1+x^{2}} d x=2 \int_{0}^{\infty} \frac{x^{\alpha}}{1+x^{2}} d x<\infty
$$

Set $f(x)=x^{\alpha} /\left(1+x^{2}\right)$, which is continuous on \mathbb{R}_{+}^{*}.
Let's analyze this for different values of α :
Behavior at $+\infty$. As $f(x) \sim \frac{1}{x^{2-\alpha}}$ when $x \rightarrow \infty, f$ is integrable at $+\infty$ if and only if $\alpha<1$.
Behavior at o. Since $f(x) \sim x^{\alpha}$ as $x \rightarrow 0, f$ is integrable at o if and only if $\alpha>-1$.
In conclusion, $|Z|^{\alpha}$ is integrable if and only if $\alpha=0$.

Exercise 5. Let X and Y be two independent random variables, where X follows an exponential distribution with parameter $\lambda>0$, and Y follows a geometric distribution with parameter $p \in(0,1)$. Compute $\mathbb{P}(X>Y)$.

Solution:

We can apply the law of total probability using the complete system of events $Y=k: k \geq 1$:

$$
\mathbb{P}(X>Y)=\sum_{k \geq 1} \mathbb{P}(X>Y, Y=k)
$$

Now, we have the equality of events $\{X>Y, Y=k\}=\{X>k, Y=k\}$. So, using the independence of X and Y :

$$
\mathbb{P}(X>Y)=\sum_{k \geq 1} \mathbb{P}(X>k, Y=k)=\sum_{k \geq 1} \mathbb{P}(X>k) \mathbb{P}(Y=k)=\sum_{k \geq 1} e^{-\lambda k} p(1-p)^{k-1}
$$

Therefore

$$
\mathbb{P}(X>Y)=p e^{-\lambda} \sum_{k \geq 1}\left(e^{-\lambda}(1-p)\right)^{k-1}=\frac{p e^{-\lambda}}{1-e^{-\lambda}(1-p)}=\frac{p}{e^{\lambda}+p-1}
$$

Exercise 6. Let X and Y be two independent real variables. Let $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{+}$be a measurable function. Show that $\mathbb{E}[F(X, Y)]=\mathbb{E}[g(Y)]$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is the function defined by $g(y)=\mathbb{E}[F(X, y)]$ for $y \in \mathbb{R}$.

Solution:

By independence of X and Y we have $\mathbb{P}_{(X, Y)}(d x d y)=\mathbb{P}_{X}(d x) \otimes \mathbb{P}_{Y}(d y)$, so by Fubini-Tonnelli's theorem:

$$
\begin{aligned}
\mathbb{E}[F(X, Y)] & =\int_{\mathbb{R} \times R} F(x, y) \mathbb{P}_{(X, Y)}(d x d y)=\int_{\mathbb{R} \times R} F(x, y) \mathbb{P}_{X}(d x) \otimes \mathbb{P}_{Y}(d y) \\
& =\int_{\mathbb{R}} \mathbb{P}_{Y}(d y)\left(\int_{\mathbb{R}} F(x, y) \mathbb{P}_{X}(d x)\right)=\int_{\mathbb{R}} \mathbb{P}_{Y}(d y) g(y)=\mathbb{E}[g(Y)] .
\end{aligned}
$$

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 7. Let X be an exponential random variable with a parameter of 1 , and $a>0$. Does the random variable $\min (X, a)$ have a density?

Solution:

Let's compute the cumulative distribution function of $Z=\min (X, a)$. For $u \geq a$, we have $\mathbb{P}(Z \leq u)=1$. For $u<0$, we have $\mathbb{P}(Z<o)=0$. For $o \leq u<a$, we have $\mathbb{P}(Z \leq u)=\mathbb{P}(X \leq u$ et $u<a)=\mathbb{P}(X \leq u)=$ $1-e^{-\lambda u}$. The cumulative distribution function of Z is not continuous at a, so $\min (X, a)$ is not a random variable with density.

Exercise 8. Let T be an exponential random variable and U an independent uniform random variable on $[0,1]$. Set $X=\sqrt{T} \cos (2 \pi U)$ and $Y=\sqrt{T} \sin (2 \pi U)$. Find the law of (X, Y).

Solution:

We apply the "dummy function method": let $f, g: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable functions. We compute $\mathbb{E}[f(X) g(Y)]:$

$$
\begin{aligned}
\mathbb{E}[f(X) g(Y)] & =\mathbb{E}[f(\sqrt{T} \cos (2 \pi U)) g(\sqrt{T} \sin (2 \pi U))] \\
& =\int_{0}^{\infty} \mathrm{d} t e^{-t} \int_{0}^{1} d u f(\sqrt{t} \cos (2 \pi u)) g(\sqrt{t} \sin (2 \pi u)) \\
& =\int_{0}^{\infty} \mathrm{d} r 2 r e^{-r^{2}} \int_{0}^{1} d u f(r \cos (2 \pi u)) g(r \sin (2 \pi u))
\end{aligned}
$$

by using the change of variables $t=r^{2}$. We then use the change of variables $r \cos (2 \pi u)=x$ and
$r \sin (2 \pi u)=y$. We have

$$
\left|\begin{array}{cc}
\cos (2 \pi u) & -2 \pi r \sin (2 \pi u) \\
\sin (2 \pi u) & 2 \pi r \cos (2 \pi u)
\end{array}\right|=2 \pi r
$$

so that $2 \pi r d r d u=d x x y$. Hence

$$
\mathbb{E}[f(X) g(Y)]=\frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} x \mathrm{~d} y e^{-x^{2}-y^{2}} f(x) g(y) .
$$

By taking $f \equiv g \equiv 1$, we get $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} x \mathrm{~d} y e^{-x^{2}-y^{2}}=\pi$, so that

$$
\mathbb{E}[f(X) g(Y)]=\left(\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x) e^{-x^{2}} \mathrm{~d} x\right)\left(\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} g(y) e^{-y^{2}} \mathrm{~d} y\right)
$$

We conclude that X and Y are independent standard Gaussian random variables.
Exercise 9. Let $\left(X_{n}\right)$ be a sequence of independent real random variables.
(1) Show that the radius of convergence R of the power series $\sum_{n \geq 0} X_{n} z^{n}$ is almost surely constant.
(2) Now assume that the random variables $\left(X_{n}\right)_{n \geq 0}$ have the same law. Show that if $\mathbb{E}\left[\ln \left(\left|X_{1}\right|\right)^{+}\right]=\infty$, then $R=0$ almost surely, and if $\mathbb{E}\left[\ln \left(\left|X_{1}\right|\right)^{+}\right]<\infty$, then $R \geq 1$ almost surely (here $x^{+}=\max (x, \mathrm{o})$ represents the positive part of a real number x).

Solution:

a) The radious of convergence R is given by the formula

$$
R=\frac{1}{\limsup _{n \rightarrow \infty}\left|X_{n}\right|^{1 / n}}
$$

But the random variable $\limsup \operatorname{sun}_{n \rightarrow \infty}\left|X_{n}\right|^{1 / n}$ is measurable with respect to the tail σ-algebra of $\left(X_{n}\right)_{n \geq 1}$, it is therefore almost surely constant by an Exercise 4 (1) of Exercise Sheet 4 .
b) Write

$$
\left|X_{n}\right|^{1 / n}=\exp \left(\frac{\ln \left(\left|X_{n}\right|\right)^{+}}{n}\right) \exp \left(-\frac{\ln \left(\left|X_{n}\right|\right)^{-}}{n}\right)
$$

If $\mathbb{E}\left[\ln \left(\left|X_{1}\right|\right)^{+}\right]<\infty$, then by the previous exercise $\lim \sup _{n \rightarrow \infty} \ln \left(\left|X_{n}\right|\right)^{+} / n=0$ so that we have $\ln \left(\left|X_{n}\right|\right)^{+} / n \rightarrow$ o. Hence $R \geq 1$ since $\exp \left(-\frac{\ln \left(\left|X_{n}\right|\right)^{-}}{n}\right) \leq 1$.

If $\mathbb{E}\left[\ln \left(\left|X_{1}\right|\right)^{+}\right]=\infty$, then by a result seen in the lecture, $\limsup _{n \rightarrow \infty} \ln \left(\left|X_{n}\right|\right)^{+} / n=\infty$. This implies that almost surely $\lim \sup _{n \rightarrow \infty} \ln \left(\left|X_{n}\right|\right) / n=\infty$ so that $R=\mathrm{o}$ almost surely.

Exercise 10. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with law given by

$$
\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=-1\right)=1 / 2, \quad n=0,1, \ldots
$$

Show that with probability 1 , there is no point z_{0} on the unit cercle such that the power series $F(z)=$ $\sum_{n \geq 0} X_{n} z^{n}$ can be extended in an open ball around z_{0} into a function which can be expanded in a power series around z_{0}.

Solution:

We say that a complex-valued function defined on an open $U \subset \mathcal{C}$ is analytic on U if it can be expanded in a power series at each point of U. Recall that a power series is analytic in every point of its open disk of convergence.

Set $\mathbb{S}=\{z \in \mathbb{C} ;|z|=1\}, D=\{z \in \mathbb{C} ;|z|<1\}$ and for $\zeta \in D, r>o$ write $D_{\zeta}(r)=\{z \in \mathbb{C} ;|z-\zeta|<r\}$. Finally set

$$
\mathcal{A}_{F}=\{z \in \mathbb{S} ; F \text { can be extended around } z \text { into a function expandable in a power series around } z\} .
$$

We reason by contradiction and assume that $\mathbb{P}\left(\mathcal{A}_{F} \neq \emptyset\right)>0$. By a density argument, we start by showing that it is enough to show an almost sure property for one point and not all points of \mathbb{S}. To this end, let $\left(q_{n}\right)_{n \geq 1}$ be a dense sequence in \mathbb{S}. By the first paragraphe, almost surely \mathcal{A}_{F} is open, so that

$$
\left\{\omega ; \mathcal{A}_{F} \neq \emptyset\right\} \subset\left\{\omega ; \exists q_{n} \operatorname{tq} q_{n} \in \mathcal{A}_{F}\right\}
$$

Therefore

$$
\mathbb{P}\left(\exists q_{n} \operatorname{tq} q_{n} \in \mathcal{A}_{F}\right)>0
$$

But

$$
\left.\mathbb{P}\left(\exists q_{n} \text { tq } q_{n} \in \mathcal{A}_{F}\right\}\right) \leq \sum_{n \geq 1} \mathbb{P}\left(q_{n} \in \mathcal{A}_{F}\right)
$$

It follows that there exists $n \geq 1$ such that $\mathbb{P}\left(q_{n} \in \mathcal{A}_{F}\right)>0$. To simplify, set $q_{n}=q$.
But if F can be extended in a function expandable in a power series around q, one can find a sequence of points $r_{n} \in \mathcal{C}$ such that $\left|r_{n}\right|<1$ and q belongs to open disk of convergence of the expansion around r_{n}. By the same reasoning as in the previous paragraph, we get the existence of $\zeta \in D$ and $r>0$ such that $D_{\zeta}(r) \not \subset D$ and:

$$
\mathbb{P}\left(F \text { extends to an analytic function } D \cup D_{\zeta}(r)\right)>0
$$

To simplify, set $\mathcal{A}=\left\{\omega ; F\right.$ extends to an analytic function on $\left.D \cup D_{\zeta}(r)\right\}$.
Let us first show that $\mathbb{P}(\mathcal{A})=1$.To this end, for $|u|<1-|\zeta|$ write:

$$
F(\zeta+u)=\sum_{n=0}^{\infty} X_{n}(\zeta+u)^{n}=\sum_{m=0}^{\infty} u^{m}\left(\sum_{n=m}^{\infty}\binom{n}{m} X_{n} \zeta^{n-m}\right) .
$$

To simplify, let $a_{m}=\sum_{n=m}^{\infty}\binom{n}{m} X_{n} \zeta^{n-m}$ be the coefficients of the expansion of F around ζ. The function F is analytic on $D_{\zeta}(r)$ if the radius of convergence of this power series is at least r. It follows that
$\left\{F\right.$ is analytic on $\left.D_{\zeta}(r)\right\}$ belongs to the tail σ-algebra of $\left(X_{n}\right)_{n \geq 1}$, implying that $\mathbb{P}(\mathcal{A})=0$ or 1 be the Kolmogorov -1 law. Since $\mathbb{P}(\mathcal{A})>0$, we must have $\mathbb{P}(\mathcal{A})=1$.

Now, by construction, the arc $D_{\zeta}(r) \cap \mathbb{S}$ is non empty. We can therefore fix an integer $k \geq 1$ sufficiently large so that this arc has length at least $2 \pi / k$. Then set

$$
Y_{n}(\omega)=\left\{\begin{array}{lll}
X_{n}(\omega) & \text { if } n \not \equiv \mathrm{o} & \bmod k \\
-X_{n}(\omega) & \text { if } n \equiv 0 & \bmod k
\end{array}\right.
$$

and introduce

$$
G(z)=\sum_{n=0}^{\infty} Y_{n} z^{n}
$$

Since the two sequences $\left(Y_{n}\right)_{n \geq 1}$ and $\left(X_{n}\right)_{n \geq 1}$ have the same distribution, we have
$\mathbb{P}\left(G\right.$ extends to an analytic function on $\left.D \cup D_{\zeta}(r)\right)=1$.
But

$$
F(z)-G(z)=2 \sum_{m=0}^{\infty} X_{m k} z^{m k}
$$

By replacing z with $z e^{2 \pi i / k}$, this expression does not change. Therefore, by setting $D_{\zeta}^{(l)}(r)=\left\{z e^{2 \pi i l / k} ; z \in\right.$ $\left.D_{\zeta}^{(l)}\right\}$ for every $l \geq 1$, it follows that $F(z)-G(z)$ can almost surely be extended into an analytic function on $\{|z|<1+\epsilon\}$ for a certain $\epsilon>0$ (here we use the fact that a finite union of events with probability 1 has probability 1). This is a contradiction, because the radius of convergence of $F-G$ is almost surely 1.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 11. We have a biased coin that comes up heads with a probability of p, and we want to use it to generate a fair coin toss. John von Neumann came up with the following algorithm:

Show that this works and compute the average number of times the coin is tossed.

Solution:

We denote by $T \in\{2,4,6, \ldots\}$ the random variable representing the number of tosses required for the algorithm to terminate, and $R \in\{$ heads, tails $\}$ the outcome.

Observe that the algorithm comes back to the beginning when one gets the same result twice in a row.

We first show that the algorithm terminates almost surely. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. random variables that are independent and follow a Bernoulli distribution with parameter p (representing a "heads" result on the i-th toss if $\left.X_{i}=1\right)$. First, let's compute $A=\mathbb{P}\left(X_{1}=X_{2}\right)$ and $B=\mathbb{P}\left(X_{1} \neq X_{2}\right)$. We have

$$
A=\mathbb{P}\left(X_{1}=1, X_{1}=1\right)+\mathbb{P}\left(X_{1}=0, X_{2}=0\right)=p^{2}+(1-p)^{2}, \quad B=1-A=2 p(1-p)
$$

Then

$$
\mathbb{P}(T=2 k)=\mathbb{P}\left(X_{1}=X_{2}, X_{3}=X_{4}, \ldots, X_{2 k-3}=X_{2 k-2}, X_{2 k-1} \neq X_{2 k}\right)
$$

By independence it follows that

$$
\mathbb{P}(T=2 k)=A^{k-1} B=\left(p^{2}+(1-p)^{2}\right)^{k-1} 2 p(1-p)
$$

Since $\sum_{k \geq 1} \mathbb{P}(T=2 k)=1$, we indeed have $\mathbb{P}(T<\infty)=1$.
Now let us check that we get a fair coin toss in the end. By the formula of total probability,

$$
\mathbb{P}(R=\text { heads })=\sum_{k \geq 1} \mathbb{P}\left(T=2 k, X_{2 k}=1\right)=\sum_{k \geq 1} A^{k-1} \mathbb{P}\left(X_{2 k-1}=0\right) \mathbb{P}\left(X_{2 k}=1\right)=\frac{p(1-p)}{1-A}
$$

Thus $\mathbb{P}(R=$ heads $)=1 / 2$. Since $\mathbb{P}(R=$ heads $)+\mathbb{P}(R=$ tails $)=1$, the result follows.
Let us finally compute $\mathbb{E}[T]$. Let Y be the random variable such that

$$
\mathbb{P}(Y=k)=\left(p^{2}+(1-p)^{2}\right)^{k-1} 2 p(1-p)
$$

for $k \geq 1$. We recognize a geometric random variable with parameter $2 p(1-p)$, so $\mathbb{E}[Y]=\frac{1}{2 p(1-p)}$. Thus,

$$
\mathbb{E}[T]=\sum_{k \geq 1} 2 k \mathbb{P}(T=2 k)=2 \mathbb{E}[Y]=\frac{1}{p(1-p)}
$$

