
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 6: Law of large numbers

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 30/10/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1.

(1) Let f : R → R be a continuous function. Let (Xn)n≥1 be a sequence of real random variables that
almost surely converges to X. Show that f (Xn) almost surely converges to f (X).

(2) Let (Xn)n≥1 be a sequence of real random variables that almost surely converges to X, and let (Yn)n≥1
be a sequence of real random variables that almost surely converges to Y . Show that (Xn,Yn) almost
surely converges to (X,Y ).

(3) Suppose that (Un)n≥1 are i.i.d. uniform random variables on {−1,+1} and consider β > 0. Discuss the
convergence of the series

∑
n≥1

Un

nβ
.

You may assume that the converse of the Kolmogorov three series theorem is true.

2 Training exercises

Exercise 2. Let (Zn,n ≥ 1) be a sequence of random variables such that for all integers n ≥ 1, Zn is an
exponential random variable with parameter n. Show that Zn almost surely converges to 0 as n→∞.

Exercise 3. Let (Xn)n≥1 be i.i.d. integrable random variables with the same law as X. Define

Mn =
1
n

n∑
i=1

XiXi+1 .

Show that the sequence (Mn) converges almost surely and find its (almost sure) limit.

Exercise 4. Consider a sequence (Xn)n≥1 of i.i.d. integrable random variables with the same law as X and
E [X] = 0.
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(1) Show that if E [X2] <∞ then
∑

n≥1Xn/n converges almost surely.

(2) Suppose now instead that X and −X have the same law. Show that in this case the series
∑

n≥1Xn/n

converges almost surely as well.

Exercise 5. Suppose that (Xn)n≥1 are i.i.d. random variables taking values in (0,∞) with the same law as
X. Also suppose that E [| logX |] <∞.

(1) Show that almost surely, as n→∞,

X1 · · ·Xn = eαn+o(n)

where α = E [logX].

(2) Fix a > 1. Construct a sequence (Yn)n≥1 with values in (0,∞) of random variables such that E [Yn] = an

for all n ≥ 1 and Yn→ 0 almost surely as n→∞.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. Let (Xn)n≥1 be a sequence of real random variables. Show that there exists a sequence cn→ ∞
such that Xn/cn converges almost surely to 0.

Exercise 7. Let (Xn)n≥1 be an i.i.d. sequence with the same law as X such that E [X2p] <∞ for all integers
p ≥ 1. Also assume that E [X] = 0.

(1) Show that for all integers p ≥ 1 there exists a constant Cp <∞ such that

E ((X1 + · · ·+Xn)2p) ≤ Cpn
p .

(2) Deduce that (X1 + · · ·+Xn)/n1/2+δ→ 0 as n→∞ almost surely for all δ > 0.

Exercise 8. Find an integrable random variable X with E [X] = 0 such that if (Xn)n≥1 is a sequence of
i.i.d. random variables with the same law as X then the series

∑
n≥1Xn/n does not converge with positive

probability.
You may assume that the converse of the Kolmogorov three series theorem is true.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 9. We color 10% of a sphere in blue and the rest in red. Show that it is possible to inscribe a
cube in the sphere with all its vertices being red.
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