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Week 7: Different notions of convergence of random variables

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 6/11/2023 17:00 (online) following the instructions on the course website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. Let λ > 0 and let X be a real random variable such that P (X ≥ a) = a−λ for all a ≥ 1.
(1) Show that X has a density and give its expression.

Let (Xn)n≥1 be a sequence of independent random variables with the same distribution as X. We define

Tn =

 n∏
i=1

Xi

1/n .
(2) As n→∞, does Tn converge almost surely? Justify your answer.
(3) As n→∞, does Tn converge in probability? Justify your answer.
(4) Does E [T 2n ] converge as n→∞? Justify your answer.
(5) As n→∞, does Tn converge in L1 ? Justify your answer.

Solution:

(1) Observe that the cdf of X is given by P (X ≤ a) = 1− a−λ for a ≥ 1 and P (X ≤ a) = 0 for a < 1. The
cdf is piece-wise C1, so X has a density given by −1x≥1 d

dxx
−λ = 1x≥1

λ
xλ+1

(2) Yes, Tn converges almost surely. Observe that P (X ≥ 1) = 1, and that P (ln(X) ≥ a) = e−λa for every
a ≥ 0. Thus ln(X) follows an exponential law of parameter λ. In addition,

ln(Tn) =
1
n

n∑
i=1

ln(Xi).

By the composition principle, the random variables ln(X1), . . . , ln(Xn) are independent with same
law distibuted as an exponential random variable of parameter λ. By the strong law of large
numbers, ln(Tn) converges almost surely to 1/λ. By continuity of the exponential function, it
follows that Tn converges almost surely to exp(1/λ).
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(3) Yes, Tn converges in probability to exp(1/λ): we saw in the lecture that almost sure convergence
implies convergence in probability.

(4) Write

E [T 2n ] = E

 n∏
i=1

X2/ni

 =
n∏
i=1

E

[
X2/ni

]
= E

[
X2/n

]n
,

where we have used the indepedence of (Xi)1≤i≤n for the second equality and the fact that these
random variables all have the same law for the last equality. To compute E

[
X2/n

]
using (1) and

the transfer theorem:

E

[
X2/n

]
=

∫ ∞
1
x2/n · λ

xλ+1dx =
∫ ∞
1

λ

xλ−2/n+1dx

which is finite for n such that λ− 2/n > 0. Thus for n sufficiently large E

[
X2/n

]
<∞ and

E

[
X2/n

]
=

λn
λn− 2

= 1+
2

λn− 2
.

Thus, using the Taylor expansion ln(1+ x) = x+ o(x) as x→ 0:

E [T 2n ] =
(
1+

2
λn− 2

)n
= exp

(
n ln

(
1+

2
λn− 2

))
= exp

(
n
( 2
λn− 2

+ o
(1
n

)))
= exp

(2
λ

+ o(1)
)

which converges to exp(2/λ) so the answer of the question is yes.

(5) The answer is yes.

Solution 1. We check that (Tn)n≥1 converges in probability and is uniformly integrable. The
convergence in probability has been established in (2) and uniform integrability comes from the
fact that (Tn) is bounded in L2 since E [T 2n ] converges as n → ∞ (we saw in the lecture that a
sequence of random variables bounded in Lp for p > 1 is uniformly integrable).

For Solutions 2 and 3, we first show that E [Tn]→ exp(1/λ). As in question (4), we have

E [Tn] = E

 n∏
i=1

X1/ni

 =
n∏
i=1

E

[
X1/ni

]
= E

[
X1/n

]n
,

and we similarly compute E

[
X1/n

]
:

E

[
X1/n

]
=

∫ ∞
1
x1/n · λ

xλ+1dx =
λn

λn− 1
= 1+

1
λn− 1

.

Thus, similarly to (4):

E [Tn] =
(
1+

1
λn− 1

)n
= exp

(
n ln

(
1+

1
λn− 1

))
= exp

(
n
( 1
λn− 1

+ o
(1
n

)))
= exp

(1
λ

+ o(1)
)
.
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This entails
E [Tn] −→

n→∞
exp(1/λ),

Solution 2. We show that E [(Tn − exp(1/λ)2]→ 0. Indeed, then by the Cauchy-Schwarz inequality
E [|Tn − exp(1/λ)|] ≤ E [(Tn − exp(1/λ))2]1/2→ 0. To this end just write

E [(Tn − exp(1/λ)2] = E [T 2n ]− 2exp(1/λ)E [Tn] + exp(2/λ) −→
n→∞

0

since E [T 2n ]→ exp(2/λ) and E [Tn]→ exp(1/λ).

Solution 3. We have Tn ≥ 0, Tn → exp(1/λ) almost surely and E [Tn]→ exp(1/λ). Then Scheffé’s
lemma (Exercise 2) implies that Tn→ exp(1/λ) in L1.

□

2 Training exercises

Exercise 2. (Scheffé Lemma) Let (Xn)n≥1 be non-negative real random variables that almost surely con-
verge to X. We assume that E[X] < ∞, and that E[Xn]→ E[X] as n→∞. The goal of this exercise is to
show that Xn→ X in L

1.
We define Yn = min(Xn,X) and Zn = max(Xn,X).

(1) Show that E [Yn]→ E [X] when n→∞.
(2) Show that E [Zn]→ E [X] when n→∞.

Hint. Write Zn = X +Xn −Yn.
(3) Conclude.

Hint. Write |Xn −X | = Zn −Yn.

Solution:

(1) Since Xn→ X almost surely, we have that Yn converges almost surely to X. In addition |Yn| ≤ X.
Thus E [Yn]→ E [X] by the dominated convergence theorem.

(2) We have E [Zn] = E [X] +E [Xn]−E [Yn]→ E [X] +E [X]−E [X] = E [X].

(3) We have E [|Xn −X |] = E [Zn]−E [Yn]→ E [X]−E [X] = 0. This shows that Xn→ X in L1.

Remark. Convergence in L1 implies convergence of expectations: indeed, if Xn → X in L1, then
|E [Xn] −E [X] | ≤ E [|Xn −X |] → 0. However, we can have convergence of expectations without con-
vergence in L1: for instance, taking the example from the lecture Xn(ω) = 2n1ω∈[0,1/2n] on probability
space ([0,1],B[0,1],Leb[0,1]), we have convergence of expectations since E(Xn) = 1 is constant for all n,
but Xn does not convergence in L1. Indeed, argue by contradiction: if Xn→ X in L1, this would imply
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that Xn → X in probability. But Xn → 0 in probability. Thus X = 0 almost surely, so Xn → 0 in L1,
which implies E [Xn]→ 0, which is a contradiction. □

Exercise 3. Let (Xn)n≥1 be a sequence of real-valued random variables that converges in probability to X,
and let (Yn)n≥1 be a sequence of real-valued random variables that converges in probability to Y . We want
to show that (Xn,Yn) converges in probability to (X,Y ).

Solution:

First solution. For any ε > 0, we observe that if

∥(Xn,Yn)− (X,Y )∥ ≥ 2ε.

then either |Xn −X | ≥ ε or |Yn −Y | ≥ ε. Indeed, by contradiction, if |Xn −X | < ε and |Yn −Y | < ε, then

∥(Xn,Yn)− (X,Y )∥ ≤
√
ε2 + ε2 =

√
2ε < 2ε.

Thus, for any ε > 0,

P (∥(Xn,Yn)− (X,Y )∥ ≥ 2ε) ≤ P (|Xn −X | ≥ ε) +P (|Yn −Y | ≥ ε) −→
n→∞

0,

which implies the result.
Second solution. We use the sub-sub-sequence lemma: given a subsequence ϕ, we find ψ such that

(Xϕ◦ψ(n),Yϕ◦ψ(n)) converges almost surely to (X,Y ).
First, since Xn → X in probability, we can find a σ1 suh that Xϕ◦σ1(n) converges almost surely to

X. But Yϕ◦σ1(n) converges in probability to Y , so we can find σ2 such that Yϕ◦σ1◦σ2(n) converges almost
surely to Y . But then Xϕ◦σ1◦σ2(n) also converges almost surely to X, so we can take ψ = σ1 ◦ σ2. □

Exercise 4. Let (Xi)i≥1 be a sequence of i.i.d. real-valued random variables. Show that if E[|X1|] <∞, the
sequence (max(X1, . . . ,Xn)/n)n≥2 is uniformly integrable.

Solution:

First solution. We show uniform integrability via its characterization of boundedness in L1 and ϵ−δ
condition. For boundedness in L1, we have for all n ≥ 2,

E

[∣∣∣∣∣max(X1, . . . ,Xn)
n

∣∣∣∣∣] ≤ E

[∑n
k=1 |Xk |
n

]
= E [|X1|] <∞.

For ϵ − δ condition, first notice that {X1} is a finite family of integrable random variables, hence this
family is uniformly integrable. So {X1} satisfies the ϵ − δ, which says ∀ϵ > 0,∃δ > 0,∀A ∈ A with
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P(A) < δ, we have E(|X1|1A) < ϵ. Then we have for all n ≥ 2,

E

[∣∣∣∣∣max(X1, . . . ,Xn)
n

1A

∣∣∣∣∣] ≤ E

[∑n
k=1 |Xk |
n

1A

]
= E(|X1|1A) < ϵ.

We conclude that family the {max(X1,...,Xn)
n }n≥2 satisfies the ϵ − δ condition.

Second solution. Write ∣∣∣∣∣max(X1, . . . ,Xn)
n

∣∣∣∣∣ ≤ ∑n
k=1 |Xk |
n

.

We claim that the sequence
∑n
k=1 |Xk |
n converges in L1 to E[|X1|]. We show this by using Scheffé’s Lemma

(exercise 2):
– the random variables are nonnegative and the convergence holds a.s. by the strong law of large

numbers since X1 is integrable.

– E

[∑n
k=1 |Xk |
n

]
= E [|X1|] which converges to E [|X1|] (it is a constant sequence).

But if 0 ≤ |Yn| ≤ Zn and if Zn converges in L1 then (Yn) is uniformly integrable. Indeed, we have
seen in the lecture the fact that (Zn) converges in L1 implies that (Zn) is uniformly integrable, and
since we have for every K > 0

E

[
|Yn|1|Yn|≥K

]
≤ E

[
Zn1Zn≥K

]
,

this shows that (Yn) is uniformly integrable.
The desired result follows by appling this with Yn = max(X1,...,Xn)

n and Zn =
∑n
k=1 |Xk |
n .

Remark. We will later see in class that the convergence in the strong law of large numbers also
always holds in L1. □

Exercise 5. We model the discretized evolution of a pollen particle between two absorbing plates as
follows. Let (Xn)n≥ 1 be a sequence of i.i.d random variables with law given by P (X1 = 1) = P (X1 = −1) = 12 .
Let k ≥ 1 be an integer. Set S0 = k and Sn = k+X1+ · · ·+Xn for n ≥ 1. Define T = inf{i ≥ 1 : Si = 0 or Si = 2k}
(with the convention inf∅ =∞).

(1) Show that T <∞ almost surely.
(2) Set Zn = Smin(n,T ). Show that Zn converges almost surely to a random variable, and determine its

law. Does Zn converge in probability? In L
1?

Solution:

(1) If there are 2k consecutive upward sets, then T < ∞. An application of Borel–Cantelli shows
that in the sequence (Xi)i≥1 the number 1 appears 2k times consecutively infinitely often almost
surely. Indeed, for i ≥ 1 set

Ai = {X2ki = 1,X2ki+1 = 1, . . . ,X2ki+2k−1 = 1}.

These events are independent by the coalition principle, and P (Ai) = 1
22k

. Thus
∑
i≥1P (Ai) =∞,
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so by the second Borel–Cantelli lemma almost surely the eventsAi happen infinitely many times.
Hence P (T <∞) = 1.

(2) Since T <∞ almost surely, Zn converges almost surely to ST . Hence Zn converges also in prob-
ability to ST (recall that almost sure convergence implies convergence in probability). Since
|Zn| ≤ 2k, the convergence also holds in L

1.

By symmetry,
P (ST = 0) = P (ST = 2k) =

1
2
.

Let us write this argument in a more formal way. Denote by Φ the map which transforms a walk
on Z which makes ±1 jumps by transforming −1 jumps into +1 jumps. Set (S ′n)n≥0 = Φ((Sn)n≥0)
and T ′ = inf{i ≥ 1 : S ′i = 0 or S ′i = 2k}. Hence, by construction, ST = 0 if and only if S ′T ′ = 2k. In
addition, (Sn)n≥0 and (S ′n)n≥0 have the same law. Hence P (ST = 0) = P

(
S ′T ′ = 2k

)
= P (ST = 2k).

Since P (ST = 0) +P (ST = 2k) = 1, the desired result follows.

□

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 6. (Coupon-collector problem) Let (Xk , k ≥ 1) be a sequence of independent random variables
uniformly distributed over the set {1,2, . . . ,n}. Let

Tn = inf{m ≥ 1 : {X1, . . . ,Xm} = {1,2, . . . ,n}}

the first time when all values have been observed.

(1) Set τnk = inf{m ≥ 1 : Card({X1, . . . ,Xm}) = k} for every k ≥ 1. Show that the variables (τnk − τ
n
k−1)2≤k≤n

are independent and determine their respective distributions.

(2) Conclude that the convergence Tn
n logn → 1 holds in probability.

Hint. Show and use the Bienaymé-Tchebyshev inequality, which states that for every random variable
Z and x > 0 we have P (|Z −E [Z] | > x) ≤ Var(Z)

x2
.

Solution:

(1) The quantity τnk −τ
n
k−1 represents the time taken to obtain a new element once you have obtained

k − 1 elements. Intuitively, these variables are independent and follow a geometric distribution
with a parameter of n−k+1

n (there are n− (k − 1) elements remaining).

To formally prove this, we can proceed as follows. We have τn1 = 1. Let (t2, . . . , tn) ∈ (N∗)n−1. We
want to calculate P (τn2 − τn1 = t2, . . . , τ

n
n − τnn−1 = tn).
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By setting t1 = 1 and by letting Sn be the set of permutations of 1,2, . . . ,n, we have:

P(τn2 − τn1 = t2, . . . , τ
n
n − τnn−1 = tn)

=
∑
σ∈Sn

P

n−1⋂
k=1

{
Xt1+...+tk = σ (k),Xt1+...+tk+1 ∈ {σ (1), . . . ,σ (k)}, . . . ,

Xt1+...+tk+tk+1−1 ∈ {σ (1), . . . ,σ (k)}
}
∩ {Xt1+...+tn = σ (n)}


=

∑
σ∈Sn

1
nn

n∏
k=2

(
k − 1
n

)tk−1
=

n!
nn

n∏
k=2

(
k − 1
n

)tk−1
=

n∏
k=2

(
n+ 1− k

n

)(
k − 1
n

)tk−1
.

Therefore, the random variables (τnk −τ
n
k−1)2≤k≤n are independent and have the following respec-

tive distribution:

P

(
τnk − τ

n
k−1 = i

)
=

(
n+ 1− k

n

)(
k − 1
n

)i−1
=

(
n− k + 1

n

)(
1− n− k + 1

n

)i−1
for i ≥ 1.

This distribution is indeed the distribution of Gk where Gk follows a geometric distribution with
a parameter of n−k+1

n .

(2) To prove the Bienaymé-Tchebyshev inequality, write using Markov’s inequality:

P (|Z −E [Z] | > x) = P ((Z −E [Z])2 > x2) ≤ E [(Z −E [Z])2]
x2

=
Var(Z)
x2

.

Now, we have Tn = 1+
∑n
k=2(τ

n
k − τ

n
k−1), and therefore:

E(Tn) = 1+
n∑
k=2

n
n+ 1− k

= 1+nHn−1,

where Hn is the harmonic series, and using the fact that the variance of a geometric random
variable with parameter p is (1− p)/p2, we get

Var(Tn) =
n∑
k=2

Var(τnk − τ
n
k−1) =

n∑
k=2

(k − 1)/n
((n+ 1− k)/n)2

= n
n−1∑
k=1

n− k
k2
≤ Cn2
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with C =
∑
k≥1

1
k2

. So for any ε > 0:

P (|Tn −E(Tn)| ≥ εn log(n)) ≤ Var(Tn)
ε2n2 log(n)2

≤ C

ε2 log(n)2
.

Therefore, (Tn −E(Tn))/(n log(n))→ 0 in probability. Now, E(Tn) ∼ n log(n) as n approaches infin-
ity. So, for any ε > 0, {|Tn−n log(n)| ≥ 2εn log(n)} ⊂ {|Tn−E(Tn)| ≥ εn log(n)} for sufficiently large n.
This yields the result.

□

Exercise 7. Let (Xn) be a sequence of real random variables converging in probability to 0. Show that
there exists a sequence xn→ 0 such that P(|Xn| ≥ xn)→ 0.

Solution:
Let ik be such that P(|Xn| ≥ 1

k ) ≤ 1
k for n ≥ ik. Without loss of generality, we may assume that (ik) is

increasing. For n ≥ 1, we then set

xn =
1
ik

with ik ≤ n < ik+1.

Then clearly xn→ 0 since ik→ ∞, and for n ≥ 1, if kn is such that ikn ≤ n < ikn+1, we have

P(|Xn| ≥ xn) = P

(
|Xn| ≥

1
ikn

)
≤ 1
ikn

−→
n→∞

0.

□

Exercise 8. Is the converse of Exercise 4 true? That is, if (Xi)i≥1 are i.i.d. real-valued random variables, is
it ture that if the sequence (max(X1, . . . ,Xn)/n)n≥2 is uniformly integrable, then E [|X1|] <∞?

Solution:
Yes, if the random variables are non-negative. In such cases, 0 ≤ X1/2 ≤max(X1,X2)/2, and as a result,
E[X1] <∞.

In general, no! For example, if we takeX1 to be a random variable with density given by 1
|x|21x≤−1,

we can observe that max(X1, . . . ,Xn) has density n
|x|n+11x≤−1, and as a result,

E

[∣∣∣∣∣max(X1, . . . ,Xn)
n

∣∣∣∣∣3/2] =
1

n3/2

∫ ∞
1

nx3/2

xn+1 dx =
1

n3/2
2n
2n− 3

.

The sequence (max(X1,...,Xn)
n )n ≥ 2 being bounded in L3/2, it is uniformly integrable, even though X1 is

not integrable.
□
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4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 9. In the city of Knossos, there’s a labyrinth with the following peculiarity: each room in the
labyrinth has three corridors leading off it. King Minos places a Minotaur in the labyrinth, who performs
the following routine over and over again: he walks down a corridor, enters a room and every other time
takes the corridor on the right, and every other time the corridor on the left (. Show that the Minotaur will
return to its initial point.

Solution:
The idea is to consider the set of all configurations of the form (s1, s2,d), where s1 indicates the room
the minotaur comes from, s2 the room he’s in, and d is the direction he must take (right or left).

Observe that the set of all configurations is a finite set, so the Minotaur makes a cycle in this set.
In addition, we can reconstruct the past of the minotaur’s journey from any element in this cycle, so
all its past journey belongs to this cycle. In particular, the Minotaur returns to the initial room. □
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