
Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Week 9: (sub/super)martingales and their a.s. convergence

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 20/11/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. (Pólya’s Urn) At time 0, an urn contains 1 black ball and 1 white ball. At each time n ≥ 1
a ball is chosen uniformly at random from the urn and is replaced together with a new ball of the same
colour. Just after time n, there are therefore n+ 2 balls in the urn, of which Bn + 1 are black, where Bn is
the number of black balls chosen by time n. We let Fn = σ (B1, . . . ,Bn) for n ≥ 1 and F0 = {∅,Ω}.

(1) For every n ≥ 1 prove that Bn is uniformly distributed on {0,1, . . . ,n}.

Hint. Argue by induction.

(2) Let Mn = (Bn +1)/(n+2) be the proportion of black balls in the urn just after time n. Prove that (Mn)
is a martingale with respect to (Fn) and show that Mn→ U as n→∞ a.s. for some random variable
U .

(3) Show that U follows the uniform distribution on (0,1).

Hint. For a continuous function f : [0,1]→R, consider f (Mn) and use Exercise 1 from Exercise Sheet
4.

(4) Fix 0 < θ < 1 and define for n ≥ 0

Nn =
(n+ 1)!

Bn!(n−Bn)!
θBn(1−θ)n−Bn

Show that (Nn)n≥0 is a martingale for the filtration (Fn)n≥0.
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2 Training exercises

Exercise 2. Let (Mn) be a submartingale such that

sup
n≥1

E

[
M+

n
]
<∞

where M+
n = max(Mn,0). Show that (Mn)n≥0 converges almost surely.

Exercise 3. Let (Xi)i≥1 be i.i.d. random variables with values in {−1,1} where we write P(Xi = 1) = p and
assume that p ∈ (0,1/2). Moreover, define S0 = 0 and Sn = X1 + · · ·+Xn for n ≥ 1. For n ≥ 0 we set

Mn =
(
1
p
− 1

)Sn
.

For n ≥ 1 set Fn = σ (X1, . . . ,Xn) and F0 = {∅,Ω}.

(1) Show that (Mn) is an L1 bounded martingale with respect to the filtration (Fn) where.

(2) Show that Mn converges almost surely to 0 as n→∞, but does not converge in L1.

Exercise 4.

(1) Find an example of a martingale which is not bounded in L1.

(2) Find an example of a martingale which converges almost surely but which is not bounded in L1.

(3) Find an example of a martingale which converges almost surely to∞.

Hint. Search for martingales of the form Mn = X1 + · · ·+Xn.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let (Yn)n≥0 be a sequence of non-negative i.i.d. random variables with E(Y1) = 1 and P(Y1 =
1) < 1. For n ≥ 1 we let Fn = σ (Y1, . . . ,Yn), and we set F0 = {∅,Ω}.

(1) Show that Xn =
∏n

i=1Yi defines a martingale with respect to (Fn).

(2) Show that Xn→ 0 as n→∞ a.s.

Hint. You may use the strict Jensen inequality: if f : R→R is strictly convex and X is a non-constant
random variable such that X and f (X) are integrable, then f (E [X]) < E [f (X)].

Exercise 6. (Bellman’s Optimality Principle) Your winnings per unit stake on game n are ϵn, where the ϵn
are i.i.d. random variables with

P(ϵn = +1) = p, P(ϵn = −1) = q, where 1/2 < p = 1− q < 1.
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Your stake Cn on game n must lie between 0 and Zn−1, where Zn−1 is your fortune at time n − 1. Your
objective is to maximize the expected interest rate E [ln(ZN /Z0)], where N is a given integer representing
the length of the game, and Z0, your fortune at time 0, is a given constant. Let Fn = σ (ϵ1, . . . ,ϵn) be your
history up to time n. We assume that ln(Zn) is integrable for all n ≥ 0.

(1) Show that if C is any (predictable) strategy, meaning that for all n ≥ 1, Cn is Fn−1 measurable, then
ln(Zn)−nα is a supermartingale, where α denotes the entropy

α = p lnp+ q lnq+ ln2.

Conclude that E [ln(ZN /Z0)] ≤Nα.

(2) Show that for a certain strategy, ln(Zn)−nα is a martingale. What is the best strategy?

Exercise 7. Find a sequence (Mn)n≥0 of integrable random variables such that E [Mn+1|Mn] = Mn but such
that (Mn)n≥0 is not a martingale with respect to its canonical filtration.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 8. A mathematician, an economist and a trader are chatting in a bar. The economist says:
”The euro value of a CHF over time is a martingale! Otherwise, it would be possible to make money

on average, buying and selling CHF at the right time!”
The mathematician replies: ”But if that’s true, according to conditional’s Jensen’s inequality, the CHF

value of a euro is a sub-martingale!”
The trader says nothing, thinks for a few seconds, then runs off to buy euros.
What do you think?
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