Week 9: (sub/super)martingales and their a.s. convergence

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises. If you want to hand in, do it so by Monday 20/11/2023 17:00 (online) following the instructions on the course website
https://metaphor.ethz.ch/x/2023/hs/401-3601-ooL/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.
Exercise 1. (Pólya's Urn) At time o, an urn contains 1 black ball and 1 white ball. At each time $n \geq 1$ a ball is chosen uniformly at random from the urn and is replaced together with a new ball of the same colour. Just after time n, there are therefore $n+2$ balls in the urn, of which $B_{n}+1$ are black, where B_{n} is the number of black balls chosen by time n. We let $\mathcal{F}_{n}=\sigma\left(B_{1}, \ldots, B_{n}\right)$ for $n \geq 1$ and $\mathcal{F}_{\mathrm{o}}=\{\varnothing, \Omega\}$.
(1) For every $n \geq 1$ prove that B_{n} is uniformly distributed on $\{0,1, \ldots, n\}$. Hint. Argue by induction.
(2) Let $M_{n}=\left(B_{n}+1\right) /(n+2)$ be the proportion of black balls in the urn just after time n. Prove that $\left(M_{n}\right)$ is a martingale with respect to $\left(\mathcal{F}_{n}\right)$ and show that $M_{n} \rightarrow U$ as $n \rightarrow \infty$ a.s. for some random variable U.
(3) Show that U follows the uniform distribution on $(0,1)$.

Hint. For a continuous function $f:[0,1] \rightarrow \mathbb{R}$, consider $f\left(M_{n}\right)$ and use Exercise 1 from Exercise Sheet 4.
(4) Fix $o<\theta<1$ and define for $n \geq 0$

$$
N_{n}=\frac{(n+1)!}{B_{n}!\left(n-B_{n}\right)!} \theta^{B_{n}}(1-\theta)^{n-B_{n}}
$$

Show that $\left(N_{n}\right)_{n \geq 0}$ is a martingale for the filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$.

2 Training exercises

Exercise 2. Let $\left(M_{n}\right)$ be a submartingale such that

$$
\sup _{n \geq 1} \mathbb{E}\left[M_{n}^{+}\right]<\infty
$$

where $M_{n}^{+}=\max \left(M_{n}, o\right)$. Show that $\left(M_{n}\right)_{n \geq 0}$ converges almost surely. Exercise 3. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. random variables with values in $\{-1,1\}$ where we write $\mathbb{P}\left(X_{i}=1\right)=p$ and assume that $p \in(0,1 / 2)$. Moreover, define $S_{o}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geq 1$. For $n \geq 0$ we set

$$
M_{n}=\left(\frac{1}{p}-1\right)^{S_{n}}
$$

For $n \geq 1$ set $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and $\mathcal{F}_{o}=\{\varnothing, \Omega\}$.
(1) Show that $\left(M_{n}\right)$ is an L^{1} bounded martingale with respect to the filtration $\left(\mathcal{F}_{n}\right)$ where.
(2) Show that M_{n} converges almost surely to o as $n \rightarrow \infty$, but does not converge in L^{1}.

Exercise 4.

(1) Find an example of a martingale which is not bounded in L^{1}.
(2) Find an example of a martingale which converges almost surely but which is not bounded in L^{1}.
(3) Find an example of a martingale which converges almost surely to ∞.

Hint. Search for martingales of the form $M_{n}=X_{1}+\cdots+X_{n}$.

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let $\left(Y_{n}\right)_{n \geq 0}$ be a sequence of non-negative i.i.d. random variables with $\mathbb{E}\left(Y_{1}\right)=1$ and $\mathbb{P}\left(Y_{1}=\right.$ 1) <1. For $n \geq 1$ we let $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$, and we set $\mathcal{F}_{o}=\{\varnothing, \Omega\}$.
(1) Show that $X_{n}=\prod_{i=1}^{n} Y_{i}$ defines a martingale with respect to $\left(\mathcal{F}_{n}\right)$.
(2) Show that $X_{n} \rightarrow 0$ as $n \rightarrow \infty$ a.s.

Hint. You may use the strict Jensen inequality: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly convex and X is a non-constant random variable such that X and $f(X)$ are integrable, then $f(\mathbb{E}[X])<\mathbb{E}[f(X)]$.

Exercise 6. (Bellman's Optimality Principle) Your winnings per unit stake on game n are ϵ_{n}, where the ϵ_{n} are i.i.d. random variables with

$$
\mathbb{P}\left(\epsilon_{n}=+1\right)=p, \quad \mathbb{P}\left(\epsilon_{n}=-1\right)=q, \quad \text { where } 1 / 2<p=1-q<1 .
$$

Your stake C_{n} on game n must lie between o and Z_{n-1}, where Z_{n-1} is your fortune at time $n-1$. Your objective is to maximize the expected interest rate $\mathbb{E}\left[\ln \left(Z_{N} / Z_{o}\right)\right]$, where N is a given integer representing the length of the game, and Z_{0}, your fortune at time o, is a given constant. Let $\mathcal{F}_{n}=\sigma\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ be your history up to time n. We assume that $\ln \left(Z_{n}\right)$ is integrable for all $n \geq 0$.
(1) Show that if C is any (predictable) strategy, meaning that for all $n \geq 1, C_{n}$ is \mathcal{F}_{n-1} measurable, then $\ln \left(Z_{n}\right)-n \alpha$ is a supermartingale, where α denotes the entropy

$$
\alpha=p \ln p+q \ln q+\ln 2 .
$$

Conclude that $\mathbb{E}\left[\ln \left(Z_{N} / Z_{o}\right)\right] \leq N \alpha$.
(2) Show that for a certain strategy, $\ln \left(Z_{n}\right)-n \alpha$ is a martingale. What is the best strategy?

Exercise 7. Find a sequence $\left(M_{n}\right)_{n \geq 0}$ of integrable random variables such that $\mathbb{E}\left[M_{n+1} \mid M_{n}\right]=M_{n}$ but such that $\left(M_{n}\right)_{n \geq 0}$ is not a martingale with respect to its canonical filtration.

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 8. A mathematician, an economist and a trader are chatting in a bar. The economist says:
"The euro value of a CHF over time is a martingale! Otherwise, it would be possible to make money on average, buying and selling CHF at the right time!"

The mathematician replies: "But if that's true, according to conditional's Jensen's inequality, the CHF value of a euro is a sub-martingale!"

The trader says nothing, thinks for a few seconds, then runs off to buy euros.
What do you think?

