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Week 9: (sub/super)martingales and their a.s. convergence

Submission of solutions. Feedback can be given on Exercise 1 and any other exercise from the Training exercises.

If you want to hand in, do it so by Monday 20/11/2023 17:00 (online) following the instructions on the course

website

https://metaphor.ethz.ch/x/2023/hs/401-3601-00L/

Please pay attention to the quality, the precision and the presentation of your mathematical writing.

∗ ∗ ∗

1 Exercise covered during the exercise class

The following exercise will be covered during the exercise class.

Exercise 1. (Pólya’s Urn) At time 0, an urn contains 1 black ball and 1 white ball. At each time n ≥ 1
a ball is chosen uniformly at random from the urn and is replaced together with a new ball of the same
colour. Just after time n, there are therefore n+ 2 balls in the urn, of which Bn + 1 are black, where Bn is
the number of black balls chosen by time n. We let Fn = σ (B1, . . . ,Bn) for n ≥ 1 and F0 = {∅,Ω}.

(1) For every n ≥ 1 prove that Bn is uniformly distributed on {0,1, . . . ,n}.

Hint. Argue by induction.

(2) Let Mn = (Bn +1)/(n+2) be the proportion of black balls in the urn just after time n. Prove that (Mn)
is a martingale with respect to (Fn) and show that Mn→ U as n→∞ a.s. for some random variable
U .

(3) Show that U follows the uniform distribution on (0,1).

Hint. For a continuous function f : [0,1]→R, consider f (Mn) and use Exercise 1 from Exercise Sheet
4.

(4) Fix 0 < θ < 1 and define for n ≥ 0

Nn =
(n+ 1)!

Bn!(n−Bn)!
θBn(1−θ)n−Bn

Show that (Nn)n≥0 is a martingale for the filtration (Fn)n≥0.

Solution:

(1) We prove the claim by induction; when n = 0 the claim is obvious. Let us now consider the
induction step. Then by the problem description, for b ∈ {0, . . . ,n+ 1}, almost surely we have

P(Bn+1 = b | Fn) =
Bn + 1
n+ 2

1b=Bn+1 +
n+ 1−Bn

n+ 2
1b=Bn

. (1)
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(recall that by definition P(A|Fn) = E [1A|Fn] for any event A. Thus by taking expectations on
both sides and using the fact that Bn is uniform on {0, . . . ,n} we get

P(Bn+1 = b) =
b

n+ 2
· 1
n+ 1

+
n+ 1− b
n+ 2

· 1
n+ 1

=
1

n+ 2

as required.

(2) Clearly Mn ∈ L1(Ω,Fn,P) since it is Fn-measurable with values in [0,1]. By (1) we get

E [Mn+1 | Fn] =
n+2∑
b=0

b+ 1
n+ 3

P(Bn+1 = b | Fn)

=
Bn + 2
n+ 3

· Bn + 1
n+ 2

+
Bn + 1
n+ 3

· n+ 1−Bn

n+ 2
= Mn a.s.

Since (Mn) is bounded in L1 the martingale convergence theorem implies that the limit U =
limn→∞Mn almost surely exists.

(3) Let f : [0,1]→R be continuous. We have

E [f (Mn)] =
1

n+ 1

n+1∑
i=1

f
( i
n+ 2

)
−→
n→∞

∫ 1
0
f (t)dt, (2)

by the Riemann theorem. This can be proved by hand: since f is continuous on [0,1] it is
also uniformly continuous, so for every ε > 0 there exists δ > 0 such that |x − y| ≤ δ implies
|f (x)− f (y)| ≤ ε. Then, for n such that 1/n < δ we have | i

n+2 −
i

n+1 | ≤
1
n , so∣∣∣∣∣∣∣ 1n+ 1

n+1∑
i=1

f
( i
n+ 2

)
− 1
n+ 1

n+1∑
i=1

f
( i
n+ 1

)∣∣∣∣∣∣∣ ≤ ε

and also ∣∣∣∣∣∣∣ 1n+ 1

n+1∑
i=1

f
( i
n+ 1

)
−
∫ 1
0
f (t)dt

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n+1∑
i=1

∫ i
n+1

i−1
n+1

(
f
( i
n+ 1

)
− f (t)dt

)∣∣∣∣∣∣∣
≤

n+1∑
i=1

∫ i
n+1

i−1
n+1

∣∣∣∣∣f ( i
n+ 1

)
− f (t)dt

∣∣∣∣∣
≤ ε.

which implies (2).

But Mn → U almost surely, so by continuity of f we also have f (Mn) → f (U ) almost surely.
Since f is continuous on [0,1] is it bounded, so by dominated convergence we have E [f (Mn)]→
E [f (U )].
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By (2) we conclude with the transfer theorem that∫
R

f (x)PU (dx) = E [f (U )] =
∫ 1
0
f (x)dx.

By Exercise 1(3) of Exercise Sheet 4we conclude that U follows the uniform distribution on [0,1].

(4) For n ≥ 0 the random variable Nθ
n is Fn measurable and non-negative. By (1) we deduce that

E(Nn+1 | Fn) =
n+2∑
b=0

(n+ 2)!
b!(n+ 1− b)!

θb(1−θ)n+1−b
P(Bn+1 = b | Fn)

=
(n+ 2)!

(Bn + 1)!(n−Bn)!
θBn+1(1−θ)n−Bn

Bn + 1
n+ 2

+
(n+ 2)!

Bn!(n+ 1−Bn)!
θBn(1−θ)n+1−Bn

n+ 1−Bn

n+ 2

=
(n+ 1)!

Bn!(n−Bn)!
θBn(1−θ)n−Bn

= Nn

By taking expectations this implies in particular that the sequence (E [Nn])n≥0 is constant, so that
Nn ∈ L1(Ω,Fn,P). Since E [Nn+1|Fn] = Nn, this completes the proof.

□

2 Training exercises

Exercise 2. Let (Mn) be a submartingale such that

sup
n≥1

E

[
M+

n
]
<∞

where M+
n = max(Mn,0). Show that (Mn)n≥0 converges almost surely.

Solution:
Set C = supn≥1E

[
M+

n
]
. It is enough to show that (Mn) is bounded in L1. To this end write Mn =

M+
n −M−n . Since (Mn)n≥1 is a submartingale, we have E [Mn] ≥ E [M0], so E [M−n ] ≤ E

[
M+

n
]
−E [M0] ≤

C +E [M0]. As a consequence

E [|Mn|] = E

[
M+

n
]

+E [M−n ] ≤ 2C −E [M0] ,

which shows that (Mn) is bounded in L1. □

Exercise 3. Let (Xi)i≥1 be i.i.d. random variables with values in {−1,1} where we write P(Xi = 1) = p and
assume that p ∈ (0,1/2). Moreover, define S0 = 0 and Sn = X1 + · · ·+Xn for n ≥ 1. For n ≥ 0 we set

Mn =
(
1
p
− 1

)Sn
.

For n ≥ 1 set Fn = σ (X1, . . . ,Xn) and F0 = {∅,Ω}.
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(1) Show that (Mn) is an L1 bounded martingale with respect to the filtration (Fn) where.

(2) Show that Mn converges almost surely to 0 as n→∞, but does not converge in L1.

Solution:

(1) We observe that (Mn) is (Fn)-measurable and E(|Mn|) ≤ (1/p − 1)n <∞ for all n ≥ 0. Using that Sn
is Fn measurable and that Xn+1 is independent of Fn, we get that a.s.

E(Mn+1 | Fn) =(1/p − 1)SnE((1/p − 1)Xn+1)

=Mn

(
p
1− p
p

+ (1− p)
p

1− p

)
= Mn.

Therefore, Mn is a martingale, and for all n ≥ 1, E(Mn) = E(M0) = 1, i.e. the sequence (Mn) is
bounded in L1.

(2) Notice that by the strong law of large numbers, Sn/n converges a.s. to E(X1) = 2p − 1 < 0 as
n→∞. This means that a.s. Sn→−∞ as n→∞, and thus Mn→ 0 a.s. as n→∞.

Now argue by contraction and assume that Mn → M in L1. Then Mn → M in probability, and
since Mn→ 0 a.s. we also have Mn→ 0 in probability. Thus Mn→ 0 in L1, which is a contradic-
tion since E [Mn] = 1 for every n ≥ 0.

Remark. Note that for martingales, L1 convergence is stronger than a.s. convergence, in the
sense that a martingale that converges in L1 also converges a.s. (note that this is not true for general
random variables). Indeed, if a martingale converges in L1, then it is bounded in L1, so it converges
almost surely due to the martingale a.s. convergence theorem. The converse is not true as seen in this
exercise.

□

Exercise 4.

(1) Find an example of a martingale which is not bounded in L1.

(2) Find an example of a martingale which converges almost surely but which is not bounded in L1.

(3) Find an example of a martingale which converges almost surely to∞.

Hint. Search for martingales of the form Mn = X1 + · · ·+Xn.

Solution:
In the following, the filtration is taken to be the canonical filtration

(1) Let (Mn) be the simple random walk, defined by M0 = 0 and Mn = X1 + · · · + Xn with (Xi)i≥1
i.i.d. with P (X1 = 1) = P (X1 = −1) = 1

2 , with its canonical filtration. It is clearly a martingale. If
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it is bounded in L1, then it converges almost surely. Since it is integer valued, this would imply
that almost surely it is constant after some point, which is not possible.

(2) Let (Xn)n≥1 be independent random variables with law given by

P (Xn = 4n) = P (Xn = −4n) =
1
2n

, P (Xn = 0) = 1− 1
2n−1

and Mn = X1 + · · ·+Xn.

Since E [Xn] = 0 for every n ≥ 1, (Mn) is a martingale with respect to its canonical filtration. Since∑
n≥1

1
2n−1 <∞, Borel-Cantelli 1 implies that P (limsup{|Xn| = 4n}) = 0. Thus with probability 0we

have Xn = 4n infinitely often. In other words, a.s. Xn = 0 for n sufficiently large, which implies
that a.s. Mn converges.

But if Xn = 4n, then Mn ≥ 4n − 4n−1 − · · · − 1 ≥ 4n−1, so

E [|Mn|] ≥ E

[
|Mn|1Xn=4n

]
≥ 4n−1P (Xn = 4n) = 2n−2 −→

n→∞
∞,

so (Mn) is not bounded in L1.

(3) Let (Xn)n≥1 be independent random variables with law given by

P (Xn = 1) =
n2

n2 + 1
, P (Xn = −n2) =

1
n2 + 1

and Mn = X1 + · · ·+Xn. Since E [Xn] = 0 for every n ≥ 1, (Mn) is a martingale with respect to its
canonical filtration. Since

∑
n≥1

1
n2+1 <∞, by Borel-Cantelli 1 we have P (limsup{Xn = −n2}) = 0.

Thus with probability 0 we have Xn = −n2 infinitely often. In other words a.s. Xn = 1 for every n

sufficiently large, so Mn→∞ a.s.

□

3 More involved exercises (optional, will not be covered in the exercise class)

Exercise 5. Let (Yn)n≥0 be a sequence of non-negative i.i.d. random variables with E(Y1) = 1 and P(Y1 =
1) < 1. For n ≥ 1 we let Fn = σ (Y1, . . . ,Yn), and we set F0 = {∅,Ω}.

(1) Show that Xn =
∏n

i=1Yi defines a martingale with respect to (Fn).

(2) Show that Xn→ 0 as n→∞ a.s.

Hint. You may use the strict Jensen inequality: if f : R→R is strictly convex and X is a non-constant
random variable such that X and f (X) are integrable, then f (E [X]) < E [f (X)].

5



Prof. Igor Kortchemski ETHZ – Probability Theory Autumn 2023

Solution:

(1) Clearly Xn is Fn-measurable. In addition, Xn ≥ 0 and E(Xn) =
∏n

i=1E(Yi) = 1 for all n ≥ 1. Thus
Xn ∈ L1(Ω,Fn,P). Also E(Xn+1 | Fn) =

∏n
i=1Yi ·E(Yn+1) = Xn, which implies that (Xn) is a (Fn)

martingale.

(2) If P(Y1 = 0) > 0, then since the events ({Yi = 0})i≥1 are independent, by the second Borel-Cantelli
Lemma, a.s. {Yi = 0} happens infinitely many times. This implies that Xn = 0 for all n large
enough a.s.

Let us now suppose then that Y1 > 0 almost surely. We show that ln(Xn)→ −∞ as n→∞ a.s.,
which will imply the desired result.

First case. ln(Y1) is integrable. Then by using the strict concavity of the logarithm we get
E [lnY1] < lnE [Y1] = 0. Then by the strong law of large numbers

1
n

ln(Xn) =
1
n

n∑
i=1

ln(Yi) −→
n→∞

E(ln(Y1)) < 0.

almost surely. Thus ln(Xn)→−∞ a.s.

Second case. ln(Y1) is not integrable. Then by monotone convergence E [lnmax(Y1,ϵ)]→ −∞ as
ε → 0, so we can choose ε > 0 such that E [lnmax(Y1,ϵ)] < 0. Then by the strong law of large
numbers

1
n

ln(Xn) ≤ 1
n

n∑
i=1

ln(max(Yi ,ϵ)) −→
n→∞

E [lnmax(Y1 ∨ ϵ)] < 0

Thus ln(Xn)→−∞ a.s.

□

Exercise 6. (Bellman’s Optimality Principle) Your winnings per unit stake on game n are ϵn, where the ϵn
are i.i.d. random variables with

P(ϵn = +1) = p, P(ϵn = −1) = q, where 1/2 < p = 1− q < 1.

Your stake Cn on game n must lie between 0 and Zn−1, where Zn−1 is your fortune at time n − 1. Your
objective is to maximize the expected interest rate E [ln(ZN /Z0)], where N is a given integer representing
the length of the game, and Z0, your fortune at time 0, is a given constant. Let Fn = σ (ϵ1, . . . ,ϵn) be your
history up to time n. We assume that ln(Zn) is integrable for all n ≥ 0.

(1) Show that if C is any (predictable) strategy, meaning that for all n ≥ 1, Cn is Fn−1 measurable, then
ln(Zn)−nα is a supermartingale, where α denotes the entropy

α = p lnp+ q lnq+ ln2.

Conclude that E [ln(ZN /Z0)] ≤Nα.
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(2) Show that for a certain strategy, ln(Zn)−nα is a martingale. What is the best strategy?

Solution:

(1) We note that our fortune at time n+ 1 is given by Zn+1 = Zn + ϵn+1Cn+1. Then, (Zn) is clearly (Fn)
measurable and integrable. Using that Zn and Cn+1 are Fn measurable, we get

E [ln(Zn+1)− ln(Zn) | Fn] = E [ln(1+ ϵn+1Cn+1/Zn) | Fn]

= p ln(1+Cn+1/Zn) + q ln(1−Cn+1/Zn)

We observe that the function p ln(1+ x) + q ln(1 − x) is concave and has a maximum at x = p − q.
Therefore

E [ln(Zn+1)− ln(Zn) | Fn] ≤ p ln(1+ p − q) + q ln(1+ q − p) = α.

This implies that E [ln(Zn+1)− (n+ 1)α | Fn] ≤ ln(Zn) − nα, i.e. ln(Zn) − nα is a supermartingale.
Therefore,

E [ln(ZN /Z0)] = E [ln(ZN )−Nα]−E(ln(Z0)) +Nα ≤Nα.

(2) From the previous part, we know that ln(Zn)−nα is a martingale if Cn+1 = (2p−1)Zn for all n ≥ 0.
Since the maximum of p ln(1+x) +q ln(1−x) is unique, we conclude that this strategy is optimal.

□

Exercise 7. Find a sequence (Mn)n≥0 of integrable random variables such that E [Mn+1|Mn] = Mn but such
that (Mn)n≥0 is not a martingale with respect to its canonical filtration.

Solution:
Take a simple random walk, that is Mn = X1+· · ·+Xn with (Xi)i≥1 i.i.d. with P (X1 = 1) = P (X1 = −1) = 12 ,
but slightly modified so that when it hits 0 it repeats the step X1. Indeed, for n ≥ 1, we have

E [Mn+1|Fn] =


Mn if Mn , 0

−1 if Mn = 0 and M1 = −1

1 if Mn = 0 and M1 = 1.

In paricular, E [Mn|Fn] , Mn if Mn = 0. It is not too difficult to see that a.s. there exists n ≥ 1 with
Mn = 0. Thus (Mn) is not a martingale. □

4 Fun exercise (optional, will not be covered in the exercise class)

Exercise 8. A mathematician, an economist and a trader are chatting in a bar. The economist says:
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”The euro value of a CHF over time is a martingale! Otherwise, it would be possible to make money
on average, buying and selling CHF at the right time!”

The mathematician replies: ”But if that’s true, according to conditional’s Jensen’s inequality, the CHF
value of a euro is a sub-martingale!”

The trader says nothing, thinks for a few seconds, then runs off to buy euros.
What do you think?

Solution:
To begin with, the mathematician is of course right. Let (Mn)n≥0 be a positive martingale for a filtration
(Fn)n≥1. Since the inverse function is convex on R

∗
+, Jensen’s conditional inequality gives

E [M−1n+1|Fn] ≥ E [Mn+1|Fn]−1 = M−1n ,

so (M−1n )n≥0 is indeed a submartingale. Moreover, if Mn+1 is not Fn -measurable (which must be the
case the case in practice), then the inequality is strict. Finally, if Mn is the euro value of a CHF, then
M−1n is the CHF value of an euro, so the euro/CHF rate would be a strict sub-martingale.

The trader’s reasoning is as follows. If the euro/CHF rate is a strict sub-martingale, then by buying
euros today and selling them tomorrow, the expected gain in CHF is strictly positive. So you have
to do it! On the other hand, this reasoning seems bizarre: it suggests that it would be systematically
interesting to buy euros and sell them the next day, whereas the same reasoning would lead to the
opposite if we swapped the roles of the euro and the CHF. This means that the economist’s assertion
must be false: the rates euro/CHF and CHF/euro would both be sub-martingales! This would mean
that buying euros one day and selling them the next would result in a positive expectation of gains in
CHF. So once again, we have the impression that we can win every time!

One can explain this “paradox” as follows. We win CHF when the rate of CHF fells: thus, if we win
CHF then each of these CHF is worth less than at the beginning. We therefore have a positive gain in
CHF, but once the CHF have been converted into goods, the expectation of gain should become zero.
□
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