Recap on sets

1 Operations on sets

Let E be a non-empty set.
Subsets. We write $A \subset E$ and say that A is a subset of E if for any $x \in A$, we have $x \in E$.
Complementary. If $A \subset E$, let $A^{c}=\{x \in E: x \notin A\}$ be the complement of A in E (A^{c} is a set consisting of elements of E that are not in A). If $A \subset B$, let $B \backslash A$ denote the elements of B that do not belong to A. Then $B \backslash A=B \cap\left(A^{c}\right)$.
Union. Let I be any set (we see I as a set of indices), and let $\left(A_{i}\right)_{i \in I}$ be a collection of subsets of E. Then $\bigcup_{i \in I} A_{i}$ denotes the subset of E formed by the elements x such that there exists $i \in I$ with $x \in A_{i}$.
Intersection. Let I be any set (we see I as a set of indices), and let $\left(A_{i}\right)_{i \in I}$ be a collection of subsets of E. Then $\bigcap_{i \in I} A_{i}$ denotes the subset of E formed of elements x such that for any $i \in I$ we have $x \in A_{i}$.
Unions, intersections and complements. Let I be any set (we see I as a set of indices), and let $\left(A_{i}\right)_{i \in I}$ be a collection of subsets of E. Recall that:

$$
\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I}\left(A_{i}\right)^{c}, \quad\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I}\left(A_{i}\right)^{c} .
$$

Equality of two sets. If A and B are two sets, to show that $A=B$, we very often reason by double inclusion, showing that if $x \in A$, then $x \in B$, then that if $x \in B$, then $x \in A$.
Set of parts. Let $\mathcal{P}(E)$ be the set of subsets of E (also called the power set of E).
Cartesian product of sets. If E_{1}, \ldots, E_{n} are sets, let $E_{1} \times \cdots \times E_{n}$ be the set of n-uplets (x_{1}, \ldots, x_{n}) such that $x_{1} \in E_{1}, x_{2} \in$ $E_{2}, \ldots, x_{n} \in E_{n}$. If I is a set, let E^{I} be the set of all applications of I in E. An element of E^{I} is usually denoted by $\left(e_{i}\right)_{i \in I}$.

2 Direct image, preimage

Let X and Y be two sets. Let $f: X \rightarrow Y$ be an application.
(*) Direct image. If $A \subset X$ is a subset of X, let $f(A)$ be the subset of Y defined by

$$
f(A)=\{y \in Y: \text { there exists } x \in A \text { such that } y=f(x)\} .
$$

We sometimes write $f(A)=\{f(x): x \in A\}$.
(*) Preimage. If $B \subset Y$ is a subset of Y, let $f^{-1}(B)$ be the subset of X defined by

$$
f^{-1}(B)=\{x \in X: f(x) \in B\} .
$$

We have $f(x) \in B$ if and only $x \in f^{-1}(B)$. We have $f(A) \subset B$ if and only if $A \subset f^{-1}(B)$.
(2) WARNING. If $y \in Y$, the notation $f^{-1}(y)$ doesn't always make sense (unless f is injective), whereas $f^{-1}(\{y\})$ does. On the Il other hand, if $x \in X, f(x)$ always makes sense (it's an element of Y), as does $f(\{x\})$ (which is a subset of Y that is $\{f(x)\})$.
(*) Composition of preimages. Let X, Y, Z be sets and $f: X \rightarrow Y, g: Y \rightarrow Z$ be applications. Then for any subset $B \subset Z$ of Z we have

$$
(f \circ g)^{-1}(B)=g^{-1}\left(f^{-1}(B)\right),
$$

which are subsets of X.

$3=1+2$

Let $f: X \rightarrow Y$ be an application. Let I be any set (we see I as a set of indices), let $\left(A_{i}\right)_{i \in I}$ be a collection of subsets of X and let $\left(B_{i}\right)_{i \in I}$ be a collection of subsets of Y. Then

$$
f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)
$$

and

$$
f^{-1}\left(\bigcup_{i \in I} B_{i}\right)=\bigcup_{i \in I} f^{-1}\left(B_{i}\right), \quad f^{-1}\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I} f^{-1}\left(B_{i}\right)
$$

Furthermore, if $A \subset B \subset Y$, we have $f^{-1}(B \backslash A)=f^{-1}(B) \backslash f^{-1}(A)$.
(3) WARNING. In general, it's not true that $f\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I} f\left(A_{i}\right)$ (find a counterexample!).

