Recap on conditional expectations

Here $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $\mathcal{A} \subset \mathcal{F}$ is a σ -field. Recall that if \mathcal{B} is a σ -field, $L^1(\Omega, \mathcal{B}, \mathbb{P})$ denotes the set of all real-valued random variables which are \mathcal{B} measurable and integrable (i.e. all measurable $X : (\Omega, \mathcal{B}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathbb{E}[|X|] < \infty$).

1 Definitions

- * When $X : (\Omega, \mathcal{F}) \to \mathbb{R}$ is a random variable, one defines $\mathbb{E}[X|\mathcal{A}]$ in two cases:
- (a) when X is integrable. In this case $\mathbb{E}[X|\mathcal{A}]$ is a random variable X', defined uniquely almost surely (that is, uniquely up to 0 probability events), such that
 - (1) $X' \in L^1(\Omega, \mathcal{A}, \mathbb{P})$
 - (2) for every Z real-valued \mathcal{A} measurable bounded random variable, $\mathbb{E}[X'Z] = \mathbb{E}[XZ]$.

The property (2) is called the "characteristic property of conditional expectation". By linearity (2) can be replaced by:

(2) for every Z real-valued \mathcal{A} measurable non-negative bounded random variable, $\mathbb{E}[X'Z] = \mathbb{E}[XZ]$.

By using the Dynkin Lemma (see Exercise 2 in Exercise sheet 8), (2) can be replaced by

- (2") for every A belonging to a generating π -system of \mathcal{A} , $\mathbb{E}[X'\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A]$.
- (b) when X is $[0, \infty]$ -valued. In this case $\mathbb{E}[X|\mathcal{A}]$ is a random variable X', defined uniquely almost surely (that is, uniquely up to 0 probability events), such that
 - (1) $X' \in [0, \infty]$ and X' is \mathcal{A} -measurable.
 - (2) for every Z non-negative random variable, \mathcal{A} measurable, $\mathbb{E}[X'Z] = \mathbb{E}[XZ]$.

The property (2) is called the "characteristic property of conditional expectation". By monotone convergence (2) can be replaced by:

- (2) for every Z real-valued \mathcal{A} measurable non-negative bounded random variable, $\mathbb{E}[X'Z] = \mathbb{E}[XZ]$.
- By using the Dynkin Lemma, (2) can be replaced by
- (2") for every A belonging to a generating π -system of \mathcal{A} , $\mathbb{E}[X'\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A]$.

In this case (b), all the expectations are well-defined (with values in $[0, \infty]$) since they only involve random variables with values in $[0, \infty]$.

In practice, to show that $\mathbb{E}[X|\mathcal{A}]$ is some random variable X', one can show that X' satisfies (1) and (2) above (or use some general properties on conditional expectations below).

* When Y is a random variable defined on Ω (with values in any space), one defines

$$\mathbb{E}\left[X|Y\right] = \mathbb{E}\left[X|\sigma(Y)\right]$$

which is a $\sigma(Y)$ -measurable random variable. When Y is \mathbb{R}^n -valued, by the Doob Dynkin Lemma $\mathbb{E}[X|Y]$ can be written in the form $\phi(Y)$ with $\phi : \mathbb{R}^n \to \mathbb{R}$ measurable.

* When $B \in \mathcal{F}$ is an event, one defines

$$\mathbb{P}(B|\mathcal{A}) = \mathbb{E}\left[\mathbb{1}_B|\mathcal{A}\right],$$

which is an \mathcal{A} -measurable random variable.

2 Useful properties of conditional expectations

All the random variables are defined on $(\Omega, \mathcal{F}, \mathbb{P})$. As usual, the "almost surely" is implicit in every assertion containing conditional expectations.

- (1) If X is integrable or $[0, \infty]$ -valued, $\mathbb{E}[\mathbb{E}[X|\mathcal{A}]] = \mathbb{E}[X];$
- (2) If X is integrable or $[0, \infty]$ -valued and \mathcal{A} -measurable, $\mathbb{E}[X|\mathcal{A}] = X$;
- (3) If X is integrable or $[0, \infty]$ -valued, $\mathbb{E}[X|\{\emptyset, \Omega\}] = \mathbb{E}[X];$
- (4) If X, Y are $[0, \infty]$ valued and $a, b \ge 0$, then

$$\mathbb{E}\left[aX + bY|\mathcal{A}\right] = a\mathbb{E}\left[X|\mathcal{A}\right] + b\mathbb{E}\left[Y|\mathcal{A}\right].$$

If X, Y are integrable and $a, b \in \mathbb{R}$, then

$$\mathbb{E}\left[aX + bY|\mathcal{A}\right] = a\mathbb{E}\left[X|\mathcal{A}\right] + b\mathbb{E}\left[Y|\mathcal{A}\right].$$

- (5) If X, Y are integrable or $[0, \infty]$ -valued with $X \ge Y$, then $\mathbb{E}[X|\mathcal{A}] \ge \mathbb{E}[Y|\mathcal{A}]$.
- (6) If X is integrable, $|\mathbb{E}[X|\mathcal{A}]| \leq \mathbb{E}[|X||\mathcal{A}].$
- (7) If X is integrable or $[0, \infty]$ -valued, and Y is independent of X then $\mathbb{E}[X|Y] = \mathbb{E}[X]$.

We have the following limit theorems.

(8) (conditional monotone convergence) If (X_n) is a weakly increasing sequence of $[0, \infty]$ -valued random variables and $X = \lim \uparrow X_n$, then

$$\mathbb{E}\left[X|\mathcal{A}\right] = \lim_{n \to \infty} \mathbb{E}\left[X_n|\mathcal{A}\right].$$

(9) (conditional Fatou's lemma) If (X_n) is a sequence of $[0,\infty]$ -valued random variables, then

$$\mathbb{E}\left[\liminf_{n\to\infty} X_n | \mathcal{A}\right] \leq \liminf_{n\to\infty} \mathbb{E}\left[X_n | \mathcal{A}\right].$$

(10) (conditional dominated convergence) Let (X_n) be a sequence of integrable random variables converging almost surely to X. Assume that there is a random variable Z such that for every $n \ge 1$, almost surely $|X_n| \le Z$ and $\mathbb{E}[Z] < \infty$. Then

$$\mathbb{E}[X|\mathcal{A}] = \lim_{n \to \infty} \mathbb{E}[X_n|\mathcal{A}] \quad \text{a.s. and in } L^1.$$

(11) (conditional Jensen's inequality) Let f is a nonnegative convex function. If X is integrable, then

$$f(\mathbb{E}[X|\mathcal{A}]) \leq \mathbb{E}[f(X)|\mathcal{A}].$$

By taking $\mathcal{A} = \{\emptyset, \Omega\}$ we get $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ (Jensen's inequality).

3 Further properties of conditional expectations

The following properties are useful when several random variables and/or σ -fields are present.

(12) (factorizing out) Let X, Y be random variables with either $X, Y \in [0, \infty]$, or X and XY integrable. Assume that Y is \mathcal{A} -measurable. Then

$$\mathbb{E}\left[YX|\mathcal{A}
ight] = Y\mathbb{E}\left[X|\mathcal{A}
ight].$$

(13) (tower property) Let $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{F}$ be σ -fields. Then for X integrable or $[0, \infty]$ -valued,

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{A}_{2}\right]|\mathcal{A}_{1}\right] = \mathbb{E}\left[X|\mathcal{A}_{1}\right].$$

(14) (adding independent information) Let $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{F}$ be σ -fields. Assume that X is integrable or $[0, \infty]$ -valued. If \mathcal{A}_2 is independent of $\sigma(\sigma(X), \mathcal{A}_1)$, then

$$\mathbb{E}\left[X|\sigma(\mathcal{A}_1,\mathcal{A}_2)\right] = \mathbb{E}\left[X|\mathcal{A}_1\right].$$