Approximation toolbox

The following techniques are useful:

- (1) Writing a real-valued random variable Z as $Z = Z^+ Z^-$ with $Z^+, Z^- \ge 0$. This often allows to easily get that a property holds for real-valued random variables after showing that it holds for non-negative ones (typically when we have linearity in Z).
- (2) Writing a non-negative real-valued random variable $Z \ge 0$ as a pointwise increasing limit $0 \le Z_n \uparrow Z$ of random variables. This often allows to easily get that a property holds for non-negative random variables after showing it holds for simple non-negative random variables (typically using monotone convergence).
- (3a) Writing a real-valued random variable Z as a pointwise limit of bounded functions $Z = \lim_{n \to \infty} Z \mathbb{1}_{|Z| \le n}$. This often allows to easily get that a property holds for real-valued random variables after showing it holds for bounded ones (typically using dominated convergence)
- (3b) Writing a non-negative real-valued random variable $Z \ge 0$ as a pointwise limit of bounded functions $Z = \lim_{n\to\infty} Z \mathbb{1}_{|Z|\le n}$. This often allows to easily get that a property holds for non-negative real-valued random variables after showing it holds for non-negative bounded ones (typically using monotone convergence).
- (4) When \mathcal{A} is a σ -field, instead of considering $\mathbb{1}_A$ with $A \in \mathcal{A}$, considering $\mathbb{1}_C$ with C in a generating π -system of \mathcal{A} . This sometimes allows to show that a property holds for simple functions after showing that it holds for simple ones with indicators of measurable sets in an explicit "nice" generating π -system (typically using linearity and the Dynkin Lemma).