Submartingales, supermartingales, martingales

We work on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with a filtration $(\mathcal{F}_n)_{n\geq 0}$ of \mathcal{F} $(\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F})$.

1 Definitions

- A sequence of random variables $(M_n)_{n>0}$ is a martingale if for every $n \ge 0$, $M_n \in L^1(\Omega, \mathcal{F}_n, \mathbb{P})$ and $\mathbb{E}[M_{n+1} \mid F_n] = M_n$.
- A sequence of random variables $(M_n)_{n>0}$ is a submartingale if for every $n \ge 0$, $M_n \in L^1(\Omega, \mathcal{F}_n, \mathbb{P})$ and $\mathbb{E}[M_{n+1} \mid F_n] \ge M_n$.
- A sequence of random variables $(M_n)_{n\geq 0}$ is a supermartingale if for every $n\geq 0, M_n\in L^1(\Omega, \mathcal{F}_n, \mathbb{P})$ and $\mathbb{E}[M_{n+1} \mid F_n]\leq M_n$

* Intuitively, a martingale represents a fair game, a submartingale a favorable game ("submartingales tend to increase") and a supermartingale represents a defavorable game ("supermartingales tend to decrease").

More formally, the sequence $(\mathbb{E}[M_n])_{n\geq 0}$:

- is constant for a martingale
- is weakly increasing for a submartingale
- is weakly decreasing for a supermartingale

2 Convergence theorems

Almost sure convergence. A martingale, supermartingale or submartingale bounded in L^1 converges almost surely. WARNING. the converse is false in general: a (sub/super)martingale can converge almost surely without being bounded in L^1 .

 L^1 convergence. A martingale, supermartingale or submartingale converges in L^1 if and only if it is uniformly integrable (indeed, convergence in L^1 always implies uniformly integrability, and uniform integrability implies bounded in L^1 , thus a.s. convergence for a (sub/super)martingale, thus convergence in probability and thus convergence in L^1 by uniform integrability). In these cases, they also converge a.s.

In the case of a martingale (M_n) , this is equivalent to the fact that (M_n) is a closed martingale in the form $M_n = \mathbb{E}[M_\infty | \mathcal{F}_n]$ where M_∞ is the a.s. limit of (M_n) .

 L^p convergence for p > 1. A martingale converges in L^p if and only if it is bounded in L^p . WARNING. This is not true for submartingales or supermartingales.

3 Optional stopping

The optional stopping theorem gives conditions under which $\mathbb{E}[M_T] = \mathbb{E}[M_0]$ for a martingale (M_n) and a random time T.

Optional stopping theorem. When T is a stopping time (i.e. for every $n \ge 0$ we have $\{T \le n\} \in \mathcal{F}_n$), and when (M_n) is a uniformly integrable martingale, we have $\mathbb{E}[M_T] = \mathbb{E}[M_0]$.

In practice we often apply the optional stopping theorem with a stopping T which is finite almost surely and by checking that the stopped martingale $(M_{n\wedge T})_{n\geq 0}$ is uniformly integrable (it then converges a.s. and in L^1 to M_T , so $\mathbb{E}[M_0] = \mathbb{E}[M_T]$).

In practice, to show uniform integrability, we often use the fact that a bounded sequence of random variables is uniformly integrable, and more generally that a sequence of random variables bounded in L^p with p > 1 is uniformly integrabe.

4 Some terminology

Various notions of boundedness are involved; let us recall them.

Finiteness of a random variable. A $\mathbb{R} \cup \{\infty\}$ -valued random variable X is said to be:

- finite if $|X| < \infty$ (that is for every $\omega \in \Omega$ we have $|X(\omega)| < \infty$);
- almost surely finite if almost surely $|X| < \infty$ (that is the set of $\omega \in \Omega$ such that $|X(\omega)| < \infty$ has probability 1).

In practice, sometimes one uses "finite" instead of "almost surely finite" (as in conditional expectations the "a.s." is implicit).

Boundedness of a random variable. A \mathbb{R}^d -valued random variable X is said to be:

- bounded if there exists M > 0 such that $|X| \leq M$ (that is for every $\omega \in \Omega$ we have $|X(\omega)| \leq M$);
- almost surely bounded if there exists M > 0 such that almost surely $|X| \le M$ (that is the set of $\omega \in \Omega$ such that $|X(\omega)| \le M$ has probability 1).

In practice, sometimes uses "bounded" instead of "almost surely bounded" (as in conditional expectations the "a.s." is implicit).

 $^{\textcircled{O}}$ WARNING. Here and after it is crucial that M does not depend on ω .

Boundedness of a sequence of random variables. A sequence $(X_n)_{n\geq 1}$ of \mathbb{R}^d -valued random variables is said to be:

- bounded if there exists M > 0 such that for every $n \ge 1$ we have $|X_n| \le M$ (that is for every $\omega \in \Omega$ we have $|X_n(\omega)| \le M$).
- almost surely bounded if there exists M > 0 such that almost surely for every $n \ge 1$ we have $|X_n| \le M$ (that is for every $\omega \in \Omega$ we have $|X_n(\omega)| \le M$).

WARNING. A sequence of bounded random variables is not necessarily a bounded sequence of random variables! For example, if $X_n = n$, then for every $n \ge 1$ the random variable X_n is bounded, but the sequence $(X_n)_{n\ge 1}$ is not bounded.

Remark. Since one can interchange "a.s." and "for every on a countable set", observe that "almost surely for every $n \ge 1$ we have $|X_n| \le M$ " is equivalent to "for every $n \ge 1$ almost surely we have $|X_n| \le M$ ".

Boundedness in \mathbb{L}^p of a sequence of random variables. A sequence $(X_n)_{n\geq 1}$ of \mathbb{R} -valued random variables is said to be: - bounded in \mathbb{L}^p if $\sup_{n>1} \mathbb{E}[|X_n|^p] < \infty$ (that is there exists M > 0 such that $\mathbb{E}[|X_n|^p] \leq M$ for every $n \geq 1$).