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Submartingales, supermartingales, martingales

We work on a probability space (Ω,F ,P), with a filtration (Fn)n≥0 of F (F0 ⊂ F1 ⊂ · · · ⊂ F).

1 Definitions

– A sequence of random variables (Mn)n≥0 is a martingale if for every n ≥ 0, Mn ∈ L1(Ω,Fn,P) and E [Mn+1 | Fn] = Mn.

– A sequence of random variables (Mn)n≥0 is a submartingale if for every n ≥ 0, Mn ∈ L1(Ω,Fn,P) and E [Mn+1 | Fn] ≥ Mn.

– A sequence of random variables (Mn)n≥0 is a supermartingale if for every n ≥ 0,Mn ∈ L1(Ω,Fn,P) and E [Mn+1 | Fn] ≤ Mn

∗ Intuitively, a martingale represents a fair game, a submartingale a favorable game (“submartingales tend to increase”) and
a supermartingale represents a defavorable game (“supermartingales tend to decrease”).

More formally, the sequence (E [Mn])n≥0:

– is constant for a martingale

– is weakly increasing for a submartingale

– is weakly decreasing for a supermartingale

2 Convergence theorems

Almost sure convergence. A martingale, supermartingale or submartingale bounded in L1 converges almost surely.
�

WARNING. the converse is false in general: a (sub/super)martingale can converge almost surely without being bounded in L1.

L1 convergence. A martingale, supermartingale or submartingale converges in L1 if and only if it is uniformly integrable
(indeed, convergence in L1 always implies uniformly integrability, and uniform integrability implies bounded in L1, thus a.s.
convergence for a (sub/super)martingale, thus convergence in probability and thus convergence in L1 by uniform integrability).
In these cases, they also converge a.s.

In the case of a martingale (Mn), this is equivalent to the fact that (Mn) is a closed martingale in the form Mn = E [M∞ | Fn]
where M∞ is the a.s. limit of (Mn).

Lp convergence for p > 1. A martingale converges in Lp if and only if it is bounded in Lp.
�

WARNING. This is not true for submartingales or supermartingales.

3 Optional stopping

The optional stopping theorem gives conditions under which E [MT ] = E [M0] for a martingale (Mn) and a random time T .

Optional stopping theorem. When T is a stopping time (i.e. for every n ≥ 0 we have {T ≤ n} ∈ Fn), and when (Mn) is a
uniformly integrable martingale, we have E [MT ] = E [M0].

In practice we often apply the optional stopping theorem with a stopping T which is finite almost surely and by checking
that the stopped martingale (Mn∧T )n≥0 is uniformly integrable (it then converges a.s. and in L1 to MT , so E [M0] = E [MT ]).

In practice, to show uniform integrability, we often use the fact that a bounded sequence of random variables is uniformly
integrable, and more generally that a sequence of random variables bounded in Lp with p > 1 is uniformly integrabe.
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4 Some terminology

Various notions of boundedness are involved; let us recall them.

Finiteness of a random variable. A R ∪ {∞}-valued random variable X is said to be:

– finite if |X| < ∞ (that is for every ω ∈ Ω we have |X(ω)| < ∞);

– almost surely finite if almost surely |X| < ∞ (that is the set of ω ∈ Ω such that |X(ω)| < ∞ has probability 1).

In practice, sometimes one uses “finite” instead of “almost surely finite” (as in conditional expectations the “a.s.” is implicit).

Boundedness of a random variable. A Rd-valued random variable X is said to be:

– bounded if there exists M > 0 such that |X| ≤ M (that is for every ω ∈ Ω we have |X(ω)| ≤ M);

– almost surely bounded if there exists M > 0 such that almost surely |X| ≤ M (that is the set of ω ∈ Ω such that |X(ω)| ≤ M
has probability 1).

In practice, sometimes uses “bounded” instead of “almost surely bounded” (as in conditional expectations the “a.s.” is
implicit).

�

WARNING. Here and after it is crucial that M does not depend on ω.

Boundedness of a sequence of random variables. A sequence (Xn)n≥1 of Rd-valued random variables is said to be:

– bounded if there exists M > 0 such that for every n ≥ 1 we have |Xn| ≤ M (that is for every ω ∈ Ω we have |Xn(ω)| ≤ M).

– almost surely bounded if there exists M > 0 such that almost surely for every n ≥ 1 we have |Xn| ≤ M (that is for every
ω ∈ Ω we have |Xn(ω)| ≤ M).

�WARNING. A sequence of bounded random variables is not necessarily a bounded sequence of random variables! For example,
if Xn = n, then for every n ≥ 1 the random variable Xn is bounded, but the sequence (Xn)n≥1 is not bounded.

Remark. Since one can interchange “a.s.” and “for every on a countable set”, observe that “almost surely for every n ≥ 1 we
have |Xn| ≤ M” is equivalent to “for every n ≥ 1 almost surely we have |Xn| ≤ M”.

Boundedness in Lp of a sequence of random variables. A sequence (Xn)n≥1 of R-valued random variables is said to be:

– bounded in Lp if supn≥1 E [|Xn|p] < ∞ (that is there exists M > 0 such that E [|Xn|p] ≤ M for every n ≥ 1).
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