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Convergence in distribution, characteristic functions

1 Convergence in distribution

Definition Let X,X1, . . . , Xn, . . . be random variables with values in Rk (or more generally in the same metric space) which
are not necessarily defined on the same probability space. We say that (Xn) converges in distribution to X if for any continuous
bounded function f : Rk → R we have

E [f(Xn)] −→
n→∞

E [f(X)] .

�WARNING. The notion of convergence in distribution only involves the law of random variables, which is not the case for
a.s. convergence, in probability and in Lp. In particular, it is an abuse of language to say that the sequence of a.v. (Xn)

converges in distribution to X, because the limiting a.v. X is not uniquely defined: only its law PX is.

�WARNING. For convergence in distribution, the random variables involved are not necessarily defined on the same probability
space, which makes convergence in distribution very different from the other convergences seen so far.

2 Characteristic functions

Characteristic functions are very useful for studying the laws of random variables with values in Rk (with k ≥ 1).

Definition If X is a random variable with values in Rk, its characteristic function is the function ϕX defined by

ϕX : Rk −→ C
u 7−→ E

[
ei⟨u,X⟩

]
where ⟨u, v⟩ denotes the scalar product of two vectors of Rk. The characteristic function is a continuous function (even uniformly
continuous).

Characterizations of laws. Characteristic functions are useful for identifying laws and showing independence:

– if X and Y are two random variables with values in Rk,

X and Y have the same law ⇐⇒ ϕX(u) = ϕY (u) for every u ∈ Rk.

In practice, to identify the law of X, we can compute the characteristic function of X and try to recognize the characteristic
function of a classical law.

More generally :

– if X has values in Rk and Y has values in Rm,

X and Y are independent ⇐⇒ ϕ(X,Y )((u, v)) = ϕX(u) · ϕY (v) ∀u ∈ Rk,∀v ∈ Rm.

Here ϕ(X,Y )((u, v)) stands for E
[
ei⟨u,X⟩+i⟨v,Y ⟩].

Computation of moments. Under the assumptions of existence of moments, differentiating characteristic functions at 0
gives access to moments (see the proof of the Taylor expansion of the characteristic function just before the proof of the Central
Limit Theorem).
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3 In practice, how to show convergence in distribution?

Let X,X1, . . . , Xn, . . . be random variables with values in Rk.

Functional approach. To show that (Xn) converges in distribution to X, show that E [f(Xn)] → E [f(X)] for any function
f that belongs to one of the following classes:

– bounded continuous functions from Rk into R (this is the definition),

– continuous functions with compact support from Rk into R (restriction of test functions),

– bounded Lipschitz functions from Rk into R (Portemanteau theorem).

Approach with cumulative distribution functions. If k =1 (i.e. we are working with real-valued random variables),
denoting by FY the cdf of a real random variable Y , then Xn converges in distribution to X if and only if FXn(u) → FX(u)
at any point u ∈ R where FX is continuous.

�WARNING. If the limiting random variable X is unknown, one can compute the limit F (u) of FXn(u) when n→ ∞ and check
whether there exists a random variable X such that FX is equal to F at any point where FX is continuous (it is sometimes

useful to use the fact that the points of discontinuity of a cdf are at most countable).

This approach with cdf’s is often useful for random variables involving min or max in their definition.

Approach with characteristic functions. To show that (Xn) converges in distribution to X, one can show that for all
u ∈ Rk, we have E

[
ei⟨u,Xn⟩

]
→ E

[
ei⟨u,Xn⟩

]
.

This approach with charactersitic functions is often useful for random variables involving sums of independent random
variables.

If the limiting random variable is unknown, we try to compute the limit ψ(u) of E
[
ei⟨u,Xn⟩

]
when n→ ∞. It is often possible

to recognize ψ as the characteristic function of a random variable X (and then Xn converges in distribution to X).

Approach by composition (continous mapping). If (Xn) converges in distribution to X and if f is a function almost
surely continuous at X, then f(Xn) converges in distribution to f(X).

Approach by joint convergence. If Xn converges in distribution to X and Yn converges in distribution to Y :

– if Y is a constant random variable (i.e. there exists c such that P (Y = c) = 1), then (Xn, Yn) → (X,Y ) in distribution
(Slutsky’s theorem)

– if Xn and Yn are independent for every n ≥ 1, then (Xn, Yn) converges in distribution to (X,Y ) with X,Y independent.

�WARNING. It is not true in general that if Xn → X in distribution and if Yn → Y in distribution, then (Xn, Yn) → (X,Y )
in distribution, in contrast with almost sure convergence and convergence in probability!

Proving stronger convergence. IfXn converges toX almost surely, in probability or in Lp, thenXn converges in distribution
to X.

Central Limit Theorem approach. Assume that the random variables (Xn)n≥1 are independent real random variables with
the same distribution and integrable squares. Set m = E [X1] and σ

2 = Var(X1), and assume that σ2 > 0 (otherwise the random
variables are constant). Then, setting Sn = X1 + · · ·+Xn,

Sn − nm

σ
√
n

converges in distribution to a standard N (0, 1) Gaussian random variable.
It can be shown that this convergence does not occur in probability (see Exercise sheet).
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