Recap on probability spaces

* Probabilized spaces. $(\Omega, \mathcal{A}, \mathbb{P})$ is a probabilized space (sometimes also called a probability space) if \mathcal{A} is a σ-field on Ω and \mathbb{P} is a probability (sometimes also called a probability measure) on (Ω, \mathcal{A}).
* σ-fields \quad A set \mathcal{A} of subsets of $\Omega(\mathcal{A} \subset \mathcal{P}(\Omega))$ is a σ-field on Ω if :
(1) $\Omega \in \mathcal{A}$.
(2) For all $A \in \mathcal{A}$, we have $A^{c}=\Omega \backslash A \in \mathcal{A}$.
(3) For any sequence $\left(A_{n}\right) \in \mathcal{A}^{\mathbb{N}}$ of elements of \mathcal{A}, we have $\bigcup_{n \geq 0} A_{n} \in \mathcal{A}$.

The elements of \mathcal{A} are said to be the events.
(3) WARNING. An event is always a subset of Ω.

* Probability A probability \mathbb{P} is a

$$
\text { application } \quad \mathbb{P}: \mathcal{A} \rightarrow[0,1]
$$

such that
(1) $\mathbb{P}(\Omega)=1$
(2) For any sequence $\left(A_{n}\right) \in \mathcal{A}^{\mathbb{N}}$ of pairwise disjoint \mathcal{A} events, we have

$$
\mathbb{P}\left(\bigcup_{n \geq 0} A_{n}\right)=\sum_{n=0}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

Probabilistic modeling consists in describing an a priori random experiment by making the choice of a probability space.

* Independence Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let I be a set. Events $\left(A_{i}\right)_{i \in I}$ are independent (implying mutually and relative to \mathbb{P}) if for any finite number of indices $i_{1}, i_{2}, \ldots, i_{n}$ we have

$$
\mathbb{P}\left(\bigcap_{1 \leq k \leq n} A_{i_{k}}\right)=\prod_{k=1}^{n} \mathbb{P}\left(A_{i_{k}}\right)
$$

Or, written another way, $\mathbb{P}\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{n}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \cdot \mathbb{P}\left(A_{i_{2}}\right) \cdots \mathbb{P}\left(A_{i_{n}}\right)$.
${ }^{2}$) WARNING. The notion of independence of a sequence of events is very strong: it involves many equality conditions (one for each finite subset of I).

* The rules of the game.

(a) $\mathbb{P}(\emptyset)=0$.
(b) For all $A \in \mathcal{A}$, we have $\mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A)$.
(c) If $A, B \in \mathcal{A}$ and $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$ and $\mathbb{P}(B \backslash A)=\mathbb{P}(B)-\mathbb{P}(A)$.
(d) If $A, B \in \mathcal{A}$, we have $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)$ (generalization: sieve formula).

* Probabilities as limits. Let $\left(A_{n}\right) \in \mathcal{A}^{\mathbb{N}}$ be a sequence of events.
(e) We have $\mathbb{P}\left(\bigcup_{n \geq 0} A_{n}\right) \leq \sum_{n \geq 0} \mathbb{P}\left(A_{n}\right)$.
(f) (Increasing union) If $\left(A_{n}\right)$ is increasing for inclusion (i.e. $A_{k} \subset A_{k+1}$ for all $\left.k \geq 0\right)$, then $\mathbb{P}\left(A_{n}\right) \rightarrow \mathbb{P}\left(\bigcup_{n \geq 0} A_{n}\right)$ when $n \rightarrow \infty$.
(g) (Decreasing intersection) If $\left(A_{n}\right)$ is decreasing for inclusion (i.e. $A_{k+1} \subset A_{k}$ for all $\left.k \geq 0\right)$, then $\mathbb{P}\left(A_{n}\right) \rightarrow$ $\mathbb{P}\left(\bigcap_{n \geq 0} A_{n}\right)$ when $n \rightarrow \infty$.

