Recap on probability spaces

* **Probabilized spaces.** $(\Omega, \mathcal{A}, \mathbb{P})$ is a probabilized space (sometimes also called a probability space) if \mathcal{A} is a σ -field on Ω and \mathbb{P} is a probability (sometimes also called a probability measure) on (Ω, \mathcal{A}) .

- * σ -fields A set \mathcal{A} of subsets of Ω ($\mathcal{A} \subset \mathcal{P}(\Omega)$) is a σ -field on Ω if :
- (1) $\Omega \in \mathcal{A}$.
- (2) For all $A \in \mathcal{A}$, we have $A^c = \Omega \setminus A \in \mathcal{A}$.
- (3) For any sequence $(A_n) \in \mathcal{A}^{\mathbb{N}}$ of elements of \mathcal{A} , we have $\bigcup_{n>0} A_n \in \mathcal{A}$.

The elements of \mathcal{A} are said to be the *events*.

 \mathfrak{P} WARNING. An event is **always** a subset of Ω .

* **Probability** A probability \mathbb{P} is a

application
$$\mathbb{P}: \mathcal{A} \to [0, 1]$$

such that

(1) $\mathbb{P}(\Omega) = 1$

(2) For any sequence $(A_n) \in \mathcal{A}^{\mathbb{N}}$ of pairwise disjoint \mathcal{A} events, we have

$$\mathbb{P}\left(\bigcup_{n\geq 0}A_n\right) = \sum_{n=0}^{\infty}\mathbb{P}\left(A_n\right).$$

Probabilistic modeling consists in describing an a priori random experiment by making the choice of a probability space.

* **Independence** Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let I be a set. Events $(A_i)_{i \in I}$ are independent (implying **mutually** and relative to \mathbb{P}) if for any finite number of indices i_1, i_2, \ldots, i_n we have

$$\mathbb{P}\left(\bigcap_{1\leq k\leq n}A_{i_k}\right)=\prod_{k=1}^n\mathbb{P}\left(A_{i_k}\right).$$

Or, written another way, $\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_n}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdots \mathbb{P}(A_{i_n})$. $\hat{\mathbb{P}}$ WARNING. The notion of independence of a sequence of events is very strong: it involves many equality conditions (one for each finite subset of I).

* The rules of the game.

- (a) $\mathbb{P}(\emptyset) = 0.$
- (b) For all $A \in \mathcal{A}$, we have $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- (c) If $A, B \in \mathcal{A}$ and $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$ and $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$.
- (d) If $A, B \in \mathcal{A}$, we have $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ (generalization: sieve formula).
- * **Probabilities as limits.** Let $(A_n) \in \mathcal{A}^{\mathbb{N}}$ be a sequence of events.
- (e) We have $\mathbb{P}\left(\bigcup_{n\geq 0}A_n\right)\leq \sum_{n\geq 0}\mathbb{P}\left(A_n\right)$.
- (f) (Increasing union) If (A_n) is increasing for inclusion (i.e. $A_k \subset A_{k+1}$ for all $k \ge 0$), then $\mathbb{P}(A_n) \to \mathbb{P}\left(\bigcup_{n\ge 0} A_n\right)$ when $n \to \infty$.
- (g) (Decreasing intersection) If (A_n) is decreasing for inclusion (i.e. $A_{k+1} \subset A_k$ for all $k \ge 0$), then $\mathbb{P}(A_n) \to \mathbb{P}(\bigcap_{n\ge 0} A_n)$ when $n \to \infty$.