Recap on countable sets

* Countable/at most countable/uncountable sets. Denote by $\mathbb{N}=\{0,1,2, \ldots\}$ the set of nonnegative integers. A set E is said to be countable if there exists a bijection $\phi: \mathbb{N} \rightarrow E$. It is sometimes convenient to call a set at most countable if it is finite or countable, and to call a set uncountable if it is not at most countable (which means that the set is infinite and not countable).

Thus, writing $x_{n}=\phi(n)$, we have $E=\left\{x_{n} ; n \geq 0\right\}$ (we sometimes say that we describe E in extension). Equivalently, we can also write $E=\left\{x_{n}^{\prime} ; n \geq 1\right\}$ (setting $x_{n+1}=x_{n}^{\prime}$). We sometimes also say that we are enumerating the elements of E.

* Countable sets and functions. The following results are useful to show that sets are countable or uncountable by using one-to-one functions or onto functions: Let E, F be two sets and

$$
f: E \rightarrow F
$$

a function.
(1) if E is countable and f is onto, then F is countable.
(2) if F is countable and f is one-to-one, then E is at most countable.
(3) if f is a bijection, E is countable if and only if F is countable.

The contrapositive statements of (1) and (2) yield:
(4) if F is uncountable and f is onto, then E is uncoutable.
(5) if E is uncountable and f is one-to-one, then F is uncountable

* Examples.

(i) \mathbb{Q} is countable (if a rational is written in the form p / q with $\operatorname{gcd}(p, q)=1$, the function defined by $0 \mapsto 0$ and $p / q \mapsto 2^{p}(2 q+1)$ is a one-to-one function from \mathbb{Q} to \mathbb{N}, so \mathbb{Q} is countable by (2)).
(ii) $\{0,1\}^{\mathbb{N}}$ is uncountable. Indeed, argue by contradiction, and assume that $\{0,1\}^{\mathbb{N}}=\left\{x^{k}: k \geq 0\right\}$. Write $x^{k}=\left(x_{n}^{k}\right)_{n \geq 0}$ and consider the sequence $y=\left(y_{n}\right)_{n \geq 0}$ defined by $y_{n}=1$ if $x_{n}^{n}=0$ and $y_{n}=0$ if $x_{n}^{n}=1$. Then there exists $k \geq 0$ such that $x^{k}=y$. But then $x_{k}^{k}=y_{k}$ and $x_{k}^{\bar{k}} \neq y_{k}$ by construction, which is absurd (this is the so-called Cantor diagonal argument).
(iii) \mathbb{R} is uncountable (the map $f:\{0,1\}^{\mathbb{N}} \rightarrow \mathbb{R}$ defined by $f\left(\left(x_{n}\right)_{n \geq 0}\right)=\sum_{n=0}^{\infty} x_{n} 10^{-n}$ is one-to-one, so \mathbb{R} in uncountable by (5))

* Useful properties.

(a) Let E be a countable set and $A \subset E$ be a subset. Then A is at most countable.
(b) Let I be an at most countable set, and for every $i \in I$ consider an at most countable set A_{i}. Then the set

$$
\bigcup_{i \in I} A_{i}
$$

is at most countable.
Usually, one says that "a countable union of countable sets is countable".
(c) Let $k \geq 1$ be an integer and for every $i \in\{1,2, \ldots, k\}$ consider an at most countable set A_{i}. Then the set

$$
A_{1} \times A_{2} \times \cdots \times A_{k}
$$

is at most countable.
(2) WARNING. An countable product of countable sets is not necessarily countable: $\{0,1\}^{\mathbb{N}}$ is uncountable (see (ii) above).

* Application. The set E of polynomials with rational coefficients is countable. Indeed, let E_{n} be the set of polynomials with rational coefficients of degree n. Since a polynomial of degree n has $n+1$ coefficients, E_{n} is in bijection with \mathbb{Q}^{n+1}, which is countable as a finite product of countable sets. Then

$$
E=\bigcup_{n \geq 0} E_{n}
$$

is countable as a countable union of countable sets.

