Recap on countable sets

* Countable/at most countable/uncountable sets. Denote by $\mathbb{N} = \{0, 1, 2, ...\}$ the set of nonnegative integers. A set *E* is said to be *countable* if there exists a bijection $\phi : \mathbb{N} \to E$. It is sometimes convenient to call a set *at most countable* if it is finite or countable, and to call a set *uncountable* if it is not at most countable (which means that the set is infinite and not countable).

Thus, writing $x_n = \phi(n)$, we have $E = \{x_n; n \ge 0\}$ (we sometimes say that we describe E in extension). Equivalently, we can also write $E = \{x'_n; n \ge 1\}$ (setting $x_{n+1} = x'_n$). We sometimes also say that we are enumerating the elements of E.

* Countable sets and functions. The following results are useful to show that sets are countable or uncountable by using one-to-one functions or onto functions: Let E, F be two sets and

$$f: E \to F$$

a function.

- (1) if E is countable and f is onto, then F is countable.
- (2) if F is countable and f is one-to-one, then E is at most countable.
- (3) if f is a bijection, E is countable if and only if F is countable.

The contrapositive statements of (1) and (2) yield:

- (4) if F is uncountable and f is onto, then E is uncoutable.
- (5) if E is uncountable and f is one-to-one, then F is uncountable

* Examples.

- (i) \mathbb{Q} is countable (if a rational is written in the form p/q with gcd(p,q) = 1, the function defined by $0 \mapsto 0$ and $p/q \mapsto 2^p(2q+1)$ is a one-to-one function from \mathbb{Q} to \mathbb{N} , so \mathbb{Q} is countable by (2)).
- (ii) $\{0,1\}^{\mathbb{N}}$ is uncountable. Indeed, argue by contradiction, and assume that $\{0,1\}^{\mathbb{N}} = \{x^k : k \ge 0\}$. Write $x^k = (x_n^k)_{n\ge 0}$ and consider the sequence $y = (y_n)_{n\ge 0}$ defined by $y_n = 1$ if $x_n^n = 0$ and $y_n = 0$ if $x_n^n = 1$. Then there exists $k \ge 0$ such that $x^k = y$. But then $x_k^k = y_k$ and $x_k^k \neq y_k$ by construction, which is absurd (this is the so-called Cantor diagonal argument).
- (iii) \mathbb{R} is uncountable (the map $f: \{0,1\}^{\mathbb{N}} \to \mathbb{R}$ defined by $f((x_n)_{n\geq 0}) = \sum_{n=0}^{\infty} x_n 10^{-n}$ is one-to-one, so \mathbb{R} in uncountable by (5))

* Useful properties.

- (a) Let E be a countable set and $A \subset E$ be a subset. Then A is at most countable.
- (b) Let I be an at most countable set, and for every $i \in I$ consider an at most countable set A_i . Then the set

$$\bigcup_{i \in I} A$$

is at most countable.

Usually, one says that "a countable union of countable sets is countable".

(c) Let $k \ge 1$ be an integer and for every $i \in \{1, 2, ..., k\}$ consider an at most countable set A_i . Then the set

$$A_1 \times A_2 \times \cdots \times A_k$$

is at most countable.

2 WARNING. An countable product of countable sets is not necessarily countable: $\{0,1\}^{\mathbb{N}}$ is uncountable (see (ii) above).

* **Application.** The set *E* of polynomials with rational coefficients is countable. Indeed, let E_n be the set of polynomials with rational coefficients of degree *n*. Since a polynomial of degree *n* has n + 1 coefficients, E_n is in bijection with \mathbb{Q}^{n+1} , which is countable as a finite product of countable sets. Then

$$E = \bigcup_{n \ge 0} E_n$$

is countable as a countable union of countable sets.