Recap on random variables

1 Random Variables

Let (Ω, \mathcal{A}) and (E, \mathcal{E}) be two probability spaces. A random variable from Ω to E is a function $X: \Omega \rightarrow E$ that is measurable (meaning $X^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{E}$).
(3) WARNING. The definition of a random variable does not involve the probability \mathbb{P}.

When say a "random variable taking values in E," we mean a random variable with the implied sigma-algebra on E (when $E=\mathbb{R}$, the Borel sigma-algebra is usually taken), and the underlying probability space is also implied.

2 "Probabilistic" notation

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and let $X:(\Omega, \mathcal{A}) \rightarrow(E, \mathcal{E})$ be a random variable. If $B \in \mathcal{E}$:
$-\{X \in B\}$ is a notation for the event $\{\omega \in \Omega: X(\omega) \in B\}$, used for simplification (it is also sometimes denoted by $(X \in B$), but we often prefer to write $\{X \in B\}$ to emphasize that $\{X \in B\}$ is a set, namely a subset of Ω belonging to \mathcal{A}).
$-\{X \in B\}=X^{-1}(B)$ by definition of the inverse image (and $X^{-1}(B) \in \mathcal{A}$ since X is a random variable).

- $\mathbb{P}(X \in B)$ is a notation for $\mathbb{P}(\{X \in B\})$, used for simplification.

In the same vein, if $Y:(\Omega, \mathcal{A}) \rightarrow(F, \mathcal{F})$ is another random variable and $C \in \mathcal{F}$:
$-\mathbb{P}(X \in B, Y \in C)$ and $\mathbb{P}(X \in B$ and $Y \in C)$ both mean $\mathbb{P}(\{X \in B\} \cap\{Y \in C\})$, or equivalently $\mathbb{P}(\{\omega \in \Omega: X(\omega) \in$ B and $Y(\omega) \in C\})$.
$-\mathbb{P}(X \in B$ or $Y \in C)$ means $\mathbb{P}(\{X \in B\} \cup\{Y \in C\})$, or equivalently $\mathbb{P}(\{\omega \in \Omega: X(\omega) \in B$ or $Y(\omega) \in C\})$.
2 WARNING. In the two previous points, X and Y do not necessarily have to take values in the same space, but they must be Il defined on the same underlying space.

For example, $\mathbb{P}(X \geq 2)$ is a notation for $\mathbb{P}(\{\omega \in \Omega: X(\omega) \geq 2\})$, and $\mathbb{P}(X=Y)$ is a notation for $\mathbb{P}(\{\omega \in \Omega: X(\omega)=Y(\omega)\})$.

3 Laws of Random Variables

If $X:(\Omega, \mathcal{A}) \rightarrow(E, \mathcal{E})$ is a random variable and \mathbb{P} is a probability on (Ω, \mathcal{A}), the law of X under \mathbb{P} is a

$$
\text { probability on the target space (co-domain) }(E, \mathcal{E}) \text {, }
$$

often denoted by \mathbb{P}_{X}, defined by

$$
\text { for all } B \in \mathcal{E}, \quad \mathbb{P}_{X}(B) \quad:=\mathbb{P}\left(X^{-1}(B)\right) \quad=\mathbb{P}(X \in B)
$$

(2)WARNING. The law of X depends on the probability considered on (Ω, \mathcal{A}). However, if there is only one probability involved II on (Ω, \mathcal{A}) and there is no ambiguity, we simply refer to the law of X.

4 Generated σ-fields

If $X:(\Omega, \mathcal{A}) \rightarrow(E, \mathcal{E})$ is a random variable, the σ-field generated by X, denoted by $\sigma(X)$, is the smallest sigma field on Ω for which X is measurable (since X is measurable for \mathcal{A} by definition of a random variable, we have $\sigma(X) \subset \mathcal{A})$. We have

$$
\begin{equation*}
\sigma(X)=\left\{X^{-1}(B): B \in \mathcal{E}\right\} \tag{1}
\end{equation*}
$$

Indeed, if X is measurable, that all the elements of the form $X^{-1}(B), B \in \mathcal{E}$ should be in any σ-field for which X is measurable. Since they form a σ-field, we have equality.

If $X_{i}:(\Omega, \mathcal{A}) \rightarrow\left(E_{i}, \mathcal{E}_{i}\right)$ are random variables, the σ-field generated by the family $\left(X_{i}\right)_{i \in I}$, denoted by $\sigma\left(X_{i}: i \in I\right)$ is the smallest σ-field on Ω for which all the X_{i} for $i \in I$ are measurable.

2 WARNING. In general, the σ-field generated by several random variables is not explicit:

$$
\begin{equation*}
\sigma\left(X_{i}: i \in I\right)=\sigma\left(\left\{X_{i}^{-1}\left(B_{i}\right): B_{i} \in \mathcal{E}_{i}, i \in I\right\}\right) \tag{2}
\end{equation*}
$$

This is in contrast to the case where we have one random variable (1).
(2)WARNING. The second σ (on the right-hand side of the equality (2)) refers to the σ-field generated by a collection of subsets II of Ω : recall that if $\mathcal{C} \subset \mathcal{P}(\Omega)$ is a collection of subsets of Ω then $\sigma(\mathcal{C})$ is the smallest sigma-field on Ω containing all elements of \mathcal{C}.

Formula (2) gives us nonetheless an explicit generating π-system of $\sigma\left(X_{i}: i \in I\right)$, which is the collection of sets of the form

$$
X_{i_{1}}^{-1}\left(B_{i_{1}}\right) \cap \cdots \cap X_{i_{k}}^{-1}\left(B_{i_{k}}\right)
$$

for $k \geq 1, i_{j} \in I$ and $B_{i_{j}} \in \mathcal{E}_{i_{j}}$ for $1 \leq j \leq k$.

5 Independent Random Variables

If $X_{1}:(\Omega, \mathcal{A}) \rightarrow\left(E_{1}, \mathcal{E}_{1}\right), \ldots, X_{n}:(\Omega, \mathcal{A}) \rightarrow\left(E_{n}, \mathcal{E}_{n}\right)$ are random variables, we say they are (mutually) independent (with respect to $\mathbb{P})$ if the σ-fields $\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{n}\right)$ are independent, that is:

$$
\text { for all } B_{1} \in \mathcal{E}_{1}, \ldots, B_{n} \in \mathcal{E}_{n}, \quad \mathbb{P}\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \in B_{i}\right)
$$

If I is any set, we say that the random variables $\left(X_{i}\right)_{i \in I}$ are independent if, for any $J \subset I$ with $\operatorname{Card}(J)<\infty$, the random variables $\left(X_{j}\right)_{j \in J}$ are independent.
(Informally, independence transforms intersections into products).
2. WARNING. Random variables can be independent with respect to one probability measure but not independent with respect I to another probability measure.

