Recap on convergence theorems

All the functions are defined on a measured space (E, \mathcal{E}, μ) . All the random variables are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Recall that a function $f: (E, \mathcal{E}) \to \mathbb{R}$ is said to be integrable (with respect to μ) if $\int |f| d\mu < \infty$, in which case $\int f d\mu$ is equal, by definition, to $\int f^+ f d\mu - \int f^- d\mu$, where $f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$.

1 Monotone convergence theorem

Theorem (Monotone convergence theorem).

Let (f_n) be a sequence of increasing measurable functions with values in $[0, \infty]$. Then

$$\int (\lim_n f_n) d\mu = \lim_{n \to \infty} \uparrow \int f_n d\mu.$$

Theorem (Monotone convergence theorem: probabilistic version).

Let (X_n) be a sequence of increasing random variables with values in $[0,\infty]$. Then

$$\mathbb{E}\left[\lim_{n} X_{n}\right] = \lim_{n \to \infty} \uparrow \mathbb{E}\left[X_{n}\right].$$

2 Fatou's lemma

Theorem (Fatou's lemma).

Let (f_n) be a sequence of **nonnegative** measurable functions. Then

$$\int (\liminf_{n \to \infty} f_n) d\mu \leq \liminf_{n \to \infty} \int f_n d\mu.$$

Theorem (Fatou's lemma: probabilistic version).

Let (X_n) be a sequence of **nonnegative** random variables. Then

$$\mathbb{E}\left[\liminf_{n \to \infty} X_n\right] \leq \liminf_{n \to \infty} \mathbb{E}\left[X_n\right].$$

3 Dominated convergence theorem

Recall that a property is said to be true μ almost everywhere (or simply almost everywhere when there is no ambiguity) if is is true outside a set of 0 measure. For exemple, saying that f(x) = g(x) for μ almost x is saying that $\mu(\{x \in E : f(x) \neq g(x)\}) = 0$.

Theorem (Dominated convergence theorem).

Let (f_n) be a sequence of integrable real-valued measurable functions. Assume that:

- (1) there exists a measurable function f such that $f_n(x) \to f(x)$ holds for μ almost x
- (2) there exists a measurable function $g: E \to \mathbb{R}_+$ such that $\int g d\mu < \infty$ and for every *n*, the inequality $|f_n| \leq g$ holds μ almost everywhere.

Then

$$\lim_{n \to \infty} \int |f_n - f| d\mu \quad \xrightarrow[n \to \infty]{} 0 \quad \text{and} \quad \int f_n d\mu \quad \xrightarrow[n \to \infty]{} \int f d\mu.$$

In the previous result, it is crucial that g does not depend on n.

Theorem (Dominated convergence theorem: probabilistic version).

Let (X_n) be a sequence of integrable real-valued random variables. Assume that:

- (1) there exists a random variable X such that $X_n \to X$ holds almost surely
- (2) there exists a nonnegative random variable Z such that $\mathbb{E}[|Z|] < \infty$ and for every n, the inequality $|X_n| \leq Z$ holds almost surely.

Then

 $\lim_{n \to \infty} \mathbb{E}\left[|X_n - X| \right] \xrightarrow[n \to \infty]{} 0 \quad \text{and} \quad \mathbb{E}\left[X_n \right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[X \right].$

4 Fubini's theorems

Here, (E, \mathcal{E}, μ) and (F, \mathcal{F}, ν) are measured spaces. Recall that $\mathcal{E} \otimes \mathcal{F}$ is the product σ -field $\sigma(A \times B : A \in \mathcal{E}, B \in \mathcal{F})$. We assume that μ and ν are σ -finite measure, and recall that $\mu \otimes \nu$ is the unique measure on $(\mathcal{E} \otimes \mathcal{F})$ such that $(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B)$ for $A \in \mathcal{E}$ and $B \in \mathcal{F}$ (with the standard convention $0 \times \infty = 0$).

Theorem (Fubini-Tonnelli).

Let $f: E \times F \to [0,\infty]$ be measurable. Then $x \mapsto \int f(x,y)\nu(dy)$ and $y \mapsto \int f(x,y)\mu(dx)$ are both respectively \mathcal{E} -measurable and \mathcal{F} -measurable, and

$$\int_{E\times F} f d\mu \otimes \nu = \int_E \left(\int_F f(x,y)\nu(dy) \right) \mu(dx) = \int_F \left(\int_E f(x,y)\mu(dx) \right) \nu(dy).$$

In practice, Fubini-Tonnelli says that for **nonnegative** functions (and σ -finite measures), one can always permute the integrals (without changing the result).

Theorem (Fubini-Lebesgue).

- Let $f: E \times F \to \mathbb{R}$ be an integrable function with respect to $\mu \otimes \nu$. Then
 - (1) for μ -almost every $x, y \mapsto f(x, y)$ is integrable with respect to ν and for ν -almost every $y, x \mapsto f(x, y)$ is integrable with respect to μ ;
 - (2) the functions $x \mapsto \int f(x, y)\nu(dy)$ and $y \mapsto f(x, y)\mu(dx)$ are well defined, except maybe on sets with 0 measure, and are respectively integrable with respect to μ and ν ;
 - (3) we have

$$\int_{E\times F} fd\mu \otimes \nu = \int_E \left(\int_F f(x,y)\nu(dy) \right) \mu(dx) = -\int_F \left(\int_E f(x,y)\mu(dx) \right) \nu(dy).$$

In practice, to permute the integrals for real-valued functions, one first checks that the integral is finite when taking the absolute value (often by using Fubini-Tonnelli's theorem).